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Broad view on optimisation

Optimisation is about making a choice among a range of possible
options according to some quantitative criterion

An optimisation problem is defined by:

I A feasible (or admissible) set X that represents the range of
our possibilities

I A cost (or objective) function f : X → R that weighs every
feasible option

min
x∈X

f(x) (P )

Solution

x∗ is a solution of (P ) iff x∗ ∈ X and ∀x ∈ X , f(x∗) ≤ f(x)
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Broad view on optimisation: Admissible set

The nature of X depends on the nature of the decision:

I Discrete vs. Continuous

I Finite vs. Infinite dimensional

I Static vs. Dynamic

I Defined by a finite set of inequality constraints:

X = {x ∈ E : c(x) ≤ 0}

with c(x) = (c1(x), . . . , cm(x))

Examples of constraints:

I physical restrictions: positiveness, equilibrium laws, . . .

I hard goals: target points, production objectives, . . .

I safety issues: ”staying on the road”, collision avoidance, . . .
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Broad view on optimisation: Cost function

f allows one to compare the available choices from X .

The nature of f (and c) defines several types of problems:

I Linear vs. Nonlinear

I Differentiable vs. Nondifferentiable

I Convex vs. Nonconvex

Examples of objective functions:

I actual cost to minimise: fuel consumption, expenses, . . .

I profit to maximise: return on investment, sales, . . .

I other performance indices: time, distance, velocity, . . .

Typical problem:

min
c(x)≤0

f(x) (Pc)
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Uncertainty in optimisation: Sources

In some cases, unpredictable events occur during the optimisation
process

Examples of sources of uncertainty:

I Power systems, Inventory management: uncertainty on the
demand

I Portfolio selection: risks in the share market

I Biological systems: climate, predation

I System stabilization: modelling error, noise
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Uncertainty in optimisation: perturbed cost and constraints

Unknown parameter belonging to an uncertainty set:

d ∈ D

It acts on:

I The cost ⇒ F (x, d)

I The constraints ⇒ C(x, d)

Main issues:

I Can we make d less uncertain ?
Get information (observe) if we can !

I If not, how to write a proper uncertain optimisation problem ?
Need to model the uncertainty !
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Observation first vs Decision first

When one is able to observe d then two cases are possible:

I The observation comes before the decision (Observation first)
⇒ d is known and we get a parametrized optimization
problem:

min
cd(x)≤0

fd(x) (Pd)

with cd(x) = C(x, d), fd(x) = F (x, d) and solutions x∗d
I The observation comes after the decision (Decision first)
⇒ d remains unknown and the problem depends on the
representation of the uncertainty

Pitfall to avoid

Consider one value d0 and work with this one only
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Worst case approach

Idea: consider every situation identically and make a decision based
on assuming the worst possible value of d

I Cost: f(x) = maxd∈D F (x, d)
As if ’nature’ is playing against us and we have to assume its
best response

I Admissible set: X = {x : maxd∈D C(x, d) ≤ 0}
The constraint must be satisfied for any value of d
⇒robust formulation

Remarks:

I The uncertainty is here characterized by D
I Very safe but very restrictive so usually not very efficient
⇒ conservative approach

How to avoid conservativeness? Stochastic approach
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Stochastic optimisation

General Idea: consider the various situations differently based on
their probability of occurrence

⇒ Represent the uncertainty as a random variable D valued in D
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Stochastic optimisation: Expected cost

Idea: make a decision based on the average cost, on a aggregation
of the scenarios

I Cost: f(x) = E[F (x,D)]

I Admissible set: X = {x : c(x) ≤ 0}
Remarks:

I The uncertainty is characterized here by the probability
distribution of D

I Typically less conservative but less safe as one does not care
about particular realizations of D

I f keeps many properties of F (linearity, convexity,
differentiability,. . . )
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Stochastic optimisation: Constraint in expectation

Idea: put a restriction on the average value of the constraint

I Cost: f(x)

I Admissible set: X = {x : c(x) := E[C(x,D)] ≤ 0}
Remarks:

I safer than just a expected cost but not very intuitive

I c keeps many properties of C (linearity, convexity,
differentiability,. . . )
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Stochastic optimisation: Chance constraint

Idea: put a constraint on the probability of admissibility

I Cost: f(x)

I Admissible set: X = {x : P(C(x,D) ≤ 0) ≥ 1− α}
with α > 0 being the level of risk

Remarks:

I Stochastic equivalent of the robust formulation

I X becomes a complicated set
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Problems with recourse

What if we could make two decisions, one before observing D and
one after ?

I Choose x0 ∈ X0 and pay f0(x0)

I Observe D

I Choose X1 = π1(D) ∈ X1 and pay f1(x0, X1, D)

We get the following two-stage problem:

min
x0∈X0,X1=π1(D)∈X1,

E[f0(x0) + f1(x0, X1, D)]

Remarks:

I Typically infinite dimensional problem even if X0 and X1 are
of finite dimension

I Usually solved by backward decomposition

I Can be extended to multi-stage problem
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Numerical methods

General remarks

I One can combine the formulations !

I They are versions of (Pc) with particular structures where f
and c are hard to compute

Examples of numerical methods

I Expected cost: Stochastic average approximation (SAA),
Stochastic gradient methods, etc . . .

I Constraint in expectation: dual methods, primal-dual
methods, etc . . .

I Chance constraint: deterministic reformulation or
approximation, scenario approach, etc . . .

I Multi-stage problems: Dynamic Programming, Scenario trees,
Reinforcement learning, etc . . .
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Inventory: The newsvendor problem

I A company decides about ordering quantity x of a certain
product to satisfy demand d (unknown at purchase time)

I Cost per unit is c

I If d > x, additional order at unit price b ≥ 0 is made

I b > c, i.e. backorder penalty cost is larger than ordering

I If d < x, a holding cost of h(d− x) is incurred

Total cost

F (x, d) = cx+ bmax{d− x, 0}+ hmax{x− d, 0}

Objective

Minimise the total cost F (x, d), where x is the decision variable
and d is a parameter.
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Cost function

We can re-write the objective function as

F (x, d) = max{(c− b)x+ bd, (c+ h)x− hd},

which is a piecewise linear function with minimum attained at
x̄ = d, provided the demand is known!
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What should we do when d is unknown when ordering?

The ordering decision should be made before a realisation of the
demand becomes known. View demand D as a random variable (d
is a particular realisation of D)

I Silly attempt: Optimise minx≥0 F (x,D)

I This problem does not make sense! F (x,D) is random

I One x cannot simultaneously optimise both functions!
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Attempt 2: Plan for the average case

I Suppose the cdf of D is given by H(x) := P(D ≤ x)

I Let µ := E [D]

I Then, arg minx≥0 F (x, µ) = µ

I The optimal policy is to order a quantity µ

Remark

This approach might be more sensitive to random perturbations of
the empirical data.
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Attempt 3: Plan for worst case

I Suppose that we know upper and lower bounds on the
demand d, i.e. ` ≤ d ≤ u

I Consider minx≥0{f(x) := maxd∈[`,u] F (x, d)}
I While making a decision x, one is prepared for the worst

possible outcome of the maximal cost

I The optimal solution is

x∗ =
h`+ bu

h+ b

I If the holding cost is zero (h = 0), then the optimal solution is
obviously x∗ = u (always order the maximum demand)

I Often a conservative approach!
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Proof

I Recall that F (x, d) = max{(c− b)x+ bd, (c+ h)x− hd},
then maxd∈[`,u] F (x, d) = max{F (x, `), F (x, u)}

I We should look at the problem in x ∈ [`, u], then

min
x≥0

max
d∈[`,u]

F (x, d)

= min
x∈[`,u]

max{F (x, `), F (x, u)}

= min
x∈[`,u]

max{cx+ h[x− `]+, cx+ b[u− x]+}

I This is a piecewise linear convex function, and the optimal
solution is attained at the point where h(x− `) = b(u− x),
completing the proof.
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A suitable framework

I The probability distribution of D is known

I It makes sense to talk about the expected value E [F (x,D)]
of the total cost as a function of x

I Consequently,

min
x≥0
{f(x) := E [F (x,D)]}

I We optimise the total cost on average
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Solution to minx≥0 E [F (x,D)]

I This particular example can be solved in closed form

I Recall H(x) := P{D ≤ x}, H(x) = 0 for all x < 0

I The optimal solution is equal to the quantile

x∗ = H−1
(
b− c
b+ h

)

It is not always this easy...

I The newsvendor problem is about the only stochastic program
that admits a simple “closed-form” solution

I In general, we must solve instances numerically!
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Proof

I Recall that

F (x,D) = cx+ bmax{D − x, 0}+ hmax{x−D, 0}
= max{(c− b)x+ bD, (c+ h)x− hD}

I f(x) := E[F (x,D)] is convex and continuous

I For x ≥ 0, f(x) = f(0) +
∫ x
0 f
′(z)dz. Note that

f(0) = bE[D] since D ≥ 0

I Moreover,

f ′(z) =
∂

∂z
E [cz + bmax{D − z, 0}+ hmax{z −D, 0}]

= c− bP[D ≥ z] + hP[D ≤ z]
= c− b(1−H(z)) + hH(z)

= c− b+ (b+ h)H(z)
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Proof

Then,

E[F (x,D)] = bE[D] + (c− b)x+ (b+ h)

∫ x

0
H(z)dz

To obtain the minimum we take the derivative of the right-hand
side and equate it to zero. Consequently, the optimal solutions
satisfy

(b+ h)H(x∗) + c− b = 0

and the result follows.
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Numerical comparison

F (x,D) = cx+ b[D − x]+ + h[x−D]+

I Cost per unit: c = 1

I Re-ordering cost: b = 5

I Holding cost: h = 0.5

I Demand: Normally distributed N (100, 142)

Plan for Optimal solution x∗ E[F (x∗, D)]

Average demand 100 $ 131
Worst case (58 ≤ D ≤ 142) 134 $ 152

Expected cost 112 $ 126
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Chance constraints

Remark

For particular realisations of the demand, F (x∗, D) can be quite
different from E[F (x∗, D)]. A natural question is whether we can
control the risk of the cost F (x,D) to be not “too high”.

I For a given threshold τ > 0, we want F (x,D) ≤ τ to be
satisfied for all possible realisations of D ∈ D

I Can be quite restrictive if the uncertainty set D is large!
I We thus introduce a constraint

P{F (x,D) ≤ τ} ≥ 1− α

I For x ≤ τ/c, this becomes

H

(
(b− c)x+ τ

b

)
−H

(
(c+ h)x− τ

h

)
≥ 1− α
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Newsvendor problem

The newsvendor is a simple example of a two-stage problem

I First stage: Before a realisation of D is known, one makes a
decision about x

I Second stage:
I After a realisation d of D becomes known, it may happen that

d > x (Random “stuff” happens)
I The company then takes a recourse action of ordering d− x at

a higher cost of b > c (We attempt to repair the havoc)

The evolution of information is of paramount importance!

THANK YOU FOR YOUR ATTENTION!
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