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Motivation

I’m Interested in Radar. . .
Group representation theory provides a better understanding of
the inherent limitations of the performance of a radar system.

I’m Interested in Group Representation Theory. . .
Studying radar leads one to the Heisenberg group, the
Stone-von Neumann Theorem, the Bargmann-Segal
representation, Hermite and Laguerre polynomials, and more.
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Radar

RAdio Detection And Ranging
An electronic device designed to detect objects, and calculate
their distance and/or speed.
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How a Radar Works
Measuring Distance

The radar transmits a pulse and starts a timer.

We assume the pulse hits an object and is reflected.
When the reflected pulse arrives back at the radar, the
timer is stopped.
A simple calculation involving the speed of light and the
time taken for the pulse to return enables the distance from
the radar to the object to be determined.
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How a Radar Works
Measuring Velocity

The radar, located at the origin, transmits a sinusoid
s(t) = sin(2πft).

At time t , assume a moving object is at position x(t) = vt .
Assume units are such that the speed of light is 1.
(Distances are measured in units of time, the time needed
for light to travel that distance. Velocities are measured in
multiples of the speed of light.)
The reflected signal measured at the origin is
r(t) = sin

(
2π 1−v

1+v ft
)

. (Relativistic effects neglected.)

By computing the change in frequency (Doppler effect), the
speed of the object can be calculated.
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Pulse Design

The received signal will always be corrupted by noise.
To measure distance accurately in the presence of noise,
want the pulse to be localised in time.
To measure speed accurately in the presence of noise,
want the pulse to be localised in frequency.
Moreover, there are practical limitations on the bandwidth
and duration of a pulse.
What is the best pulse to use?
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Narrowband Pulse

Transmit a pulse w(t) modulated onto a much higher
carrier frequency: s(t) = w(t) sin(2πfc t).
If it hits an object at distance d with speed v , then
approximately w(t) becomes w(t − 2d) and the frequency
fc becomes 1−v

1+v fc ≈ (1− 2v)fc .
After demodulation (and working in the complex domain),
the received signal is r(t) = w(t − 2d)e−4πivfc t .

Given a noisy version of r(t), estimate d and v .
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How to Estimate Range and Doppler

Given r(t) = w(t − 2d)e−4πivfc t + n(t) where n(t) is noise.
To estimate d and v , we correlate (“compare”) r(t) with
u(t ; d ′, v ′) = w(t − 2d ′)e−4πiv ′fc t .

C(d ′, v ′) =

∣∣∣∣∫ ∞

−∞
r(t)u(t ; d ′, v ′) dt

∣∣∣∣
By plotting the intensity of C(d ′, v ′) on the (d ′, v ′) plane,
the point (d ′, v ′) where C(d ′, v ′) is the largest can be found
visually. This is our estimate of the distance and speed of
the object.

Ideally we want C(d ′, v ′) to be a sharp pulse centred on
(d , v). How do we design the pulse w(t) to achieve this?
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The Ambiguity Function

Definition
Given two waveforms w(t), v(t), (one form of) the radar
ambiguity function is

Aw ,v (t , f ) =

∫ ∞

−∞
w(τ)e2πifτv(τ − t) dτ.

The interpretation is that we transmit the waveform w(t), it
bounces off a stationary object located at the radar, hence
we receive w(t). We correlate w(t) with a time and
frequency shifted version of v(t), forming Aw ,v (t , f ).
If |Aw ,w (t , f )| is a sharp peak centred at the origin, then
w(t) is a good waveform.
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The Ambiguity Function
Questions

What does the set of all Aw ,w look like, where w ∈ L2(R)?
How close can Aw ,w be made to a sharp peak?
What if the set of possible w is restricted to being
“implementable in practice”?

To attempt to answer these questions, we can ask:
Are any symmetries present? (Given that A(t , f ) is an
ambiguity function, for what functions α : R2 → R2 is it true
that A(α(t , f )) is also an ambiguity function?)
Is there an orthonormal basis w1, w2, · · · of L2(R) such that
Awi ,wi are “nice”?
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A Suggestive Expression for the Ambiguity Function

Let 〈·, ·〉 denote the inner product on L2(R):

〈w , v〉 =

∫ ∞

−∞
w(t)v(t) dt .

Let ρ(t ,f ) : L2(R) → L2(R) denote the unitary operator
ρ(t ,f )(v)(τ) = e−2πifτv(τ − t).
Then Aw ,v (t , f ) = 〈w , ρ(t ,f )v〉.

If ρ were a group representation of R2 then A would be a
special function on R2.
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Representations

We consider R2 in ρ : R2 × L2(R) → L2(R) as a group (the
additive group).
For g ∈ R2, ρg is a unitary operator on L2(R), i.e. it belongs
to the unitary group.
A (continuous) homomorphism from a (topological) group
to a unitary group is a unitary representation.

However, ρ(t+t ′,f+f ′) = e−2πif ′tρ(t ,f )ρ(t ′,f ′), so it fails to be a
representation only in that there is the scalar e2πif ′t

present.
In fact, it is a multiplier representation.
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Multiplier Representations

A multiplier is a Borel map σ : G ×G → T (T is group of
complex numbers with magnitude 1) satisfying the cocycle
condition σ(g1, g2)σ(g1g2, g3) = σ(g1, g2g3)σ(g2, g3) and
the normalisation σ(1, 1) = 1.
A multiplier representation is a Borel-measurable map ρ
from G to the unitary group of some Hilbert space that
satisfies ρg1g2 = σ(g1, g2)ρg1ρg2 for some multiplier σ.
Note the cocycle condition is natural: ρ(g1g2)g3

= ρg1(g2g3)

hence σ(g1g2, g3)σ(g1, g2)ρg1ρg2ρg3 =
σ(g1, g2g3)σ(g2, g3)ρg1ρg2ρg3 .
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Multiplier Representations Are Natural

The theory of multiplier representations is essentially the
theory of projective representations. (Cohomologous
multipliers have essentially the same representation
theory.)
If one uses “Mackey analysis” to construct ordinary
representations of a (locally compact) group G, one needs
to consider projective representations of subgroups of G.
If we extend the Mackey analysis to construct projective
representations, then we still only have to consider
projective representations of subgroups of G.
Hence, projective representations (and thus multiplier
representations) form a natural completion of the class of
ordinary representations. Besides, radar theory shows
they should exist!
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The Heisenberg Group
Multiplier Representations Are Representations Of A Larger Group

Let ρ be a σ-representation of a group G.

Form a new group G̃ whose elements are pairs [g, z] with
g ∈ G and z ∈ T , and [g, z][g′, z ′] = [gg′, zz ′σ(g, g′)].
The group G̃ is a central extension of G by the group T .
Then π([g, z]) = zρg is an ordinary representation of G̃.

For the ρ in radar, G̃ is the Heisenberg group.
There is an exact correspondence between the
σ-representation theory of G and the ordinary
representation theory of those representations of G̃ that
restrict on the central subgroup T to be the
homomorphism [g, z] → zI.
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Two Key Theorems

Stone-von Neumann Theorem
The σ-representation ρ is irreducible, and it is the unique
irreducible σ-representation of R2 up to equivalence.

Moyal’s Identity

〈Au,v , Au′,v ′〉L2(R2) = 〈u, u′〉〈v , v ′〉

which implies the “Heisenberg uncertainty principle”

‖Aw ,w‖L2(R2) = ‖w‖2.

Indeed, Aw ,w (0, 0) = ‖w‖2 but this is also its L2-norm, hence
Aw ,w has considerable spread.
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The Bargmann-Segal Representation

Radar gives us a σ-representation of R2 on L2(R).
Consider instead the (reproducing kernel) Hilbert space of
entire functions a(z) =

∑∞
n=0 anzn satisfying∑

n n!|an|2 < ∞, with inner product 〈a, b〉 =
∑

n n!anbn.
An orthonormal basis is zk/

√
k ! for k = 0, 1, · · · .

We can write down an explicit σ-representation of R2 on
this new space. It is irreducible, hence equivalent to the
σ-representation on L2(R).
Moreover, the resulting isometry between the two Hilbert
spaces maps the Hermite functions in L2(R) to zk/

√
k !.

Hence, this is a more convenient representation to use if
Hermites are involved.
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Ambiguity Functions of the Hermites

Let vn denote the nth Hermite function, which up to scale is
e−t2/2Hn(t) and Hn(t) is the nth Hermite polynomial.
We wish to calculate Avn,vm . Very difficult to do from first
principles.
By using the Bargmann-Segal Representation instead, can
deduce that the Avn,vm are the Laguerre polynomials.

If we weren’t thinking of Avn,vm as 〈vn, ρvm〉 then we
wouldn’t have thought to try the Bargmann-Segal
representation to simplify the calculations.
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Symmetries of Ambiguity Functions (I)

(We change to an equivalent multiplier ν which only affects
the phase of Av ,w .)
We want to look for symmetries: Find functions α such that
i) Av ,w (α(t , f )) is a valid ambiguity function (= Av ′,w ′(t , f )),
or ii) Av ,w (α(t , f )) = Av ,w (t , f ).

Av ,w (α(t , f )) = 〈v , ρα(t ,f )w〉. If there exists a unitary
operator U(α) such that ρα(t ,f ) = U(α)−1ρ(t ,f )U(α) then
Av ,w (α(t , f )) = AU(α)v ,U(α)w (t , f ), achieving (i). Moreover,
(ii) is achieved if U(α)v = λv and U(α)w = λw for some
λ ∈ T .
The group of continuous automorphisms α which preserve
ν, i.e. ν(α(t , f ), α(t ′, f ′)) = ν((t , f ), (t ′, f ′)), is precisely
SL(2, R).
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Symmetries of Ambiguity Functions (II)

Hence, if α ∈ SL(2, R) and ρ is an irreducible
ν-representation of R2, then ρ ◦ α is also an irreducible
ν-representation.

By the Stone-von Neumann theorem, ρ ◦ α must be
equivalent to ρ.
Hence, there exists a unitary operator U(α) such that
ρα(t ,f ) = U(α)−1ρ(t ,f )U(α), as required!
Moreover, the map α → U(α) is a projective representation
of SL(2, R).
It lifts to a unitary representation of the double covering

˜SL(2, R) of SL(2, R) called the metaplectic representation.
This fact has not really been exploited in radar theory yet.
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Summary

A mathematical study of radar quickly leads to interesting
and deep questions in group representation theory.
The ambiguity function Aw ,w associated with a waveform
w(t) tells us how good the waveform is at locating an
object.
The connection is that Aw ,w (t , f ) = 〈w , ρ(t ,f )w〉 where ρ is a
multiplier representation of R2.
Although much has been done, it is likely very deep results
in representation theory will lead to new results in radar
theory.
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