# A Non-Bayesian Interpretation of Bayesian Statistics (and why estimation is an ill-posed problem)

#### Jonathan H. Manton

Department of Information Engineering Research School of Information Sciences and Engineering The Australian National University

#### Probability Conference, RSSS, ANU 2–4 March 2006

イロト イポト イヨト イヨト





#### 2 Non-Bayesian Interpretation of Bayesian Statistics



・ 同 ト ・ ヨ ト ・ ヨ ト

3

### **Opening Claims**

• Estimating probabilities, estimating parameter values and confirming hypotheses are all ill-posed problems.

ヘロト ヘアト ヘビト ヘビト

2

### **Opening Claims**

- Estimating probabilities, estimating parameter values and confirming hypotheses are all ill-posed problems.
- This is analogous to a maths question which is not fully specified; depending on what extra assumptions people make (often unknowingly), different answers arise.

<回と < 回と < 回と

### **Opening Claims**

- Estimating probabilities, estimating parameter values and confirming hypotheses are all ill-posed problems.
- This is analogous to a maths question which is not fully specified; depending on what extra assumptions people make (often unknowingly), different answers arise.
- We should not be asking these questions directly.

### **Opening Claims**

- Estimating probabilities, estimating parameter values and confirming hypotheses are all ill-posed problems.
- This is analogous to a maths question which is not fully specified; depending on what extra assumptions people make (often unknowingly), different answers arise.
- We should not be asking these questions directly.
- Rather, every time, we should first work out the underlying reason why we want to estimate a parameter value, then work out how to solve this underlying problem directly.

・ 同 ト ・ ヨ ト ・ ヨ ト

### **Opening Claims**

- Estimating probabilities, estimating parameter values and confirming hypotheses are all ill-posed problems.
- This is analogous to a maths question which is not fully specified; depending on what extra assumptions people make (often unknowingly), different answers arise.
- We should not be asking these questions directly.
- Rather, every time, we should first work out the underlying reason why we want to estimate a parameter value, then work out how to solve this underlying problem directly.
- By and large, the difficulty is not in the maths, but in how people map real world problems into mathematics, and how they interpret the results.

ヘロト ヘ戸ト ヘヨト ヘヨト

#### Parameter Estimation

 Assume we have a family of probability density functions p(x; θ) indexed by a parameter θ.

イロト イポト イヨト イヨト 三油

#### **Parameter Estimation**

 Assume we have a family of probability density functions p(x; θ) indexed by a parameter θ. (We stress the distinction with conditional probability p(x|θ).)

▲御♪ ▲ヨ♪ ▲ヨ♪ 二旦

#### **Parameter Estimation**

- Assume we have a family of probability density functions p(x; θ) indexed by a parameter θ. (We stress the distinction with conditional probability p(x|θ).)
- Given an observation x we are asked to estimate  $\theta$ .

▲御♪ ▲ヨ♪ ▲ヨ♪ 二旦

#### **Parameter Estimation**

- Assume we have a family of probability density functions p(x; θ) indexed by a parameter θ. (We stress the distinction with conditional probability p(x|θ).)
- Given an observation x we are asked to estimate  $\theta$ .
- This is an ill-posed problem! Yet people ask it all the time.

< 回 > < 回 > < 回 > -

#### **Parameter Estimation**

- Assume we have a family of probability density functions p(x; θ) indexed by a parameter θ. (We stress the distinction with conditional probability p(x|θ).)
- Given an observation x we are asked to estimate  $\theta$ .
- This is an ill-posed problem! Yet people ask it all the time. This does not make it right!

< 回 > < 回 > < 回 > -

#### Parameter Estimation

- Assume we have a family of probability density functions p(x; θ) indexed by a parameter θ. (We stress the distinction with conditional probability p(x|θ).)
- Given an observation x we are asked to estimate  $\theta$ .
- This is an ill-posed problem! Yet people ask it all the time. This does not make it right!
- Simple diagrams of pdf's show the difficulty.

(日本) (日本) (日本)

#### Parameter Estimation

- Assume we have a family of probability density functions p(x; θ) indexed by a parameter θ. (We stress the distinction with conditional probability p(x|θ).)
- Given an observation x we are asked to estimate  $\theta$ .
- This is an ill-posed problem! Yet people ask it all the time. This does not make it right!
- Simple diagrams of pdf's show the difficulty. Yet people have developed sophisticated estimation techniques.

(雪) (ヨ) (ヨ)

#### Parameter Estimation

- Assume we have a family of probability density functions p(x; θ) indexed by a parameter θ. (We stress the distinction with conditional probability p(x|θ).)
- Given an observation x we are asked to estimate  $\theta$ .
- This is an ill-posed problem! Yet people ask it all the time. This does not make it right!
- Simple diagrams of pdf's show the difficulty. Yet people have developed sophisticated estimation techniques.
- This false sense of security can come about in cases when there is a relatively large number of observations, in which case almost any "sensible estimator" will "work". (Consider very concentrated pdf's.)

イロト イポト イヨト イヨト 三連

#### James-Stein Estimator (there is no "best" estimator)

- Three-dimensional independent Gaussian r.v.  $x \sim N(\mu, I)$ .
- Only sensible estimator appears to be  $\hat{\mu} = x$ .

▲御♪ ▲ヨ♪ ▲ヨ♪ 二旦

#### James-Stein Estimator (there is no "best" estimator)

- Three-dimensional independent Gaussian r.v.  $x \sim N(\mu, I)$ .
- Only sensible estimator appears to be  $\hat{\mu} = x$ .
- Assume we judge goodness by the risk function  $E[\|\hat{\mu} \mu\|^2; \mu].$
- Is  $\hat{\mu} = x$  the best estimator possible?

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

#### James-Stein Estimator (there is no "best" estimator)

- Three-dimensional independent Gaussian r.v.  $x \sim N(\mu, I)$ .
- Only sensible estimator appears to be  $\hat{\mu} = x$ .
- Assume we judge goodness by the risk function  $E[\|\hat{\mu} \mu\|^2; \mu].$
- Is  $\hat{\mu} = x$  the best estimator possible?
- The most striking post-war result in statistics is that the James-Stein estimator

$$\widehat{\mu} = \left(1 - \frac{1}{\|\boldsymbol{x}\|^2}\right) \boldsymbol{x}$$

dominates the estimator  $\hat{\mu} = x$ . (For all  $\mu$ , it is better.)

イロン 不良 とくほう 不良 とうほ

### James-Stein Estimator (there is no "best" estimator)

- Three-dimensional independent Gaussian r.v.  $x \sim N(\mu, I)$ .
- Only sensible estimator appears to be  $\hat{\mu} = x$ .
- Assume we judge goodness by the risk function  $E[\|\hat{\mu} \mu\|^2; \mu].$
- Is  $\hat{\mu} = x$  the best estimator possible?
- The most striking post-war result in statistics is that the James-Stein estimator

$$\widehat{\mu} = \left(1 - \frac{1}{\|\boldsymbol{x}\|^2}\right) \boldsymbol{x}$$

dominates the estimator  $\hat{\mu} = x$ . (For all  $\mu$ , it is better.)

• Initially counter-intuitive: Using the price of tea in China to influence our estimate of the temperature in Canberra!

#### Which Estimator is Best?

 The James-Stein Estimator is to be preferred if we wish to minimise our total squared error. A multi-national insurance company does not care about its individual loses, only its total lose.

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Which Estimator is Best?

- The James-Stein Estimator is to be preferred if we wish to minimise our total squared error. A multi-national insurance company does not care about its individual loses, only its total lose.
- If individual loses are important, which they usually are, then μ
   = x should be used.

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Which Estimator is Best?

- The James-Stein Estimator is to be preferred if we wish to minimise our total squared error. A multi-national insurance company does not care about its individual loses, only its total lose.
- The best estimator is application dependent.

(雪) (ヨ) (ヨ)

#### Which Estimator is Best?

- The James-Stein Estimator is to be preferred if we wish to minimise our total squared error. A multi-national insurance company does not care about its individual loses, only its total lose.
- The best estimator is application dependent.
- In other words, parameter estimation is an ill-posed problem. Until we know the application, rarely can we claim one estimator is better than another.

・ 同 ト ・ ヨ ト ・ ヨ ト …

#### There are No Estimation Problems...

 Claim: In this world, there are no (important / useful / naturally occurring) estimation problems.

▲ 同 ▶ ▲ 回 ▶ ▲ 回 ▶ ― 回

#### There are No Estimation Problems...

- Claim: In this world, there are no (important / useful / naturally occurring) estimation problems.
- If we estimate the height of a tree for the sake of it, maybe we feel warm and fuzzy inside, but we would feel this way regardless of whether we are right or wrong.

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

#### There are No Estimation Problems...

- Claim: In this world, there are no (important / useful / naturally occurring) estimation problems.
- If we estimate the height of a tree for the sake of it, maybe we feel warm and fuzzy inside, but we would feel this way regardless of whether we are right or wrong.
- If we don't estimate something for the sake of it, then we will do something with the result. Invariably we will make a decision (about what to do).

### There are No Estimation Problems...

- Claim: In this world, there are no (important / useful / naturally occurring) estimation problems.
- If we estimate the height of a tree for the sake of it, maybe we feel warm and fuzzy inside, but we would feel this way regardless of whether we are right or wrong.
- If we don't estimate something for the sake of it, then we will do something with the result. Invariably we will make a decision (about what to do).
- There are no estimation problems, only decision problems.
  - We are used to estimating temperature to work out what to wear tomorrow, but we are really only interested in what to wear tomorrow.

・ 同 ト ・ ヨ ト ・ ヨ ト …

### There are No Estimation Problems...

- Claim: In this world, there are no (important / useful / naturally occurring) estimation problems.
- If we estimate the height of a tree for the sake of it, maybe we feel warm and fuzzy inside, but we would feel this way regardless of whether we are right or wrong.
- If we don't estimate something for the sake of it, then we will do something with the result. Invariably we will make a decision (about what to do).
- There are no estimation problems, only decision problems.
  - We are used to estimating temperature to work out what to wear tomorrow, but we are really only interested in what to wear tomorrow.
  - We are used to debating the existence of God, but really we are interested in deciding how we should behave (go to church, worry about the ten commandments,...).

#### Bringing Back "Estimators"

• The optimal thing to do is to decide the best way of going from the observations to the decision directly.

・ 同 ト ・ ヨ ト ・ ヨ ト

### Bringing Back "Estimators"

- The optimal thing to do is to decide the best way of going from the observations to the decision directly.
- Often this is impractical; imaging determining what to wear tomorrow from today's global weather observations!

<回と < 回と < 回と

### Bringing Back "Estimators"

- The optimal thing to do is to decide the best way of going from the observations to the decision directly.
- Often this is impractical; imaging determining what to wear tomorrow from today's global weather observations!
- Hence it makes sense to compress the observations into an "approximate sufficient statistic" and then make (sub-optimal) decisions based on this more manageable quantity. (Can make multiple decisions based on a single approximate sufficient statistic.)

<回と < 回と < 回と

### Bringing Back "Estimators"

- The optimal thing to do is to decide the best way of going from the observations to the decision directly.
- Often this is impractical; imaging determining what to wear tomorrow from today's global weather observations!
- Hence it makes sense to compress the observations into an "approximate sufficient statistic" and then make (sub-optimal) decisions based on this more manageable quantity. (Can make multiple decisions based on a single approximate sufficient statistic.)
- Moreover, sometimes the simple rule of "estimating" θ then acting as if the estimate were the true value works well enough. Doing so is a conscious choice though!

ヘロト ヘアト ヘビト ヘビト

### (True) Bayesian Statistics

• Assume both x and  $\theta$  are random variables; joint pdf.

・ 同 ト ・ ヨ ト ・ ヨ ト …

### (True) Bayesian Statistics

- Assume both x and  $\theta$  are random variables; joint pdf.
- Aside: In (advanced) probability theory, one works with expectation and conditional expectation in favour of conditional probability. Indeed, conditional probability is "not nice" but conditional expectation is.

★ 문 ► ★ 문 ►

### (True) Bayesian Statistics

- Assume both x and  $\theta$  are random variables; joint pdf.
- Aside: In (advanced) probability theory, one works with expectation and conditional expectation in favour of conditional probability. Indeed, conditional probability is "not nice" but conditional expectation is.
- Bayes rule (deducible from Kolmogorov's axioms):  $p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$  if p(x) > 0.
- Given prior *p*(θ) and an observation *x*, can compute posterior *p*(θ|*x*).

(雪) (ヨ) (ヨ)

### (True) Bayesian Statistics

- Assume both x and  $\theta$  are random variables; joint pdf.
- Aside: In (advanced) probability theory, one works with expectation and conditional expectation in favour of conditional probability. Indeed, conditional probability is "not nice" but conditional expectation is.
- Bayes rule (deducible from Kolmogorov's axioms):  $p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$  if p(x) > 0.
- Given prior  $p(\theta)$  and an observation x, can compute posterior  $p(\theta|x)$ .
- Bayesians assert p(θ|x) contains all the knowledge there is to know about θ.

・ 同 ト ・ ヨ ト ・ ヨ ト …

### (True) Bayesian Statistics

- Assume both x and  $\theta$  are random variables; joint pdf.
- Aside: In (advanced) probability theory, one works with expectation and conditional expectation in favour of conditional probability. Indeed, conditional probability is "not nice" but conditional expectation is.
- Bayes rule (deducible from Kolmogorov's axioms):  $p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$  if p(x) > 0.
- Given prior  $p(\theta)$  and an observation x, can compute posterior  $p(\theta|x)$ .
- Bayesians assert p(θ|x) contains all the knowledge there is to know about θ.
- e.g., Can compute MAP estimate  $\hat{\theta} = \arg \max_{\theta} p(\theta|x)$ .

ヘロト ヘアト ヘビト ヘビト

## (True) Bayesian Statistics

- Assume both x and  $\theta$  are random variables; joint pdf.
- Aside: In (advanced) probability theory, one works with expectation and conditional expectation in favour of conditional probability. Indeed, conditional probability is "not nice" but conditional expectation is.
- Bayes rule (deducible from Kolmogorov's axioms):  $p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$  if p(x) > 0.
- Given prior *p*(θ) and an observation *x*, can compute posterior *p*(θ|*x*).
- Bayesians assert p(θ|x) contains all the knowledge there is to know about θ.
- e.g., Can compute MAP estimate  $\hat{\theta} = \arg \max_{\theta} p(\theta|x)$ .
- Everything here is fine (except for thinking in terms of estimates - why should MAP be "best"?).

#### What are the Problems?

• In a nutshell, problems arise when people use Bayesian statistics when  $\theta$  is not truly a random variable.

・ 同 ト ・ ヨ ト ・ ヨ ト …

1

- In a nutshell, problems arise when people use Bayesian statistics when θ is not truly a random variable.
- There are many examples:
  - Witness sees yellow taxi. Tests show witness is 99% reliable. But in the town, there are 9999 white taxis and only 1 yellow taxi. So, Bayesian concludes Pr(yellow taxi) is 0.01; the taxi must have been white.

▶ < 코▶ < 코▶

- In a nutshell, problems arise when people use Bayesian statistics when θ is not truly a random variable.
- There are many examples:
  - Witness sees yellow taxi. Tests show witness is 99% reliable. But in the town, there are 9999 white taxis and only 1 yellow taxi. So, Bayesian concludes Pr(yellow taxi) is 0.01; the taxi must have been white.
  - Test for disease is 99% reliable. Therefore, no point testing anyone for a rare disease!

伺 とくき とくきと

- In a nutshell, problems arise when people use Bayesian statistics when θ is not truly a random variable.
- There are many examples:
  - Witness sees yellow taxi. Tests show witness is 99% reliable. But in the town, there are 9999 white taxis and only 1 yellow taxi. So, Bayesian concludes Pr(yellow taxi) is 0.01; the taxi must have been white.
  - Test for disease is 99% reliable. Therefore, no point testing anyone for a rare disease!
- Aside: If our jury system is only interested in locking up the criminals on average, then the Bayesian approach is fine! Same if we are only interested in curing people on average.

・ 同 ト ・ ヨ ト ・ ヨ ト

- In a nutshell, problems arise when people use Bayesian statistics when θ is not truly a random variable.
- There are many examples:
  - Witness sees yellow taxi. Tests show witness is 99% reliable. But in the town, there are 9999 white taxis and only 1 yellow taxi. So, Bayesian concludes Pr(yellow taxi) is 0.01; the taxi must have been white.
  - Test for disease is 99% reliable. Therefore, no point testing anyone for a rare disease!
- Aside: If our jury system is only interested in locking up the criminals *on average*, then the Bayesian approach is fine! Same if we are only interested in curing people *on average*.
- In general, the problem is not with Bayes' rule, it is with the incorrect mapping of the problem to mathematics, and the incorrect interpretation of the results.

#### **Further Problems**

 Students may approach a problem by deciding whether to take a Bayesian approach, and if so, working out what prior to assign to θ. (Both these steps I disagree with.)

→ Ξ → < Ξ →</p>

#### **Further Problems**

- Students may approach a problem by deciding whether to take a Bayesian approach, and if so, working out what prior to assign to θ. (Both these steps I disagree with.)
- Example: Design a system to detect if an aeroplane is about to crash into a mountain.

御 とくほ とくほ とう

#### **Further Problems**

- Students may approach a problem by deciding whether to take a Bayesian approach, and if so, working out what prior to assign to θ. (Both these steps I disagree with.)
- Example: Design a system to detect if an aeroplane is about to crash into a mountain.
- First we estimate the height of the plane, then we ask if this is less than or equal to the height of the mountain.

御 とくほ とくほ とう

### **Further Problems**

- Students may approach a problem by deciding whether to take a Bayesian approach, and if so, working out what prior to assign to θ. (Both these steps I disagree with.)
- Example: Design a system to detect if an aeroplane is about to crash into a mountain.
- First we estimate the height of the plane, then we ask if this is less than or equal to the height of the mountain.
- To estimate the height, we first need a prior. Aeroplanes typically fly at 30,000 feet, so choose a normal distribution about this height for the prior.

・ 同 ト ・ ヨ ト ・ ヨ ト

### **Further Problems**

- Students may approach a problem by deciding whether to take a Bayesian approach, and if so, working out what prior to assign to θ. (Both these steps I disagree with.)
- Example: Design a system to detect if an aeroplane is about to crash into a mountain.
- First we estimate the height of the plane, then we ask if this is less than or equal to the height of the mountain.
- To estimate the height, we first need a prior. Aeroplanes typically fly at 30,000 feet, so choose a normal distribution about this height for the prior.
- The resulting MAP is certainly a "good estimator" for some problems, but not for ours. A plane flying at a height just below that of the mountain will appear to be ok since the prior will distort the estimate upwards.

#### Babies and Bathwater

• What is good about Bayesian statistics?

・ 同 ト ・ ヨ ト ・ ヨ ト …

#### **Babies and Bathwater**

- What is good about Bayesian statistics?
- First, let's forget about any meaning attributed to the formula, and think in terms of a mathematical rule going from the observation *x* to a function *p*(*θ*; *x*).

通 と く ヨ と く ヨ と

#### Babies and Bathwater

- What is good about Bayesian statistics?
- First, let's forget about any meaning attributed to the formula, and think in terms of a mathematical rule going from the observation x to a function  $p(\theta; x)$ .
- Historically, Bayesian statistics have had a resurgence twice.
  - As a way of finding admissible estimators. The MAP estimator is always admissible.
  - Computationally, the recursive form of Bayes (update) rule is suited for efficient implementations of estimation problems over time (e.g., tracking the location of an aeroplane).

米間 とくほ とくほ とうほ

### Babies and Bathwater

- What is good about Bayesian statistics?
- First, let's forget about any meaning attributed to the formula, and think in terms of a mathematical rule going from the observation x to a function  $p(\theta; x)$ .
- Historically, Bayesian statistics have had a resurgence twice.
  - As a way of finding admissible estimators. The MAP estimator is always admissible.
  - Computationally, the recursive form of Bayes (update) rule is suited for efficient implementations of estimation problems over time (e.g., tracking the location of an aeroplane).
- Therefore, we want to keep Bayesian estimation as an option, but interpret it differently, so it gets used correctly in practice.

### Weighting Function Statistics

 Assume we make a conscious decision that we want to compute an approximate sufficient statistic θ of θ.

(日本) (日本) (日本)

### Weighting Function Statistics

- Assume we make a conscious decision that we want to compute an approximate sufficient statistic  $\hat{\theta}$  of  $\theta$ .
- We know that in general, no function θ(x) will be "good" at being close to θ for all true parameter values of θ.

ヨト イヨト

### Weighting Function Statistics

- Assume we make a conscious decision that we want to compute an approximate sufficient statistic θ of θ.
- Therefore, we introduce a weighting function w(θ) which is peaked in regions where we want θ to be close to θ. (e.g. For aeroplane example, choose w(θ) to be peaked at the height of mountain.)

→ Ξ → < Ξ →</p>

## Weighting Function Statistics

- Assume we make a conscious decision that we want to compute an approximate sufficient statistic θ of θ.
- Therefore, we introduce a weighting function w(θ) which is peaked in regions where we want θ to be close to θ. (e.g. For aeroplane example, choose w(θ) to be peaked at the height of mountain.)

• We compute the function  $p(\theta; x) = \frac{p(x;\theta)w(\theta)}{\int p(x;\theta)w(\theta) d\theta}$ .

イロト イポト イヨト イヨト 三連

## Weighting Function Statistics

- Assume we make a conscious decision that we want to compute an approximate sufficient statistic θ of θ.
- We know that in general, no function θ(x) will be "good" at being close to θ for all true parameter values of θ.
- Therefore, we introduce a weighting function w(θ) which is peaked in regions where we want θ to be close to θ. (e.g. For aeroplane example, choose w(θ) to be peaked at the height of mountain.)
- We compute the function  $p(\theta; x) = \frac{p(x;\theta)w(\theta)}{\int p(x;\theta)w(\theta) d\theta}$ .
- We may decide to set  $\hat{\theta}(x) = \arg \max_{\theta} p(\theta; x)$ .

ヘロト ヘアト ヘビト ヘビト

# Weighting Function Statistics

- Assume we make a conscious decision that we want to compute an approximate sufficient statistic θ of θ.
- We know that in general, no function θ(x) will be "good" at being close to θ for all true parameter values of θ.
- Therefore, we introduce a weighting function w(θ) which is peaked in regions where we want θ to be close to θ. (e.g. For aeroplane example, choose w(θ) to be peaked at the height of mountain.)
- We compute the function  $p(\theta; x) = \frac{p(x;\theta)w(\theta)}{\int p(x;\theta)w(\theta) d\theta}$ .
- We may decide to set  $\hat{\theta}(x) = \arg \max_{\theta} p(\theta; x)$ .
- We do not claim p(θ; x) contains all the knowledge there is about θ. (Different w(θ) will bring out different knowledge about θ.)
- (There is likely a connection with imprecise probabilities.)

#### When faced with a parameter estimation problem...

- Determine the underlying decision problem.
- Decide if computing a low dimensional approximate sufficient statistic might be accurate enough (does it capture enough information to enable a good decision to be made?).
- Decide if the approximate sufficient statistic can be of the form θ
  , where θ
  will be chosen to be "close to" θ on "average". (In other words, can good decisions be made by "estimating" θ and acting as if this estimate is correct.)
- Choose a weighting function w(θ) based on the underlying decision problem (what are critical values of θ where a "good estimate" is required?).
- See if the resulting decision rule makes sufficiently good decisions.

#### Summary

- Bayesian statistics is only applicable if  $\theta$  is truly a random variable.
- The words we use to describe things with matter; they influence how we map real world problems into mathematics, which is where the difficulties lie.
- We introduce the concept of weighting function statistics, which looks identical to Bayesian statistics, but has a very different interpretation, hence hopefully it will be used differently (correctly!) in practice.
- We emphasise there is no estimation problem, only decision problems.
- What used to be called estimators should be called approximate sufficient statistics, and used accordingly, to simplify the decision problem at the expense of optimality.