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Is Mathematics Interesting?

The Clay Mathematics Institute in the USA has set aside
$7 million in prize money.

If anyone solves one of the seven Millenium Problems they
will receive $1 million.

1 P vs NP
2 Riemann Hypothesis
3 Navier-Stokes Equations
4 Quantum Yang-Mills Theory
5 Hodge Conjecture
6 Poincaré Conjecture
7 Birch and Swinnerton-Dwyer Conjecture

In fact, one of them has (most likely) been solved...
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The RSA Algorithm in a Nutshell

n = pq where p, q are distinct primes;
m = (p − 1)(q − 1);
e such that gcd(e, m) = 1;
C = W e mod n;
D = Cd mod n where ed = 1 mod m.

Does it work?
Does D = W always? Note that:

D = Cd mod n

= (W e)d mod n

= W ed mod n.

Does W ed − W = 0 mod n?
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Does it Work? (I)

Recall n = pq, m = (p − 1)(q − 1).

Thus, we must prove that for any W ∈ {0, · · · , n − 1}, if
ed = 1 mod (p − 1)(q − 1) then W ed − W = 0 mod pq.
Proofs are easier to check than to derive! Usually, will only
begin to understand a proof if you write it out yourself.
We will need two facts. (Break something complicated up
into little parts, understand the parts well.)
Fact 1 (Fermat’s Little Theorem): If p is prime and a 6= 0
mod p then ap−1 = 1 mod p. (If a = 0 mod p then
ap−1 = 0 mod p.)
Example, mod 5: 14 = 1, 24 = 16 ≡ 1, 34 = 81 ≡ 1,
44 = 256 ≡ 1.
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Does it Work? (II)

Fact 2: If p and q are distinct primes

and if x = 0 mod p,
and x = 0 mod q, then x = 0 mod pq.
Example (p = 2, q = 3):

0 1 2 3 4 5 6 7 8 9 10 11 12
mod 2 0 1 0 1 0 1 0 1 0 1 0 1 0
mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0
mod 6 0 1 2 3 4 5 0 1 2 3 4 5 0

Proof: If x = 0 mod p then x = pn for some integer n.
Similarly, we know x = qm for some integer m.
What values of m and n are possible if pn = qm?
Example: 2n = 3m. Then m = 2n

3 . So n = 1 does not
work. Nor does n = 2. But n = 3 works.
There is a solution only if n is divisible by 3.
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Does it Work? (III)

Fact 2: If p and q are distinct primes

and if x = 0 mod p,
and x = 0 mod q, then x = 0 mod pq.
Proof: We know x = pn and x = qm. Therefore pn = qm.

Therefore qm must be divisible by p.
(

n = qm
p

)
.

Since p is prime, we have learnt this means either q is
divisible by p or m is divisible by p. The former cannot
happen since q is a prime different from p.
Thus, m = pk for some integer k .
Thus, x = qm = qpk = (pq)k . In other words, x = 0
mod pq, as required.
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Does it Work? (IV)

If ed = 1 mod (p − 1)(q − 1), prove W ed − W = 0
mod pq.

By Fact 2, it suffices to show W ed − W = 0 mod p and
W ed − W = 0 mod q.
Since the roles of p and q are the same, if we prove
W ed −W = 0 mod p then we know W ed −W = 0 mod q
too.
Note that ed = 1 + (p − 1)(q − 1)k for some integer k .

W ed − W = W 1+(p−1)(q−1)k − W

= W
(

W (p−1)(q−1)k − 1
)
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Does it Work? (V)

Does W
(
W (p−1)(q−1)k − 1

)
= 0 mod p?

Case 1: If W mod p = 0, then yes!
Case 2: If W mod p 6= 0, then we know from Fermat’s
Little Theorem that W p−1 = 1 mod p.

Observe that W (p−1)(q−1)k =
{

W (p−1)
}(q−1)k

.
Hence, mod p, we have

W
(

W (p−1)(q−1)k − 1
)
≡ W

({
W (p−1)

}(q−1)k
− 1

)
≡ W

(
1(q−1)k − 1

)
≡ W (1 − 1)

≡ 0
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Is it Secure?

Given W e mod n, can we work out what W is?

We know e and n.
However, only two known methods for recovering W .

1 Trial and error; guess W .
2 Figure out p and q where n = pq.

The second option is much faster, hence the security of
RSA appears to rest on our inability to factor large
numbers.
RSA would be “provably secure” if we can prove:

1 The fastest way of finding W given W e mod n is to factor n.
2 Factoring large numbers cannot be done quickly.

How could we possibly (hope to) prove either of these?
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Equal Difficulty

What does it mean for Problem A to be equally difficult as
Problem B?

Breaking RSA equally difficult as factoring large numbers?
We know that if we can factor large numbers, we can break
RSA.
Hence, RSA is no more difficult than factoring large
numbers.
One way to prove the converse is to prove that if we can
break RSA quickly, we can factor large numbers quickly!
Rough idea: For any e and n, we assume that given W e

mod n we can quickly find W . Given this “new operation”,
can we now factor large numbers quickly?
Area of Mathematics: Computational Complexity Theory
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Factoring Large Numbers

We currently think factoring large numbers is difficult. But
why should anything be difficult?

Roughly speaking, there are only so many different
computer programs we can write. (Finite memory, finite
processing speed, a useful program must terminate within
a reasonable time.)
The number of problems out there exceeds the number of
computer programs!
Therefore, we believe that there are difficult problems out
there. We just don’t know very much about which problems
are difficult. (Does P equal NP?)
Note that most research has been based around
“computers” which add and multiply numbers.
Is there any other kind of computer?
What would it mean for the security of RSA?
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Quantum Computers

We live in a quantum mechanical world.

If we could build computers which did not add and
subtract, but rather performed “quantum mechanical
operations”, things that were hard on ordinary computers
might become easy, and vice versa.
In fact, the great strength of quantum computers is that
they can perform the same operation on a large amount of
data simultaneously.
Roughly speaking, we can break RSA using a quantum
computer by trial and error because we can guess a very
large number of solutions in one operation.
This words because the speed-up does not grow with N
but with 2N ; if N is the size of the quantum computer, then
we can check around 2N possible solutions per operation.
(At least, something like this is true.)
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Who Wrote the Email?

Wilma receives an email purportedly from Fred.

Did Fred or Charlie send the email though?
What scheme can we think of that would allow Wilma to be
sure that Fred wrote the email?
In RSA, encryption easy, decryption hard.
Idea: Reverse the roles! Make encryption hard, and
decryption easy!
That is, we encode using the private key, and decode using
the public key.
Only Fred knows his own private key, hence only Fred can
encode his email using his private key.
Everyone can decode Fred’s email using his public key.
In reality, we send the email in plaintext. We also compute
a “hash” or “checksum”, and encode this checksum using
our private key.
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Only Fred knows his own private key, hence only Fred can
encode his email using his private key.
Everyone can decode Fred’s email using his public key.
In reality, we send the email in plaintext. We also compute
a “hash” or “checksum”, and encode this checksum using
our private key.
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RSA Cryptography
Is it Secure?

Digital Signatures

Summary and Closing Thoughts

We proved RSA works. Required Fermat’s Little Theorem
and other facts from number theory.

We stated the security of RSA is an open problem.
Academics spend their lives working on open problems!
Mathematics evolves. Hard things become simple, thus
becoming building blocks for even harder things.
It is the ability of mathematics to solve new and
challenging problems which makes it so exciting, and its
evolution is an art which can be admired in the same way
paintings are admired.
Usually, a considerable knowledge is required before this
appreciation comes; this is the challenge of teaching
mathematics!
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