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A general adaptive form

The context for this presentation is the following equation

θn = θn−1 + γnH (θn−1,Xn) + γ2
nεn (θn−1,Xn) (1)

This is a general form of a discrete-time recursive forumlation of
the identification problem. A number of popular algorithms used in
system identification can be obtained as special cases.
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Symbols and their meaning

I (θn)n≥0 is the sequence of vectors to be recursively updated;
I (Xn)n≥1 is a sequence of random vectors representing the

on-line observations of the system in the form of a state
vector;

I (γn)n≥1 is a sequence of ”small” scalar gains;
I H(θ, X̄ ) is the function which defines how the parameter θ is

updated as a function of new observations;
I εn(θ,X ) is a small perturbation term1

1εn ≡ 0 for algorithms discussed in this presentation
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Analysis

Analysis of the equation is made difficult by the correction term.
θn − θn−1 is implicitly dependent on past values of the parameters.
An alternative route to analysis is simulation but this does not
necessarily have generally applicability.

We are referring to an analysis of asymptotic convergence.
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An analysis idea

It turns out that convergence properties will depend on
approximations used for the gradient of the prediction. This is
suggestive of the following idea: Take a discrete-time recursive
algorithm and associate it with an ordinary differential equation.
Then describe the asymptotic convergence of the algorithm in
terms of the limiting behaviour of the ODE.
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Channel Equalisation

Problem Description

For purposes of designing a recursive identification algorithm
consider the following problem:

I Message an transmitted over unknown channel S
I Estimate ân by filtering noisy observations yn
I How to design θ with a low error rate?
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Channel Equalisation

Problem Description

If the inverse exists and there is zero measurement error then the
ideal filter θ∗ should be easy to find. There are two distinct
phases2 to the problem

1. learning: approximate θ using a known training sequence an

2. tracking: also known as self-adaptive equalisation where θ̂ is
continuously updated to track changes in the channel due to
exogenous factors

2A third phase called blind equalisation is required in the context of
broadcast systems but will not be considered in this discssion
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Channel Equalisation

Model Structure: θ

A filter is generally the preferred structure for modelling the
dynamical system of the equalisation problem. The filter structure
opted for this presentation is the transveral (all-zeros) form.

cn =
+N∑

k=−N
θ(k)yn−k = Y T

n θ (2)

where
Y T

n := (yn+N , . . . , yn, . . . , yn−N) (3)

θT := (θ(−N), . . . , 0(0), . . . , θ(N)) (4)
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Channel Equalisation

Model Structure: θ

The model should be chosen to best describe the input/output
characteristics:
I Transversal filter is linear and homogeneous function of time
I Permits a simplified the learning procedure
I Suitable for learning a limited class of channels
I Objective is to minimise algortihm complexity for associating

the ODE
I Self-adaptive equalisation demands a more complex model

such as the pole-zero form3

3See Albert Benveniste, Michel Métivier and Pierre Priouret, Adaptive
algorithms and stochastic approximations, vol. 22 (Springer Science & Business
Media, 2012) page 18 for an example.
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Channel Equalisation

Signal Modelling: an and vn

The properties of the input signals are also an important
specification of the model.
I (vn) is typically a sequence of i.i.d. random variables with zero

mean and fixed variance.
I (an) is a sequence of independent random variables with a

uniformly distributed symbol set that is stationary and has
zero mean (for example (±1,±3)

I Uniform distribution of (an) offers better bandwidth utilisation
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Channel Equalisation

An Adaptive Algorithm

The validity of an instance of the model structure of (2) can be
measured using the estimation error. The variance of the
estimation error forms the criterion function to be minimised by
the adaptive algortihm:

min
θ

V (θ) (5)

where
V (θ) = 1

2E [an − cn]2 (6)

Since V (θ) is quadratic in θ a solution may be found from:[
− d

dθV (θ)
]T

= EYn
[
an − Y T

n · θn−1
]

= 0 (7)
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Channel Equalisation

An Adaptive Algorithm

This gives an optimal value for θ of

θ∗ =
[
E
(
YnY T

n

)]−1
E (Ynan) (8)

Unfortunately the joint distribution of Yn and an is not known a
priori and therefore the expectation can not be evaluated.
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Channel Equalisation

An Adaptive Algorithm

Suppose instead we are given a sequence of random variables Xn,
each drawn from the same distribution. Given a function F (θ,Xn)
whose values can be observed or constructed for some value of θ,
find a solution to

EF (θ,Xn) = f (θ) = 0 (9)
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Channel Equalisation

An Adaptive Algorithm

With θ assuming the role of the parameter, and state vector
defined as

Xn =
(

an
Yn

)
(10)

a suitable choice for F is the gradient term

F (θ,Xn) = Yn
[
an − Y T

n · θn−1
]

(11)

which is easy to evaluate given observations of Xn and the most
recent parameter estimate.



Convergence and the O.D.E. Method
Applications I

Channel Equalisation

An Adaptive Algorithm

An approach to solving (9) is to choose a sequence Xn, observe
values of F (θ,Xn) and to infer the solution. Changing the value of
Xn on every iteration it turns out is more efficient. Robbins and
Munro4 suggested the following recursive scheme for solving (9):

θ̂n = θ̂n−1 + γnF (θ̂n−1,Xn) (12)

4Herbert Robbins and Sutton Monro, ‘A stochastic approximation method’,
The annals of mathematical statistics (1951): 400–407.
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Channel Equalisation

An Adaptive Algorithm

Application of this scheme to (7) gives

θ̂n = θ̂n−1 + γnYn
[
an − Y T

n · θn−1
]

(13)

In adaptive signal processing this is widely known as the “Least
Mean Squares” algortihm or the LMS. Explicitly, no off-line
gradient estimation from repetitions of the data is required. Each
iteration of the algorithm requires only the input vector and desired
response.
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Heuristic Arguments

Motivation

Consider the adaptive form

θn = θn−1 + γnH (θn−1,Xn) (14)

The nonlinear time-varying mapping from Xn to θ̂n makes analysis
difficult however, the general application of this form suggests that
a universal method of convergence analysis is a worthwhile goal.
To this end a more precise definition of the following is required:
I Nature of the gain γn
I Nature of the state vector Xn
I Conditions on the vector field H (θn−1,Xn)

Firstly, a heuristic argument for an associated differential equation
will be given.



Convergence and the O.D.E. Method
The ODE Method

Heuristic Arguments

The Associated Differential Equation

Consider the following approximations where γn is replaced by a
small constant γ:

θn+N = θn + γ
N−1∑
i=0

H (θn+i ,Xn+i+1)

≈ θn + γ
N−1∑
i=0

H (θn,Xn+i+1)

= θn + (Nγ) · 1
N

N−1∑
i=0

H (θn,Xn+i+1)

≈ θn + Nγh (θn)

(15)
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Heuristic Arguments

The Associated Differential Equation

The approximations are justified as follows:
1. The function θ → H (θ,X ) is regular
2. θn+i in N previous steps belong to a small neigbourhood of

values
3. In the transversal equaliser state Xn+i is stationary
4. The mean vector field h is justified provided N is “large”

enough
Points 2 and 4 present a conflict that is resolved by the need for
small γ.
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Heuristic Arguments

The Associated Differential Equation

The final expression has the form of a difference equation with
discretisation θ0, θN , θ2N . . .. Another interpretation of this
equation is a discrete version of the continuous time ODE:

θ̇ = h(θ) θ(0) = z (16)

with solution
θ(t) or θ(z , t), t ≥ 0 (17)

Regularity in terms of locally Lipschitz h then permits association
of the ODE (assumption 1).
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Heuristic Arguments

The Associated Differential Equation
Expressing (15) in the form of (16) yields

θn+1 = θn + γh (θn) (18)

with
θn = θ (tn) with tn = nγ (19)

Note that if a small variable step size is used then shifting γn inside
the summation then the concept of time is replaced

θn = θ (tn) with tn =
n∑

i=1
γi (20)

It then seems reasonable that asymptotic properties of (14) can be
studied in terms of (16).
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Heuristic Arguments

The State Vector
The state vector (Xn) must be asymptotically stationary and
regular in the limit of θ. Why?

Conditional Linear Dynamics
Algorithms for system identification often use models incorporating
state dependent feedback. Stationarity is therefore tied to model
stability. For example, a model based on rational stable transfer
functions permits the following state representation5

θn = θn−1 + γnH (θn−1,Xn)
Xn = A (θn−1) Xn−1 + B (θn−1) Wn

(21)

where Wn is a stationary sequence of independent variables.
5This form was introduced in Lennart Ljung, ‘Analysis of recursive

stochastic algorithms’, IEEE transactions on automatic control 22.4 (1977):
551–575 eq (1) and (2).
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Heuristic Arguments

The State Vector
(21) is a special case of a more general representation of the state
vector in which Xn is a functional of a Markov chain controlled by
θn

6:
Xn = f (ξn) (22)

where (ξn) has a conditional distribution of the form

P (ξn ∈ G | ξn−1, ξn−2, . . . ; θn−1, θn−2, . . .) =
∫

G
πθn−1 (ξn−1, dx)

(23)
where θ is fixed and πθ (ξ, dx) is the transition probability.
Furthermore, (Xn) is asymptotically stationary and regular in θ at
its limit.

6Harold J Kushner and Adam Shwartz, ‘An invariant measure approach to
the convergence of stochastic approximations with state dependent noise’,
SIAM Journal on Control and Optimization 22.1 (1984): 13–27.
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Heuristic Arguments

The State Vector

Therefore in the Markov state model it is the transition
probabilities πk

θ (ξn, dx) that must display regularity and
asymptotic convergence i.e.
I For fixed θ in the algorithm domain, conditional distributions

of the Markov chain converge to a unique invariant probability:

πk
θ (ξn, .)→ µθ (24)

I Function θ → µθ is regular



Convergence and the O.D.E. Method
The ODE Method

Heuristic Arguments

The State Vector
The following proposition7 underlies the importance of the Markov
representation:

1. The following transformations preserve the Markov
representation of Xn:

Yn = g (Xn) (25)

where g is a suitably regular function and

Zn = (Xn, . . . ,Xn−p) (26)

where p is a fixed integer.
2. The following transformation preserves the Markov

representations of Xn and an which are controlled by the same
extended state ξn:

Un = (Xn, an) (27)
7Benveniste, Métivier and Priouret page 27
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Heuristic Arguments

Nature of the Gain

The first condition is on how fast the gain tends to zero:∑
n
γαn <∞ for some α > 1 (28)

The second condition is required for the alorithm to move the
estimate to the desired limit:∑

n
γn = +∞ (29)



Convergence and the O.D.E. Method
The ODE Method

Heuristic Arguments

The Mean Vector Field

As alluded to earlier, for small γ it is expected that parameter
estimates vary slowly compared to the state. This means we need
to assume smoothness of H (θ,Xn). Therefore we define the mean
vector field

h(θ) := lim
n→∞

Eθ (H (θ,Xn)) (30)

The expectation is over the distribution of Xn for a fixed value of
θ. This condition is key to associating the ODE with the general
adaptive form.
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Heuristic Arguments

Summary of Conditions

A summary of conditions:
I General adaptive form (14) (omitting the complementary

term)
I State vector (Xn) is stationary and indpendent of θ
I Estimation of fixed parameters requires decreasing gain
I Existence and regularity of the mean vector field h(θ) defined

by (30)
We can now state some fundamental theorems for the study of
convergence8

8See Ljung Appendices I,II and III for proofs
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The Basic Theorems

Finite Horizon

Theorem 1
Assuming all conditions are satisfied inside the cylinder of diameter
η > 0 containing the trajectory (θ(t))0≤t≤T of the ODE, let

γ := max
n:tn≤T

γn (31)

Then, for fixed ε > 0 and γ sufficiently small, we have

P
{

max
n:tn≤T

‖θn − θ (tn)‖ > ε

}
≤ C(γ,T ) (32)

where, for fixed T <∞, constants C(γ,T ) tend to zero as γ
tends to 0.
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The Basic Theorems

Infinite Horizon

Convergence in the case n→∞ requires additional conditions.

Decreasing gain
The gain must sastify the following:∑

n
γαn <∞ for some α > 1,

∑
n
γn = +∞ (33)

1. Variance of the parameters tends to zero
2. Ensure tn →∞
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The Basic Theorems

Infinite Horizon

Domain of attraction
This condition says that the ODE has an attractor θ∗ with domain
of attraction is D∗.
I ODE is asymptotically stable
I θ∗ may be a point or limit cycle
I D∗ is the set of all intial conditions z where θ(z , t) converge

to θ∗
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The Basic Theorems

Infinite Horizon

Theorem 2
Assuming all conditions are satisfied in D∗ and suppose that
algorithm (14) is initialised with θ0 = z ∈ Q, where Q is a
compact subset of D∗ and ξ0 = ξ. Then

(i) P
{

lim
n→∞

θn = θ∗
}
≥ 1− C(α,Q, |ξ|)

∑
n
γαn

(ii) P
{

max
n
‖θn − θ (z , tn)‖ > ε

}
< C(α,Q, |ξ|)

∑
n
γαn

for any ε > 0

(34)

C here is a constant that depends on α, compact subset Q and
norm of the initial condition and allows some degree of control
over the error.
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The Basic Theorems

Infinite Horizon

It remains to be discussed that there are risks of divergent θn.
There are two mechanisms

Behaviour of state
The output of the state Markov chain πθ is transient instead of
recurrent. This can happen despite θ within a stable-state domain.
θ →∞ is indicative of this behaviour.
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The Basic Theorems

Infinite Horizon

Boundedness Condition
Conversely θn may leave the domain of attraction because:
I γnH(θn−1,Xn) may be too large even for small γ
I Variance of H(θn−1,Xn) may increase to the extent that a

“random walk” effect to infinity takes place
It can only be verified for a specfic algorithm that

P {θn ∈ Q infinitely often } = 1 (35)

.
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The Basic Theorems

Summary

A summary of all the theorems stated might be given as follows:
after the transient phase, the behaviour of algorithm (14) is
represented to a first approximation by that of the ODE (16) and
(17).
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Analysis of Adaptive Algorithms

Recap
Form (14) can be studied and analysed in terms of differential
equation (16). A more detailed summary of the theoretical results
might be the following:

1. θn can only converge to stable stationary points of the
differential equation

2. If θ(t) belongs to a domain of attraction of the stable
stationary point θ∗ of (16) infinitely often a.s. then θn
converges to θ∗ a.s. as n→∞

3. Trajectories of (16) can be described as asymptotic paths of
estimates θn generated by the update equation.

Given a set of reasonably weak conditions.
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Guide to Analysis

Analysis of Adaptive Algorithms: Stages of Adaptive
Analysis

Stage 1
Express the algorithm in the general form and verify that the
theory is applicable

1. Identify H, εn, γn, Xn, ξn

2. Is the gain decreasing or constant?
3. Identify θn for which ξn blows up
4. Does ξn have unique stationary asymptotic beaviour: ξn and
ξn+N independence
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Guide to Analysis

Analysis of Adaptive Algorithms: Stages of Adaptive
Analysis

Stage 2:
1. Calculation of the mean vector field h(θ)



Convergence and the O.D.E. Method
The ODE Method

Guide to Analysis

Analysis of Adaptive Algorithms: Stages of Adaptive
Analysis

Stage 3:
Study the ODE

1. Classical analysis of a differential equation
2. Study of attractors and their domains of attraction
3. What are the trajectories of the ODE?
4. Where possible choose a suitable Lyapunov function J
5. Consider local minima of J , the potential from which h(θ) is

derived and their domains of attaction.
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Analysis of the Tranversal Equaliser

Stage 1: Expression of the Algorithm in the General Form
I γn is decreasing for a learning phase
I Xn and H were identified in (11) and restated as follows:

Xn =
(

an
Yn

)
H(θ,Xn) = Yn

[
an − Y T

n · θn−1
] (36)

I (yn) is generated from an ARMA process and therefore (Yn) is
asymptotically stationary. Similarly for (Xn)

I H is regular
I Algorithm behaviour therefore given by ODE
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Analysis of the Transversal Equaliser

Analysis of the Transversal Equaliser

Stage 2: Calculation of the ODE
I Evaluate the mean vector field:

h(θ) = E (H (θ,Xn)) (37)

I Expectation is with respect to the stationary asymptotic
distribution of Xn.
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Analysis of the Transversal Equaliser

Analysis of the Transversal Equaliser

Stage 3: Analysis of the ODE
I A suitable Lyapunov function is V (θ) = E

(
e2

n(θ)
)

where
en(θ) = an − Y T

n θ

I Satisfies h(θ) = − d
dθV (θ)

I Trajectories of the ODE are the lines of steepest descent of
the mean square error between true message and the output
of the equaliser

I V is strictly decreasing function but bounded below
I θ must therefore converge to the attractor θ∗
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The Active Noise Cancellation (ANC) Problem

Description

The following is a typical broadband feedforward ANC system:

The objective in ANC is to cancel an acoustic noise source at a
position (c). An error signal is derived from this point and is used
to drive adaption of a filter. The noise source is detected at (a),
filtered and used to drive a loudspeaker to generate an “anti-noise”.
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The Active Noise Cancellation (ANC) Problem

Description

Two elements to the ANC problem:
I Prediction
I Equalisation

Prediction of the sound pressure level of the acoustic noise is used
to compensate for inherent time delay in actuation. Equalisation
provides compensation for non-linearities and unmodelled dynamics
in the actuator transfer function
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The Active Noise Cancellation (ANC) Problem

Problem Description
Feedforward control is achieved using a variant of the LMS
algorithm called filtered-X LMS that shifts the secondary path
transfer function filter to the plant input9:

9See Bernard Widrow and Samuel D Stearns, ‘Adaptive Signal Processing
Prentice-Hall’, Englewood Cliffs, NJ (1985) chapter 11.
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The Active Noise Cancellation (ANC) Problem

Description

Symbols are defined as follows:
I P(q−1) is the speaker to error microphone transfer function
I C(q−1) is the controller, a transversal (all-zero) filter
I G(q−1) is the transfer function capturing dynamics of the

disturbance to the error microphone
I v(k) is a measurement noise (also known as “plant noise” and

a source of stochasticity)
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The Active Noise Cancellation (ANC) Problem

Expression in the general form

Guided by the feedforward control scheme and general adaptive
form of (14) we develop a the filtered-X LMS algorithm.

Controller
A transveral (all-zero) model is used for the controller such that

C
(
q−1

)
= c0 + c1q−1 + . . .+ cNq−N (38)

At any given iteration of the algorithm the controller weights are
given by the parameter vector of length N + 1:

θ̂(k) = [c0, c1, . . . , cN ]T (39)
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The Active Noise Cancellation (ANC) Problem

Expression in the general form

Criterion and Error Function
Again we minimise a squared error criterion to derive the gradient
approximation and therefore a search direction along which to
update controller coefficients. From the control diagram we have

e(k) = z(k) + v(k) + P
(
q−1

)
u(k)

= z(k) + v(k) + P
(
q−1

) (
φT (k)θ̂(k)

) (40)

where
φ(k) = [x(k), x(k − 1), . . . , x(k − N)]T (41)

is the state vector.
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The Active Noise Cancellation (ANC) Problem

Expression in the general form
Gradient approximation
The objective of the algorithm is to minimise a quadratic error
criterion, namely

J = 1
2E [e2(k)] (42)

Taking the derivative with respective to each parameter gives

∂J
∂θi

= E
[
e(k)∂e(k)

∂θi

]
(43)

Differentiating (40) with respect to each coefficient:

∂e(k)
∂θ̂i

=
N∑

j=0
pjφ(k − i − j) (44)
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The Active Noise Cancellation (ANC) Problem

Expression in the general form

Filtered-X LMS Algorithm
The cofficients may then be updated by a proportion of the
negative instantaneous value of the gradient10:

θ̂(k + 1) = θ̂(k)− γ(k)
[
P̂
(
q−1

)
φ(k)

]
e(k) (45)

where γ is a positive adaption gain.

10This derivation is due to Stephen Elliott, IANM Stothers and
Philip Nelson, ‘A multiple error LMS algorithm and its application to the active
control of sound and vibration’, IEEE Transactions on Acoustics, Speech, and
Signal Processing 35.10 (1987): 1423–1434 but is equivalent to the filtered-X
LMS algorithm in Widrow and Stearns
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The Active Noise Cancellation (ANC) Problem

Recap

Recall the basic recipe for convergence analysis:
1. Express the algorithm in the general form
2. Freeze the model paramter estimate θ̂, compute the state

vector and prediction error and evaluate the mean vector field
of the associated ODE.

3. Study the stability of the associated ODE defined by the mean
vector field.
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The Active Noise Cancellation (ANC) Problem

Single Input Single Output Analysis

Step 1: Regularity conditions
The algorithm is defined by the combination of a small gain
sequence and the update term H(θ̂(k), φ(k)) in (45). The
smoothness of H is satisfied as follows:
I No specific assumption on the error term
I H(θ̂(k), φ(k)) is Lipschitz continuous in θ and φ
I H and its derivatives must not increase rapidly with φ and e

for all θ within a compact subset of the stability region11.
Regularity conditions are therefore satisfied in this example.

11This is simply a projection mechanism to ensure that all estimates are
confined to the stability region and is an implicit assumption of the method
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The Active Noise Cancellation (ANC) Problem

Single Input Single Output Analysis

Step 2: Freeze the trajectories
Next freeze the trajectories of the state and estimation error:

φ̄(k, θ) = φ(k) (46)

ē(k) = d(k) + P
(
q−1

) (
φT (k)θ

)
(47)
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The Active Noise Cancellation (ANC) Problem

Single Input Single Output Analysis

Step 2: Averge update term
Mean vector field is given by:

f (θ) = −E
[(

P̂
(
q−1

)
φ̄(k, θ)

)
ē(k, θ)

]
= −E

[
P̂
(
q−1

)
φ(k)

] [
z(k) + v(k) + P

(
q−1

) (
φT (k)θ

)]
= −E

[(
P̂
(
q−1

)
φ(k)

)
z(k)

]
− E

[(
P̂
(
q−1

)
φ(k)

)
P
(
q−1

) (
φT (k)θ

)]
(48)

where we have imposed the requirement that x(k) and v(k) are
uncorrelated.
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The Active Noise Cancellation (ANC) Problem

Single Input Single Output Analysis

Step 2: Define the associated ODE
The associated ODE is then:

d
dτ θ(τ) = −E

[(
P̂
(
q−1

)
φ(k)

)
P
(
q−1

)
φT (k)

]
θ(τ)

− E
[(

P̂
(
q−1

)
φ(k)

)
z(k)

] (49)

and has a unique equilibrium point (no change in the update)

θ∗ = −E
[(

P̂
(
q−1

)
φ(k)

)
P
(
q−1

)
φT (k)

]−1
×

E
[(

P̂
(
q−1

)
φ(k)

)
z(k)

] (50)

for non-singular E
[(

P̂
(
q−1)φ(k)

)
P
(
q−1)φT (k)

]
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The Active Noise Cancellation (ANC) Problem

Single Input Single Output Analysis

Step 3: Analysis of the ODE
Now that the ODE is associated with the algorithm its asymptotics
should follow the asymptotics of the ODE trajectories. ODE
asymptotics are typically expressed in terms of stability. This can
be demonstrated with:
I Numerical simulation
I A suitable Lyapunov function

We shall find a Lyapunov function since it is a necessary and
sufficient condition for stability for this ODE.
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Step 3: Analysis of the ODE (continued)
In brief:
I Define a Lyapunov function V (x) ≥ 0 for all x such that when

evaluated along solutions to the ODE:

d
dτ V (x(τ)) = d

dx V (x(τ)) · d
dτ x(τ)

= V ′(x(τ))f (x(τ)) ≤ 0 for all x(τ)
(51)

and
d
dτ V (x(τ)) = 0⇒ x(τ) ∈ Dc (52)
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Step 3: Analysis of the ODE (continued)
Consider the following system:

d
dt x(t) = Ax(t) (53)

and Lyapunov function:

V (x) = xT (t)x(t) (54)

Then if eigenvalues of A are in the open left half of the complex
plane for system the equilibrium point stable.
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Step 3: Analysis of the ODE (continued)
The ODE is a linear time-invariant differential equation and its
stability is determined by the eigenvalues of the following N × N
matrix:

A ≡ −E
[(

P̂
(
q−1

)
φ(k)

)
P
(
q−1

)
φ(k)

]
(55)

The significance of A is that it is a generalisation of the classical
reference signal autocorrelation matrix12.

12See Widrow and Stearns page 20
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Step 3: Analysis of the ODE (continued)
Let L be a non-zero (N × 1) vector. It can be shown that13:

LT AL = −E
[
LT P̂

(
q−1

)
φ(k)P

(
q−1

)
φT (k)L

]
= −E

[
P̂
(
q−1

) (
LTφ(k)

)
P
(
q−1

) (
LTφ(k)

)]
= − 1

2π

∫ π

−π
Re
[
P̂∗
(
e−jω

)
P
(
e−jω

)
Sγ
(
e−jω

)]
dω

(56)

where Sγ
(
e−jω) is the power spectral density of process LTφ(k)

and noting that φ(k) contains a history of reference samples which
is assumed to be stationary.

13See Angela Kuo Wang, ‘Adaptive algorithms for active noise control.’
(1997)
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Step 3: Boundedness Condition
Under the assumption that transfer function P̂∗

(
q−1)P

(
q−1) is

strictly positive real then it is also stable i.e.

Re
[
P̂∗
(
e−jω

)
P
(
e−jω

)]
> 0 for all − π ≤ ω ≤ π (57)

It follows:

1
2π

∫ π

−π
Re
[
P̂∗
(
e−jω

)
P
(
e−jω

)
Sγ
(
e−jω

)]
dω > 0 (58)

For Sγ
(
e−jω) > 0 for all ω. Therefore LT AL < 0 for L 6= 0.
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Summary of Convergence Analysis
Boundedness of θ̂(k) is required by the ODE theorem14. However
interestingly for linear problems this boundedness condition can be
omitted for linear algorithms provided some conditions are placed
on the step size and average update direction15.

14Ljung
15Michel Metivier and Pierre Priouret, ‘Applications of a Kushner and Clark

lemma to general classes of stochastic algorithms’, IEEE Transactions on
Information Theory 30.2 (1984): 140–151
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Analysis of the ODE
Summary of assumptions:
I P̂∗

(
q−1)P

(
q−1) is SPR

I γ(k)→ 0 as k →∞
I Persistence of excitation of the reference signal x(k)
I Regularity conditions16

Then the filtered-X LMS algorithm converges with probability 1 to
the unique stable equilibrium point θ∗.

16See Lennart Ljung and Torsten Söderström, Theory and practice of
recursive identification (MIT press, 1983) page xx
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