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Abstract

Blind identi#cation techniques estimate the impulse response of a channel by exploiting known #nite alphabet or statistical
properties of the transmitted symbols. Alternatively, oversampling the output is known to introduce dependencies also
exploitable for channel identi#cation. This paper proves the feasibility of estimating the channel by relying instead on the
short sequences of zeros, known as guard intervals or zero padding, introduced between transmitted blocks by a number of
communication protocols. Since no property of the transmitted information symbols is assumed, the method is called totally
blind channel identi#cation. It is proved that totally blind channel identi#cation requires only two received blocks to estimate
the channel.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Estimating the impulse response of the channel
over which a communication system operates is
complicated by the source symbols being a-priori
unknown to the receiver. Blind channel identi#cation
techniques [1,3,4,6,7,17,21,24,25] have been applied
extensively to this problem. Blind techniques must
exploit a known property of the transmitted signal,
such as a statistical or #nite alphabet property or a
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bandwidth constraint if the technique requires the re-
ceived signal to be over-sampled. This paper presents
a diFerent approach; it makes no assumptions on the
source symbols themselves but rather relies on the
communication system introducing a guard interval
between each transmitted block. It is proved that the
channel is identi#able (up to an inherent scaling fac-
tor) from just two received blocks. This complements
the recent result that one block suGces if #nite al-
phabet properties of the source symbols in addition to
guard intervals are exploited [9].
The main result of this paper is captured in the

following unrealistically small but otherwise represen-
tative example of a communication system using guard
intervals.
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Example 1. Assume the source symbols 1; 2; 3; 4 are
broken into two blocks and guard intervals inserted,
forming the transmitted signal 0; 1; 2; 0; 3; 4; 0. Let h=
[h0; h1]T ∈C2 with h0 = 1 and h1 = −1 denote the
impulse response of the channel. The receiver sees
the transmitted signal convolved with the channel im-
pulse response, namely 1; 1;−2; 3; 1;−4. More gener-
ally, if s1; s2; s3; s4 denote the source symbols then the
received symbols are y1=h0s1; y2=h0s2+h1s1; y3=
h1s2; y4 = h0s3; y5 = h0s4 + h1s3 and y6 = h1s4. The
proposed idea is to invert this set of polynomial equa-
tions, thus identifying the channel. If y1 = y2 = 1
and y3 = −2 then the #rst three equations reduce to
2h20 +h0h1−h21 =0. Assume h0 �= 0 and set �=h1=h0.
The equation becomes h20(2+�−�2)=0 with solutions
� =−1; 2. Note that � =−1 is indeed the ratio h1=h0
of the impulse response used to generate the output
1; 1;−2. Repeating the process with the second block,
namely y4 = 3; y5 = 1 and y6 = −4, yields the two
solutions �=−1; 43 . In particular, the only solution in
common is �=−1. The ratio h1=h0 of the channel im-
pulse response has been recovered without knowledge
of the source symbols.

Three observations are made. The channel is recov-
erable only up to a scaling factor because the equa-
tions in Example 1 are bilinear; if the source sym-
bols are doubled and the impulse response halved,
the output remains the same. A single received block
does not provide enough information to identify the
channel but it narrows the possibilities down to a #-
nite number. Two blocks suGce to recover the chan-
nel. The main result of this paper is that these three
observations generalise to arbitrarily sized communi-
cation systems and even remain true if additive noise
is present.
Since the proposed identi#cation technique relies on

guard intervals, a brief discussion on guard intervals
ensues. Guard intervals, also known as null guards
or zero padding, are sequences of L − 1 consecutive
zeros inserted between blocks to prevent inter-block
interference [2,16,19,26]. Here, L is an upper bound
on the length of the channel over which the system op-
erates and inter-block interference refers to the prob-
lem of the kth output block depending not only on
the kth transmitted block but also on the (k − 1)th
transmitted block due to the memory of the channel.
A sequence of L − 1 zeros empties the memory of

the channel and thus prevents inter-block interference.
These guard intervals are often used in time division
multiple access (TDMA) systems, such as the current
GSM standard for mobile telephones. They can also
be used in orthogonal frequency division multiplexing
(OFDM) systems [18–20]. Although originally there
to prevent inter-block interference, it is now known
that guard intervals have additional advantages, such
as always allowing the source symbols to be recovered
if the channel is known (and non-zero) and ensuring
that channel deconvolution is always a stable opera-
tion [8,12]; see also [11]. The present paper presents
yet another advantage of guard intervals; they enable
the receiver to identify the channel without any knowl-
edge of the source symbols whatsoever. Note that the
parameter L must be known a-priori to both the trans-
mitter and the receiver.
The remainder of this paper is organised as follows.

Section 2 de#nes two types of channel identi#ability,
one related to the noise free case and the other to when
the received signal is corrupted by additive noise. It
also states the result from [15] that not only are both
de#nitions equivalent, but that channel identi#cation
is possible if and only if a related polynomial map
is rationally invertible. Determining if a polynomial
map is rationally invertible is diGcult in general. How-
ever, Section 3 shows this task simpli#es if a certain
repeated structure is present. Section 4 then applies
this result to prove that if guard intervals are inserted
between transmitted blocks, the receiver can identify
the channel using just two received blocks. Section 4
remarks that the main ideas in this paper extend to
proving identi#ability of a wider class of linearly and
aGnely precoded communication systems. Section 5
concludes the paper.

2. Problem statement and known results

In a communication system operating over a chan-
nel of length at most L and with guard intervals of
length L−1 inserted between blocks, the kth block of
p source symbols sk ∈Cp is received as

yk = H sk ; yk ∈Cp+L−1; (1)

where H ∈C(p+L−1)×p is the lower triangular
Toeplitz matrix having [h0; : : : ; hL−1; 0; : : : ; 0]T, the
impulse response of the channel padded with p zeros,
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as its #rst column. Since the impulse response
h= [h0; : : : ; hL−1]T ∈CL is unknown, it is appropriate
to write (1) in the form of a polynomial equation,
namely

yk = F(sk ; h); F : Cp × CL → Cp+L−1: (2)

From Example 1, which corresponds to the case p=2
and L= 2, it is seen that (1) is nothing more than the
convolution of the source symbols with the channel
impulse response and where the guard intervals con-
sisting of L− 1 consecutive zeros on either side of sk
are accounted for in the de#nition of H .
The augmentation of K blocks is denoted

y[K] = F [K](s[K]; h);

F [K] : CpK × CL → C(p+L−1)K (3)

where y[K] = [yT1 ; : : : ; y
T
K ]

T and s[K] = [sT1 ; : : : ; s
T
K ]

T.
For any non-zero �∈C; F [K](�s[K]; �−1h) =

F [K](s[K]; h). Thus, at best, the channel h is recover-
able up to an unknown complex valued scaling factor.
This motivates the following de#nition, some parts of
which are justi#ed below.

De�nition 2 (Noise free identi#ability). The system
(2) is identi#able using K blocks if there exists a
non-zero polynomial g :CpK ×CL → C such that, for
any s[K] and h satisfying g(s[K]; h) �= 0,

∀s̃[K] ∈CpK ; ∀h̃∈CL;
F [K](s[K]; h) = F [K](s̃[K]; h̃) implies ∃�∈C; � �= 0;

s̃[K] = �s[K]; h̃= �−1h: (4)

A condition such as g(s[K]; h) �= 0 in De#nition
2 is clearly necessary; if either h = 0 or s[K] = 0
then y[K] = 0 and the channel is unidenti#able. The
speci#c condition g(s[K]; h) �= 0 is the natural one
to use in De#nition 2 because it is proved in [15]
that there exists a non-zero polynomial g such that
the number of non-equivalent elements in the set
{(s̃[K]; h̃): F [K](s[K]; h)=F [K](s̃[K]; h̃)}, where the ele-
ments (s[K]1 ; h1); (s

[K]
2 ; h2) are equivalent if there exists

a non-zero � such that (s[K]1 ; h1)=(�s[K]2 ; �−1h2), is the
same for any (s[K]; h) satisfying g(s[K]; h) �= 0. Thus,
De#nition 2 states that the channel is identi#able if
and only if this number is unity.

The condition (4) requires not only that the channel
can be identi#ed, but that the transmitted source sym-
bols s[K] can be determined too. In fact, this condition
is equivalent to the weaker condition of only requir-
ing channel identi#ability because once the channel is
known, the transmitted source symbols can almost al-
ways be determined, a consequence ofH in (1) having
full column rank for all h �= 0.
If additive noise n[K] is present, (3) can be inverted

in the least-squares sense by #nding a pair (s̃[K]; h̃)
which minimises the Euclidean norm

‖F [K](s[K]; h) + n[K] − F [K](s̃[K]; h̃)‖2; (5)

where F [K](s[K]; h) + n[K] is the noise corrupted re-
ceived signal. (An algorithm for doing so appears in
[10].) The channel is said to be identi#able if the
global minimum is unique up to scale for most noise
realisations n[K]. De#nition 3 formalises this.

De�nition 3 (Identi#ability in noise). Let n[K] ∈
C(p+L−1)K be a random vector whose probability
measure is absolutely continuous with respect to
Lebesgue measure. For any triple s[K]; h; n[K], de#ne
�s[K] ;h;n[K] to be the set of all global minima of (5).
The system (2) corrupted by additive noise n[K] is
identi#able using K blocks if there exists a non-zero
polynomial g :CpK × CL → C such that, for any s[K]

and h satisfying g(s[K]; h) �= 0,

(s[K]1 ; h1); (s
[K]
2 ; h2)∈�s[K] ;h;n[K] implies ∃�∈C;

� �= 0; s[K]1 = �s[K]2 ; h1 = �−1h2 (6)

holds almost surely.

One of the main results in [15] states not only that
De#nitions 2 and 3 are equivalent, but that the chan-
nel is identi#able if and only if F [K] is invertible with
the prior knowledge that h0 = 1 in (1). (This is tan-
tamount to assuming h0 �= 0 in Example 1.) Theorem
4 makes this precise. It requires the function G[K] de-
#ned analogously to F [K] in (3) but with h0 #xed to
unity. Speci#cally,

G[K](s[K]; h) = F [K](s[K]; [1 hT]T);

G[K] : CpK × CL−1 → C(p+L−1)K (7)

where the entry h0 is omitted from h=[h1; : : : ; hL−1]T.
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Theorem 4. The system (2) is identi;able using K
blocks, either in the sense of De;nition 2 or 3, if and
only if the polynomial map G[K], de;ned in (7), is
rationally invertible (see below).

A polynomial map G is rationally invertible if there
exists a rational map F such that the composition F◦G
is the identity map whenever it is well-de#ned [5]. An
equivalent de#nition is that the equation G(z̃)=G(z)
has just the one solution z̃ = z for almost all z; see
Appendix A.

3. Partially coupled polynomial equations

Proving invertibility of a polynomial map is diGcult
in general [15,22,23]. This section derives a necessary
and suGcient condition for an augmented map of the
form found in Theorem 4 to be rationally invertible.
Throughout this section,G :Cp×Cm → Cn denotes

a full rank polynomial map; see Appendix A for the
meaning of full rank. As in Section 2, the notationG[2]

denotes the augmented map G[2] :C2p × Cm → C2n

de#ned by G[2]((s1; s2); h)= (G(s1; h); G(s2; h)). The-
orem 8, the main result of this section, shows that G[2]

is rationally invertible unless G has a certain property
that is relatively easy to detect in practice.

De�nition 5 (Strongly unidenti#able). The param-
eter h∈Cm is strongly unidenti#able with respect
to G if

∃h̃∈Cm; ∃ open dense X ⊂ Cp; ∀s∈X; ∃s̃∈Cp
such that G(s; h) = G(s̃; h̃) and

(s; h) �= (s̃; h̃): (8)

The motivation for De#nition 5 is that if the pair
h; h̃ satis#es (8) then for almost any s1; s2, the equa-
tion G[2]((s̃1; s̃2); h̃) = G[2]((s1; s2); h) has a solution
((s̃1; s̃2); h̃) distinct from ((s1; s2); h).

Lemma 6. The parameter h∈Cm is strongly uniden-
ti;able with respect to G if

∃h̃∈Cm; ∃ open B ⊂ Cp; ∀s∈B; ∃s̃∈Cp
such that G(s; h) = G(s̃; h̃)

and (s; h) �= (s̃; h̃): (9)

Proof. De#ne the polynomial maps G1(s) = G(s; h)
and G2(s̃) = G(s̃; h̃). If h = h̃ then G1 ≡ G2 and (9)
combined with Part 1 of Theorem A.1 in Appendix A
implies G1(s̃)=G1(s) generically has two or more so-
lutions and thus (8) holds. IfG1 does not have full rank
then Part 2 of Theorem A.1 implies G1 generically has
an in#nite number of solutions and thus (8) holds with
the choice h̃= h. Assume then that h �= h̃ and G1 has
full rank. For i = 1; 2; de#ne the image Vi = Gi(Cp)
and note that its closure MV i is an irreducible variety
and that Wi = MV i − Vi is a variety nowhere dense in
MV i [5]. Moreover, dim MV 1 = p because G1 has full
rank while dim MV 26p [5]. There are two cases, ei-
ther MV 1 ∩ MV 2 = MV 1 or MV 1 ∩ MV 2 ( MV 1. Since MV 1; MV 2 are
irreducible varieties satisfying dim MV 26 dim MV 1, the
#rst case implies MV 1 = MV 2 while the second case im-
plies MV 1∩ MV 2 is nowhere dense in MV 1, in turn implying
G−1

1 ( MV 2) is nowhere dense inCP and contradicting (9)
because B is an open set contained in G−1

1 ( MV 2). Thus,
MV 1= MV 2, and in particular,W2 is a nowhere dense vari-
ety in MV 1, implying X =G−1

1 (W c
2 ) is an open dense set

satisfying (8), where c denotes set complement.

De�nition 7 (Dyslexic). The map G :Cp×Cm → Cn
is dyslexic if

∃ open dense Y ⊂ Cm; ∀h∈Y; (8) holds: (10)

Theorem 8. Let G have full rank. The augmented
map G[2] is rationally invertible if and only if G is
not dyslexic.

Proof. Since G has full rank by assumption, G[2] also
has full rank. De#ne the set Z such that (s1; s2; h)∈Z
if and only if (s1; s2; h) is a generic point of G[2]

and (s1; h) and (s2; h) are generic points of G; since
generic points form an open dense set (see Theorem
A.1 in Appendix A), it follows that Z itself is open
and dense. To prove one direction, assume G[2] is
rationally invertible yet G is dyslexic. Let B1; B2 ⊂
Cp and B3 ⊂ Cm be open sets such that B1 × B2 ×
B3 ⊂ Z . De#ne Y as in (10) and choose any point
h∈Y ∩ B3. De#ne h̃ and X as in (8). Choose any
two points s1 ∈B1 ∩ X and s2 ∈B2 ∩ X . Then, from
(8), there exist points s̃1; s̃2 such that G[2](s1; s2; h) =
G[2](s̃1; s̃2; h̃) and (s1; s2; h) �= (s̃1; s̃2; h̃), contradict-
ing the fact that since (s1; s2; h) is a generic point of
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G[2]; G[2](s̃1; s̃2; h̃) = G[2](s1; s2; h) should have only
the one solution (s̃2; s̃2; h̃) = (s1; s2; h).

To prove the other direction, assume G[2] is not
rationally invertible. De#ne Y to be the projection of
Z onto the h-coordinate. Note that Y so de#ned is
open and dense. It will be shown that this choice of Y
satis#es (10). Pick any point h∈Y and choose (s1; s2)
such that (s1; s2; h)∈Z . Part 3 of Theorem A.1 im-
plies there exists a diFeomorphism f :N → Ñ , where
N; Ñ ⊂ Z are disjoint open sets with (s1; s2; h)∈N ,
such that G[2](p) = G[2](f(p)) for any p∈N . De-
#ne (s̃1; s̃2; h̃) = f(s1; s2; h). By swapping s1 and s2
if necessary, it can be assumed that (s1; h) �= (s̃1; h̃).
Since G−1(G(s2; h)) contains a #nite number of el-
ements, with (s̃2; h̃) one of them, it can be assumed,
by decreasing the sizes of N and Ñ if necessary,
that (s̃′1; s̃

′
2; h̃

′
)∈ Ñ with G(s̃′2; h̃

′
) = G(s2; h) implies

(s̃2; h̃
′
) = (s̃2; h̃). Let B be any open set satisfy-

ing B × {s2} × {h} ⊂ N . For any s∈B, de#ne
(s̃; s̃′2; h̃

′
) =f(s; s2; h). This implies G(s̃; h̃

′
) =G(s; h)

andG(s̃′2; h̃
′
)=G(s2; h). From above, the latter implies

(s̃′2; h̃
′
)=(s̃2; h̃) Thus, G(s; h)=G(s̃; h̃). Moreover, by

choosing B to be a suGciently small neighbourhood
of s1, it can be assumed that (s; h) �= (s̃; h̃). Hence,
Lemma 6 implies (8) holds, as required.

Corollary 9. Provided G has full rank, the map G[2]

is rationally invertible if and only if

∃ open Y ⊂ Cm; ∀h∈Y; ∀h̃∈Cm;
∃ open B ⊂ Cp; ∀s∈B; ∀s̃∈Cp;
G(s; h) = G(s̃; h̃) implies (s; h) = (s̃; h̃): (11)

Proof. It is readily seen that if (11) holds then G is
not dyslexic and vice versa.

4. Totally blind channel identi�cation

This section uses Theorem 4 and Corollary 9 to
prove the system (2) is identi#able using just two
blocks.

Lemma 10. For any p¿ 1 and L¿ 1, let H; H̃ ∈
C(p+L−1)×p be lower triangular Toeplitz matrices
whose ;rst column ends in p − 1 zeros. The range

space of H is contained in the range space of H̃ if
and only if H = �H̃ for some �∈C.

Proof. A straightforward proof by induction is possi-
ble. Alternatively, a z-domain argument can be used,
as in [9, Proof of Theorem 23].

Theorem 11. For any p¿ 1 and L¿ 2, the system
(2) is identi;able, according to both De;nitions 2 and
3, using two blocks. Moreover, it is identi;able using
just one block if and only if p= 1.

Proof. De#ne G and G[2] as in (7) with K = 1 and
2, respectively. From Theorem 4, it suGces to prove
G is not rationally invertible unless p = 1 whereas
G[2] is always rationally invertible. If p = 1, di-
rect expansion of G(s; h) = G(s̃; h̃) shows that G,
and hence G[2] too, is rationally invertible. Hence-
forth, assume p¿ 1. That G has full rank but is
not rationally invertible follows from the obser-
vation that the points (s; h) and (s̃; h̃), de#ned by
s = [0; : : : ; 0; 1; 0; : : : ; 0; 1]T; h = [0; : : : ; 0]T; s̃ =
[0; : : : ; 0; 1; 0; : : : ; 0]T and h̃ = [0; : : : ; 0; 1]T where the
middle 1 in both s and s̃ is in the (p − L + 1)th
position, satisfy the requirements in Theorem A.3 in
Appendix A; note that the Jacobian matrix at (s; h) is
upper triangular with ones along the diagonal while
interchanging several rows of the Jacobian matrix at
(s̃; h̃) makes it lower triangular with ones along the
diagonal. Finally, to prove G[2] is rationally invertible,
it is shown that (11) holds with the choice Y =CL−1.
To this end, let h; h̃∈CL−1 be any pair of vectors and
de#ne the matrices H and H̃ such that G(s; h) = H s
and similarly for H̃ ; see Section 2. Note that since
h0 = 1 in (7), H always has full rank, and moreover,
H = �H̃ for some �∈C if and only if H = H̃ . If
h = h̃ then H s = H s̃ implies s = s̃ because H has
full column rank and hence (11) is satis#ed. If h �= h̃
then Lemma 10 implies the range space of H is not
contained in the range space of H̃ . Thus, there exists
an open set B such that s∈B implies H s is not in the
range space of H̃ , and in particular, that (11) holds
with this choice of B, completing the proof.

Remark 12. Corollary 9 facilitates identi#ability
proofs for more general linearly precoded communi-
cation systems studied in [15]. Indeed, ifG(s; h)=HPs
for some channel matrix H and precoder matrix P,
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(11) is satis#ed whenever there exists a channel ma-
trix H such that HP has full column rank and the
range space of HP is not contained in the range space
of H̃P for any other channel matrix H̃ �= H . As in
Lemma 10, this is readily veri#ed by showing there
cannot exist a matrix S such that HP = H̃PS. Simi-
larly, aGne precoders [14] can also be studied using
this framework.

5. Conclusion

Guard intervals are often inserted between trans-
mitted blocks in a communication system to prevent
inter-block interference. This paper proved that the
repeated structure introduced by the guard intervals
enables the receiver to identify the channel after
receiving just two blocks by solving a system of
polynomial equations. Moreover, it was remarked
that the same method of proving identi#ability ex-
tends to more general linearly and aGnely precoded
communication systems.
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Appendix A. Properties of polynomial equations

Standard properties of polynomial equations are
summarised below. They are adapted from a similar
summary in [15]. Despite the somewhat cumbersome
statements of these results, Example A.2 below shows
the essence of each result is readily understand.
Let G :Cm → Cn denote an arbitrary polynomial

map. Its Jacobian matrix J has as its ijth element the
derivative of the ith component ofG with respect to its
jth variable. Since the elements of J are polynomials,
J has a well-de#ned rank as a matrix over the ring
of polynomials. The map G is said to have full rank
if its Jacobian matrix J has full column rank. To
prove that G has full rank, it suGces to #nd a single
point z∈Cm at which Jz ∈Cn×m, the matrix obtained
by evaluating the entries of J at the point z, has full

column rank. (Note that Jz is simply the derivative of
G at z.)

Theorem A.1. Let G :Cm → Cn be a polynomial
map. There exists a non-zero polynomial g :Cm →
C and a unique number N with the following prop-
erties: (1) If g(z) �= 0 then G(z̃) = G(z) has pre-
cisely N solutions in z̃, and moreover, each of these
solutions satis;es g(z̃) �= 0. (2) The map G has full
rank if and only if N ¡∞. (3) If 26N ¡∞ and
z1 and z2 are distinct points such that G(z1) =G(z2)
and g(z1) �= 0 then there exists a diBeomorphism
f :N1 → N2 from an open neighbourhood N1 ⊂ Cm
of z1 to an open neighbourhood N2 ⊂ Cm of z2 such
that z2 = f(z1) and G(f(z)) = G(z) for any z∈N1

both hold. (Clearly, N1 and N2 can be chosen to be
disjoint sets and such that g(z) �= 0 and g(f(z)) �= 0
for any z∈N1.)

Referring to Theorem A.1, the number N is called
the generic number of solutions of G and a point z
at which g(z) �= 0 is called a generic point of G. It is
well-known [13] that G is rationally invertible if and
only if N = 1.

Example A.2. Consider the map G(z) = z2. Its 1× 1
Jacobian matrix is J = 2z. It has full column rank
since 2z is not the zero polynomial and hence G is
said to have full rank. Moreover, observe that for al-
most all z (in particular, for z �= 0), the matrix Jz=2z
is non-zero and hence has full column rank. Part 1 of
Theorem A.1 holds with the choice g(z)=z and N=2
because z̃2 = z2 has two solutions unless z = 0. The
diFeomorphism f(z) = −z satis#es part 2 of Theo-
rem A.1 if N1 is an open interval not containing the
origin.

Although the mapG(x)=(x2; x3−x) generically has
one solution, G(x̃)=G(x) has two solutions x̃=−1; 1
at the non-generic point x = 1. Theorem A.3 states
this cannot happen if the number of equations equals
the number of variables. (The Jacobian condition is
necessary because a rationally invertible map may still
have an in#nite number of solutions at non-generic
points.)

Theorem A.3. Let G :Cn → Cn be a polynomial
map. If there exist distinct points z; z̃∈Cn such that
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G(z) = G(z̃) and both Jz and Jz̃ have full rank then
G is not rationally invertible.
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