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Signal Processing

Concerned with the processing of signals, i.e. a signal comes in,
we do something to it, a signal (or estimate) goes out.

Usually concerned with electrical or digital signals.
Radar, mobile telephone, digital television...

Hardware side, software side, algorithm design, fundamental

theory.

Intersects with statistics, linear algebra, linear operator theory...
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Wireless Communications
We have a message x € C" we wish to transmit.

The transmitter converts it into an analogue waveform and

transmits it.

The receiver detects the analogue waveform, filters it to reduce
noise, digitally samples it.

Ideally, what we receive is y = x + n where n models random

noise.

Due to multi-path though, in reality, what we receive is
y = h* x + n where h € C! is the “channel impulse response”.

Without any extra information, it is impossible to recover x from

Y.
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Channel Identification (1)

e Given y = h *xx 4+ n, how can we find A (and subsequently x)?

e Statistical (blind) methods: assume elements of x are

independent.

e Finite alphabet methods: assume elements of x belong to a finite

set.

e Constant modulus methods: assume elements of £ have unit

norm.
e Oversampling methods: can convert SISO channel into SIMO.

e Training: Set certain elements of x to known values.
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Channel Identification (2)

e Writing y = h * x element-wise shows

y1 = hox1 + hi1xg
Y2 = hoxa + hix1
Y3 = hoxs + hixo

e If some elements of x are known, we can add to the above
equations the extra equations z¢o =0, x5 = 0, x1¢9 = 0 for

example.

e Whether or not we can identify the channel becomes a question
of whether or not the above system of polynomzial equations has a
unique solution (generically).
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Algebraic (Geometry

e Algebraic geometry deals with polynomial equations. A

fundamental object in algebraic geometry is a variety or algebraic
set:

V={zeClfila) =~ = fula) = 0}

where the f; are polynomial maps.
e Of interest are polynomial maps between varieties.

o Whenever polynomial equations arise in signal processing, we

should be turning to algebraic geometry.
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Results

e If L — 1 zeros are inserted between blocks in a transmitted

sequence then after receiving two blocks, a length L channel can
be identified (up to an unknown scaling factor).

— After receiving one block, there are the same number of
equations as unknowns (after fixing an element of h); finite

number of solutions generically.

— After receiving the second block, generically there will be only

one solution in common.

e If instead of transmitting = we transmit Px where P is a tall
matrix, then as soon as P reaches a certain size, the channel can

be identified generically.
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Weighted Low Rank Approximation

e Given X,r compute argming rank r<r | X — R||@ where
1Z||g = vec{Z}*' Q vec{Z}.

e If norm is Frobenius norm, can use SVD.

e Otherwise, standard approach is to write R = AB to enforce the
rank constraint (A has r columns) and solve numerically

argming g || X — AB||g.
e This is an over-parametrisation though; (AG)(G~'B) = AB.

e In effect, B simply determines the null space of R = AB.
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Reformulation

miny, ny7Ty—;ming, ry=o || X — R||@ where N has the right

number of columns to enforce the rank constraint rank R < r.

In fact, the outer minimisation is really over the Grassmann
manifold and the inner minimisation is over the set of matrices R

whose null space contains a particular subspace.
The inner minimisation has a closed form solution.
The parametrisation is of the minimal possible dimension.

The SVD solution if the Frobenius norm is used falls out.
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Manifolds, and Optimisation on Manifolds

Whereas a variety is defined by the vanishing of polynomial
equations, a set defined by the vanishing of smooth equations

which satisfy an additional rank constraint on their Jacobian is a

manifold.

More generally, a smooth manifold is a space which locally looks

like R™ and for which the concept of a smooth function can be
defined.

A variety with its singular points removed is a manifold.

We are interested in computing arg min,ecps f(p) where
f: M — R is a smooth function.
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Manifolds in Signal Processing

e Manifolds arise in signal processing in three ways:

1. As a smooth constraint; it is known that the parameter x is
constrained by F'(z) = 0.

2. By quotienting out ambiguity; there is not enough information
to determine the parameter exactly but it can be determined
up to an equivalence relation. Quotienting R” or R"*P out by

certain equivalence relations results in a manifold.

3. Naturally; subspaces play a large role in signal processing,
and the set of all subspaces of a certain dimension can be

made into a manifold — the Grassmann manifold.
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Results

Ready-to-use algorithms for optimisation on the Grassmann and
Stiefel manifolds.

A general theory (with convergence proofs) for optimisation on
manifolds.

Explained why the traditional (Riemannian) approach is not
always suitable. (Our theory includes the Riemannian approach

as a special case.)

Considered the more general problem of extending algorithms
from Euclidean space to manifolds.

We wish to investigate filtering and tracking on manifolds.
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Summary

e If subspaces, ambiguity, or smooth constraints are involved, often
the natural space to use is a manifold.

e Once a problem is formulated naturally, it is easier to come up

with (better numerical) solutions to it.

. /

The Australian National University




Manton: Differential and Algebraic Geometry in Signal Processing

~

Part III: A Key Problem

Computers can only do additions, subtractions, multiplications,
divisions and “if” statements. (Algebraic geometry!)

The general signal processing problem is to take a vector x as
input and return a vector y as output, where y is related to x

according to some rule.

The key question is, given an upper bound on the allowed
complexity of the computation, what is the best “conditional

polynomial approximation” to this rule?

A fundamental example is the non-linear projection problem.
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Non-Linear Projection

Let X C R™ be a reasonable set (e.g. manifold or algebraic
variety).

Given y € R", compute arg min ¢ x || — y||.

We pose the problem: find polynomials g1, - - -, gr of bounded

degree such that ¥ = argmingcg, (4, .gx (1)} [T — Y| closely

approximates the true rule ¥ = arg min,cx ||z — y||.

For example, assume that y = f(x) + n where n is noise. If it is
the case that we can easily recover x from y if n = 0 (often f adds
a lot of redundancy), then the main computational challenge is to
compute the projection of y onto the image of f. Alternatively,
we seek to approximate arg min, || f(x) — y|| as above.
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Conclusion

e Traditionally, signal processing problems were often solved by

various linearisation techniques.

e Certain non-linear problems can be tackled directly using
differential or algebraic geometry though.

e Not only do these areas of mathematics lead to better signal
processing algorithms in some cases, but sometimes signal
processing problems motivate new, theoretical questions to be

asked in mathematics.
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