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[1]Part I: Preliminaries

What is a manifold?

Why would we want to minimise a cost function on a manifold?

Constrained Optimisation

Definition of Concrete Manifold

Signal Processing Example — Stiefel Manifold

Abstract Manifolds

Signal Processing Example — Grassmann Manifold



[2]Constrained Optimisation

min
x∈M

f(x), M = {x ∈ Rm|h(x) = 0}

Depending on M (and perhaps on f too), we are led to different optimisation
problems: linear, convex, ...

If M is “smooth” (no self-intersections, no cusps, uniform dimension etc), then it
is a manifold.

This is true if the Jacobian of h at all points on M has full row rank.

– {(x, y) ∈ R2|x2 + y2 = 1} is a manifold. (J = [2x 2y] doesn’t vanish.)
– {(x, y) ∈ R2|x2 + y3 = 0} is not a manifold because there is a singularity at

the origin. (J = [2x 3y2] vanishes at origin.)

The constrained problem in Rm is equivalent to an unconstrained problem on
M . We have lowered the dimension of the problem in general.



[3]Manifolds as Parametrisations

Besides {x|h(x) = 0}, what other sets are manifolds?

Intuitively, open sets in Rn are nice; they have dimension n. Thus, we would
want any such set to be a manifold.

Homeomorphic images of open sets in Rn should also have dimension n; we
would also want any such set to be a manifold.

Finally, just as we will see the circle consists of 1-D pieces patched together
nicely, we choose to define a manifold as a collection of homeomorphic images
of open sets patched together in a compatible way. (This patching allows us
to define which functions on M are smooth, what their directional derivatives
are etc. For our purposes, we get nice parametrisations which enable us to do
optimisation.)

This patching is necessary since global parametrisations do not exist in general,
as now seen.



[4]The Circle

Because M = {(x, y) ∈ R2|x2 + y2 = 1} is compact but any open subset of R is
not, there cannot exist a homeomorphism from any open subset of R toM ; there
is no global parametrisation. (Sending θ to (cos θ, sin θ) doesn’t work because it
does not cover M if θ ∈ (−π, π) yet it is not injective on any larger open set.)

However, there are local parametrisations, e.g.

µ : (−π, π) →M, µ(θ) = (cos θ, sin θ),

ν : (π/2, 3π/2) →M, ν(θ) = (cos θ, sin θ).

Moreover, µ and ν are “compatible” in that

µ−1 ◦ ν(θ) =

{
θ, θ ∈ (π/2, π),
θ − 2π, θ ∈ (π, 3π/2)

is smooth on the domain of definition of µ−1 ◦ ν, namely (π/2, π) ∪ (π, 3π/2).



[5]Manifolds and Concrete Manifolds

A manifold M is

– a nice (Hausdorff and paracompact) topological space;
– about each point p ∈M , there exists a neighbourhood U of p and a coordinate

chart φ : U → Rn which is a homeomorphism onto an open subset of Rn.
– In fact, there are typically many such neighbourhoods and coordinate charts

about each point. These charts must be related in a smooth fashion.
– Specifically, if φ, ψ are two charts, then φ ◦ψ−1 must be smooth when defined.

The key property is that M looks locally like Rn where n is the dimension of the
manifold. i.e. Locally, we can parametrise M .

A concrete manifold is one which sits (embeds) naturally in Rm, such as when
M is defined by M = {x ∈ Rm|h(x) = 0}.

If M = {x ∈ Rm|h(x) = 0} then the topology is that induced from Rm and the
coordinate charts are constructed using the implicit function theorem.



[6]Stiefel Manifold

St(p, n) = {X ∈ Rn×p|XTX = I}.

Define h(X) to be the upper triangular part of XTX − I; then St(p, n) =
{X|h(X) = 0}.

There are p+(p−1)+· · ·+1 = p(p+1)/2 (algebraically independent) constraints,
hence dim St(p, n) = np− p(p+ 1)/2.

The topology of St(p, n) is that induced by the ambient space Rn×p.

In particular, St(p, n) is compact.

The differentiable structure (coordinate charts) come from the implicit function
theorem. This structure is equivalent to defining what smooth functions are.

A function f̃ : Rn×p → R restricts to a function f : M → R. We say f is smooth
if f̃ is smooth at each point of M .



[7]Stiefel Manifold — Example

Assume we want to compute the eigenvectors associated with the p smallest
eigenvalues of the symmetric matrix A.

This is achieved by minimising f(X) = tr(XTAXN) subject to the constraint
XTX = I. Here, N is a diagonal matrix with distinct eigenvalues.

Equivalently, we want to minimise f as a function on St(p, n).

Note that if p = 1 then f(X) is the Rayleigh quotient.

Can think of St(p, n) as the set of all ordered basis vectors.



[8]Abstract Manifolds

In the definition of a manifold (nice topological space with compatible coordinate
charts), no mention of the ambient space Rm was made.

Hence, any nice topological space M can be made into a manifold by specifying
a collection of compatible coordinate charts. (Equivalently, we are told how to
parametrise M locally about each point.)

f : M → R is smooth if all f ◦ φ−1 are smooth.

Whitney’s embedding theorem says that any manifold can be embedded in Rm

provided m is sufficiently large.

– We can still think of an abstract manifold as a smooth surface in Rm.
– However, this embedding is not necessarily natural (and definitely not unique),

so we usually prefer to think in terms of the coordinate charts.



[9]Grassmann Manifold — Motivational Example

If f(X) = tr(XTAX) then its minimum, subject to XTX = I, is not unique. Any
matrix X whose columns span the minor subspace of A minimises f(X).

Note f(XQ) = f(X) for any orthogonal matrix Q.

To compute the minor subspace of A, we want to minimise f(X) subject to
XTX = I, but we also want to “quotient out” the ambiguity f(XQ) = f(X).

Define Gr(p, n) to be the quotient space of St(p, n) obtained by saying X,Y ∈
St(p, n) are equivalent if there exists an orthogonal Q such that X = Y Q. (Note
for example, a rectangle with its two long sides identified is a cylinder.)

Technically, f induces a cost function on Gr(p, n), and the minimum of this
function is unique and is the minor subspace of A (assuming A has a unique
minor subspace).



[10]Grassmann Manifold

As a set of points, the Grassmann manifold Gr(p, n) is the set of all p-dimensional
subspaces of Rn.

Since f(X) = tr(XTAX) is really a function of the space spanned by the
columns of X, there are interesting functions defined on Gr(p, n).

What does it mean for a function on Gr(p, n) to be smooth?

First give Gr(p, n) a topology and then a differentiable structure (i.e. coordinate
charts). Recall that then f : Gr(p, n) → R is smooth if f ◦φ−1 is smooth for all φ.

Without going into details, because Gr(p, n) is a quotient space of St(p, n), it
inherits a topology and differentiable structure in a natural way. Smooth functions
on Rn×p which depend only on the column space induce smooth functions on
Gr(p, n).



[11]Summary of Part I

What is a manifold?

A topological space which locally looks like Rn where n is the dimension of the
manifold. (Other, more technical, conditions are required too.)

Visually, a concrete manifold is a “smooth” surface or subset of Rm, such as
a sphere. Can think of all manifolds in this way, but better to think in terms of
coordinate charts or parametrisations.

Why would we want to minimise a cost function on a manifold?

The problem arises naturally in signal processing, such as when subspaces are
involved; Grassmann and Stiefel manifolds.

Applications include precoder design, weighted low rank approximations, source
separation, joint diagonalisation and so forth.



[12]Part II: The Optimisation Problem

Is a particular optimisation algorithm good or bad?

Is it better to solve constrained or unconstrained problems?

Measures of Performance of Optimisation Algorithms

Common Mistake #1

Implications

Constrained or Unconstrained?



[13]Measures of Performance

An iterative algorithm (e.g. Newton’s method) for minimising a function generates
a sequence x0, x1, · · · which hopefully converges to a local minimum.

Its performance can be based on:

how many iterations are required to converge to within ε of a local minimum;

how computationally expensive each iteration is;

how close to the minimum we need to initialise the algorithm for it to converge.



[14]Common Mistake #1

One usually thinks optimisation on manifolds is concerned with evaluating
arg minp∈M f(p) where M is a manifold and f : M → R a cost function.

However, it is essential to realise the problem is not to compute arg min f for
fixed f , but rather:

– There is a predefined set Ω of functions f : M → R.
– The objective is to design an algorithm which
∗ takes f ∈ Ω as input, and
∗ returns arg minp∈M f(p).

– The algorithm is to “perform well” for all (or most) f ∈ Ω.

Otherwise, if Ω consists of a single function, the best algorithm simply returns
the pre-computed minimum of that single function.

Similarly, if Ω is too large, then it can be shown that no algorithm works well.



[15]Implications

The properties of M alone do not suffice to determine a good algorithm.

– If M is convex, then need the f ∈ Ω to be convex too for this to be useful.
– If M has extra structure (Riemannian metric), unless the f ∈ Ω are somehow

related to this extra structure, we may as well ignore it.

A focus of research should be on

1. finding practically useful but sufficiently small sets of functions Ω;
2. coming up with novel algorithms for optimising these functions.

Note: The eigenvalue problem is that of optimising the class of functions f(X) =
tr(XTAXN), indexed by A, on St(p, n).



[16]Constrained or Unconstrained

The constrained problem min(x,y)∈M f(x, y), whereM = {(x, y) ∈ R2|x+y = 0},
can be written as the unconstrained problem mint∈R f(t,−t).

We can argue that the unconstrained problem has lower dimension and so
should be easier to solve. (Maybe not true in general.)

What we have done is introduce a global parametrisation.

We will see that optimisation on (concrete) manifolds is essentially this idea, but
because global parametrisations don’t exist on manifolds in general, we use local
parametrisations instead.

We thus argue that optimisation on manifolds is attractive because the dimension
is usually reduced significantly.

In general though, it really depends on the class of functions Ω.



[17]Summary of Part II

Is a particular optimisation algorithm good or bad?

Cannot comment until we know the set of functions Ω for which the algorithm will
be used for.

If Ω is too large, no algorithm is “good”.

If Ω is small, some algorithms will consistently require less flops to converge to
within ε of a local minimum (roughly speaking).

Is it better to solve constrained or unconstrained problems?

Must be considered on a case by case basis.

On abstract manifolds, it is not natural to re-pose it as an unconstrained problem.

When the manifold has extra structure (Lie group, homogeneous space,
symmetric space) and the elements of Ω are somehow compatible with this
structure, the manifold approach is likely to be preferable.



[18]Part III: Traditional Approach

What is the traditional approach to optimisation on manifolds?

Is it good or bad?

The Riemannian Approach

Its Advantages

Its Disadvantages

Common Mistake #2



[19]The Riemannian Approach

The Riemannian approach has been around since at least 1982 (Gabay).

It seeks to generalise the formula xk+1 = xk − [f ′′(xk)]−1f ′(xk) so it is valid for
f : M → R. (Iterates other than the Newton iterate can be used instead.)

Since f ′(p) and f ′′(p) are not defined unless M has a metric structure, the
manifold M is first made into a Riemannian manifold. (Note that the gradient
of a function on Rn is not defined until an inner product is given.)

f ′(p) is replaced by the gradient of f at p, f ′′(p) replaced by the Hessian, and
the increment xk+1 = xk − δx replaced by a unit step along the geodesic in the
direction −δx.



[20]Its Advantages

Intuitively, it is “well-conditioned” in that it can be expected to converge within a
reasonable number of iterations for “well-behaved” cost functions.

Guaranteed convergence if f is convex with respect to the Riemannian
geometry.

If f is related to the Riemannian geometry (e.g. f is convex, or f depends on
the induced distance function such as in centre of mass type problems) then
intuitively a Riemannian approach is worth considering.



[21]Its Disadvantages

Unless the cost function f : M → R is related to the Riemannian geometry,
there is no reason to introduce a Riemannian structure in the first place, and no
reason why the performance should be particularly good.

Often, computationally intensive to compute updates along geodesics.



[22]Common Mistake #2

“We should make use of the differentiable structure!”
“A non-Riemannian approach is only an approximation of a Riemannian
approach!”

There is more than one way of generalising a Newton method to a manifold!

Often, the only differentiable structure is the coordinate charts. We are not
a priori given a Riemannian metric, even if one is naturally associated with a
manifold M .

Unless f is intimately related to a particular Riemannian geometry of M , no
reason why the Riemannian approach should be best.

Examples exist showing that using a Riemannian structure different from the
“natural” Riemannian structure leads to better algorithms, and we suspect there
are other practical cases when not using any Riemannian structure at all gives
better performance.



[23]Summary of Part III

What is the traditional approach to optimisation on manifolds?

First add (usually artificial!) extra structure, namely a Riemannian metric.

Use a generalised version of, say, Newton’s iterate, obtained by replacing straight
lines by geodesics and derivatives by their Riemannian versions.

Is it good or bad?

It is sensible.

It works well if f is convex.

Unless the set Ω of functions is somehow related to the Riemannian geometry,
can expect there to exist better methods.



[24]Part IV: Our Approach

What can we fiddle with to get better performance?

Does this solve the problem?

The Varying Parametrisation Approach

Its Relation to the Riemannian Approach

Choice of Parametrisations

Current Work



[25]The Varying Parametrisation Approach

Beforehand, associate with every point p ∈ M a parametrisation µp : Rn → M
centred at p (µp(0) = p).

Therefore, when at point pk, can form local cost function f ◦ µpk
.

Thus, it is proposed to apply the ordinary Newton iterate to f ◦ µpk
at the origin

and map the result back toM using µ−1
pk

. (Can use iterates other than the Newton
iterate.)

The real trick is to choose the µp. Different people have proposed different
choices.



[26]Its Relation to the Riemannian Approach

It includes the Riemannian approach as a special case. (Choose µp to be the
inverse of the Riemannian exponential map.)

It is a strict generalisation; some choices of µp lead to algorithms which cannot
be written in terms of a Riemannian metric.

Empirical evidence shows choices of µp other than the exponential map can give
better performance in practice.

We have a nicer (but unpublished) interpretation which makes it clear that this
approach is not an approximation of a Newton method. Rather, it corresponds
to a Newton iterate applied in different coordinate systems; see later slide.



[27]Choice of Parametrisations

The challenge is to come up with excellent choices of µp for specific problems
(i.e. pairs (M,Ω)).

Intuitively, for the Newton iterate, want µp so that the local cost functions f ◦ µp

are approximately quadratic yet the µ−1
p are computationally straightforward to

evaluate.

One generic choice, for concrete manifolds, is to use the parametrisation formed
by projection from the tangent plane. (e.g. Use this if Ω is very large.)



[28]Current Work

We have generalised the varying parametrisation approach further.

We have a nicer interpretation of it; essentially, the problem can be mapped to
one in Euclidean space.

In Euclidean space, we can perform a Newton iterate in polar coordinates or
cartesian coordinates and so forth.

The idea is to change the coordinate system based on the point we are currently
at.

If these changes are reasonable, quadratic convergence is guaranteed.

We also show what approximations can be made without affecting quadratic
convergence.

We conjecture all quadratically convergent algorithms for a sufficiently rich class
Ω of functions are of this form.



[29]Summary of Part IV

What can we fiddle with to get better performance?

We can choose the coordinate system in which to perform the current iterate
(e.g. Newton step).

We can make various approximations to reduce the computational complexity.

Does this solve the problem?

It is a framework only.

The challenge is to take this framework and design good algorithms for pairs
M,Ω.

The framework provides intuition as well as guarantees local convergence.

Global convergence is a much harder problem but the same ideas apply.



[30]Conclusion

A fundamental tool in signal processing is linear algebra.

If we move beyond linear algebra, we enter the world of algebraic geometry
(polynomial equations) or differential geometry (manifolds) and so forth.

Both algebraic and differential geometry have been applied to signal processing
problems in the past.

It is expected the number of applications will grow.

Finding nice optimisation on manifold algorithms for particular problems (i.e. for
pairs M,Ω) is a fruitful research direction.

We now have a framework on which to build for tackling this problem (not yet
published though).
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