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Abstract

Part I of this two-part paper formulated the precoder design problem as an optimisation problem and solved it with respect
to a worst case criterion. Part II studies a similar optimisation problem but with respect to a criterion measuring average
performance. A stochastic optimisation algorithm is proposed for solving this problem. For special cases, closed form solutions
are also given. These results indicate linear precoders reduce the e7ects of frequency distortion caused by multipath channels
but are powerless to counteract additive white Gaussian noise. The conclusion is linear precoders should introduce only a
small amount of redundancy and be used in conjunction with an error correcting code capable of combatting additive noise.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Redundant linear precoders [4,5,9,17,20,24] some-
times in conjunction with error correcting codes
(ECC), have been proposed for transmitting digital
data over multipath channels. This paper takes a step
closer to resolving two open issues: how best to de-
sign the linear precoder and what sort of ECC should
be used in conjunction with the linear precoder?
Part I [12] argued the trace of a certain Cramer–

Rao Bound matrix, denoted tr{R(h)} since it depends
on the channel h, measures the intrinsic performance
of a precoder, meaning it refers to the performance
under the idealistic assumptions that each block of
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data is processed in isolation and a suJciently pow-
erful ECC coupled with an optimal maximum likeli-
hood detector with perfect knowledge of the channel
is used. This paper optimises E[tr{R(h)}] where ex-
pectation is with respect to the random channel h. It is
shown that optimal solutions, called minimum mean
square error (MMSE) precoders, reduce the e7ects of
frequency distortion caused by multipath propagation.
In other words, on the per-block basis considered here,
a MMSE linear precoder makes the multipath channel
resemble an additive white Gaussian noise (AWGN)
channel. It is therefore appropriate to use an ECC
designed for AWGN channels in conjunction with a
MMSE linear precoder, as illustrated in Fig. 1. It is
candidly stated though that Fig. 1 is not an optimal
coding solution but a compromise between design sim-
plicity, computational complexity and performance. It
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Fig. 1. The proposed two-stage coding scheme for communications
over multipath channels. The MMSE linear precoder reduces the
e7ects of multipath by spreading the symbols in the frequency
domain. The outer ECC protects against additive noise.

is also emphasised that the use of a MMSE precoder
in Fig. 1 may not be suitable if the ECC codes over
multiple blocks; see [12, Section 2.1].
The inclusion of the scheme in Fig. 1 is merely to

illustrate several theoretical Lndings. Rather, the main
contributions of this paper are:

• The derivation of a stochastic optimisation algo-
rithm for computing MMSE linear precoders.

• The derivation of closed form expressions for
MMSE linear precoders in special cases.

• The conclusion that linear precoders cannot combat
AWGN and should therefore introduce only a small
amount of redundancy and be used in conjunction
with an AWGN combatting ECC.

To put these contributions in perspective, the cur-
rent status of the linear precoder design problem
for multipath channels is summarised. Zero padded
(ZP) systems [21] (such as trailing zero orthogonal
frequency division multiplex systems and ZP only
systems), which append a sequence of zeros to each
transmitted block, have been shown to work better
than simple ECC [22]. This suggests performance
can be enhanced further by using a linear precoder
introducing more redundancy. Although several de-
sign criteria for such redundant linear precoders were
proposed in [17,18,22], no satisfactory algorithms for

Lnding optimal precoders under these criteria were
given. This may have been the motivation for ran-
domly generated precoders being considered in [4].
The stochastic optimisation algorithm in Section 3.3
is believed to be the Lrst algorithm capable of Lnding
optimal precoders for random channels. Moreover,
optimal precoders di7er substantially from the ran-
domly chosen ones in [4]. Fig. 4 is a histogram of the
MSE of 1000 randomly generated isometric precoders
[4] of size 21×15, showing a mean of 1.76 and a stan-
dard deviation of 0.02. By comparison, the optimal
isometric precoder found by the algorithm in Section
3.3 has a MSE of 1.60, which is 8 standard deviations
away from the mean. As the redundancy increases,
the relative di7erence between random and optimal
precoders appears to increase; for isometric precoders
of size 43× 15, the minimum MSE was 150 standard
deviations away from the mean. This suggests good
precoders cannot be constructed at random.
Other related work includes [9] and [19] where op-

timal linear precoders for known channels were pro-
posed. This is a special case of the problem considered
here because a random channel reduces to a known
channel if it is constant with probability one. Section
4 compares the results in [9,19] with the results here.

Other approaches to the channel coding problem
are taken in [2,8,23] to name just a few. Since these
approaches exploit the ergodic nature of the random
channel by spreading the source symbols over time,
they are likely to perform better than the scheme in
Fig. 1. It is therefore mentioned again that the present
paper focuses on the case when the source symbols
are broken into short blocks (relative to the channel
coherence time) and each block is separately encoded
and transmitted; see [12, Section 2.1].
The outline of this paper is as follows. Section 2

elaborates on the precoder design problem formulated
in Part I, placing more emphasis on ZP systems be-
cause the distinction is more important here than in
Part I. Section 3 derives a lower bound on the average
performance of a linear precoder operating over a ran-
dom channel. Closed form expressions for precoders
meeting this lower bound are given. An algorithm for
LndingMMSE precoders in situations where the lower
bound cannot be met is also presented. For complete-
ness, Section 4 compares MMSE precoders with other
optimal precoders when the channel is known. The
implications of the theoretical results in Parts I and II
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are discussed in Section 5 and compared with existing
results in the literature. Section 6 concludes the paper.

2. The linear precoder design problem

This section complements the formulation of the
linear precoder design problem in Section 2 of Part I
[12]. Minor notational changes are made to accommo-
date the greater emphasis placed here on ZP systems.

2.1. Block transmission systems

Two linear block transmission systems have re-
ceived considerable attention in the literature; orthog-
onal frequency division multiplex (OFDM) systems
and ZP systems [21]. This paper considers only these
systems because a cyclic preLx or zero padding is re-
quired if the system is to have a reasonable MSE over
almost any channel [10,14,12]. Fortuitously, using a
cyclic preLx or zero padding also results in a mathe-
matical simpliLcation of the precoder design problem
because it leads to a natural convex geometry [11,12].
A cyclic pre7xed system breaks the source symbols

{sk}∞k=−∞ into blocks s(i) = [sip; sip+1; : : : ; sip+p−1]T

∈Cp of length p. A linear precoder matrix P ∈Cn×p
(where n¿p) then encodes each block. Finally,
assuming the system operates over a Lnite impulse
response (FIR) channel h = [h0; : : : ; hL−1]T ∈CL of
length at most L, a cyclic preLx of length L − 1 is
added to each encoded block Ps(i). The ith received
block is thus

y(i) =H(cp)Ps(i) + n(i) ∈Cn; (1)

where H(cp) is the n × n circulant matrix whose
Lrst row is [h0; 0; : : : ; 0; hL−1; : : : ; h1] and n(i) ∈Cn is
AWGN.
A ZP system is deLned analogously to a cyclic pre-

Lxed system except a sequence of L − 1 zeros is ap-
pended to each transmitted block instead of a cyclic
preLx. The ith received block is thus

y(i) =H(zp)Ps(i) + n(i) ∈Cn+L−1; (2)

where H(zp) is the (n + L − 1) × n lower triangu-
lar Toeplitz matrix with Lrst column [h0; h1; : : : ; hL−1;
0; : : : ; 0]T and n(i) ∈C(n+L−1) is AWGN. Observe the

received vector y(i) is longer than the transmitted vec-
tor Ps(i), a consequence of the receiver not having to
discard the guard interval as in a cyclic preLxed sys-
tem [13,21].
To obtain a simple yet meaningful measure of the

accuracy with which s can be recovered from y, it
is assumed throughout that the receiver (but not the
transmitter) has perfect knowledge of the channel h. In
this case, and dropping the block index i, the maximum
likelihood estimate (MLE) of s given y in (1) is

ŝ = (PHHH
(cp)H(cp)P)−1PHHH

(cp)y: (3)

This is also the minimum variance unbiased esti-
mate of s, and moreover, its error covariance matrix
achieves the Cramer–Rao Bound. Indeed, the error
covariance matrix is

R(h) = E[(ŝ − s)(ŝ − s)H] (4)

= (PHHH
(cp)H(cp)P)−1: (5)

The ith diagonal element of R(h) is the lowest possi-
ble variance with which the ith source symbol can be
estimated without any bias.
For reasons given in Part I, this paper uses the

Cramer–Rao Bound (PH
P−1) to measure the in-
trinsic performance of the linear precoder P where

=HH

(cp)H(cp) for a cyclic preLxed system and 
=
HH

(zp)H(zp) for a ZP system. Throughout, h and 
 are
both referred to as the channel.
A ZP system is best studied via its associated cyclic

preLxed system [13]; for any ZP system using the
n×p precoder P, there exists a cyclic preLxed system
using the (n+ L− 1)× p precoder P such that both
systems have identical performance, that is,

(PHHH
(zp)H(zp)P)−1 = (PHHH

(cp)H(cp)P)−1 (6)

holds for all channels h.

3. MMSE linear precoders for random channels

The per-symbol performance of a linear precoder
P ∈Cn×p operating over a random channel 
 is de-
Lned as

f(P) =
1
p
E [tr{(PH
P)−1}]: (7)
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Part I [12, Section 2] explains why the trace is used in
(7) and 1=p normalises the total MSE to a per-symbol
MSE, thus allowing comparisons between precoders
of di7erent sizes. The probability distribution of h, and
thus of 
, is arbitrary unless otherwise stated. Two
examples are h ∼ N (0; I) if nothing is known about
the channel and h ∼ N ( Oh; �2I) if an estimate Oh of
the channel h, accurate to within a variance of �2, is
somehow available.
Since tr{(PH
P)−1} scales as ‖h‖−2 and the dis-

tribution h ∼ N (0; I) is symmetric, evaluating f(P)
when h ∼ N (0; I) is equivalent to evaluating it when
h is uniformly distributed on the unit ball ‖h‖2 =
1. Therefore, rather than studying a Rayleigh fading
channel h ∼ N (0; I), it suJces to study a normalised
Rayleigh fading channel obtained by Lrst sampling
from a N (0; I) distribution and then normalising the
result (h := h=‖h‖). Moreover, for any reasonable
probability distribution, there exists a distribution on
the unit ball such that evaluating f(P) with respect to
either distribution gives the same answer. This moti-
vates the Lrst assumption below; the second is required
to rule out channels for which one or more elements
of h are constant with probability one.

A1 The random channel h is such that ‖h‖=1 almost
surely.

A2 The support of 
=HH
(cp)H(cp), deLned to be the

set of all 
 having non-zero probability of occur-
ring, contains a convex set of the largest possible
dimension. (For a length L channel having unit
norm, the largest dimension is 2(L − 1); this is
proved in [11] but can be deduced also from the
proof of Theorem 6 in Part I.)

It is re-iterated (A1) is not restrictive in any sense.

3.1. Performance bounds

This section uses the convexity of f(P) in (7) to
derive bounds on the performance of a MMSE linear
precoder.

Theorem 1. The function f(P) in (7) satis7es the
lower bound

f(P)¿
1
p
tr{(PH O
P)−1}; O
= E[
] (8)

in general. Furthermore, if (A1) and (A2) hold,
equality holds in (8) if and only if tr{(PH
P)−1} is
constant with probability one.

Proof. Since g(
)=tr{(PH
P)−1} is a convex func-
tion [12], E[g(
)]¿ g(E[
]). Furthermore, equality
holds if and only if g(
) is an aJne function almost
surely. The proof of Theorem 7 in Part I shows g(
)
is strictly convex unless it is constant. The proof now
follows since (A1) and (A2) hold.

Recall from Part I that P is called an isometric pre-
coder if PHP = I .

Corollary 2. Over a normalised Rayleigh fading
channel, no isometric precoder has a per-symbol
MSE better than unity, that is, f(P)¿ 1.

Proof. Since PHP=I and O
=I; f(P)¿ 1 in (8).

Theorem 3. Assume the length L random channel h
satis7es (A1) and (A2). A necessary condition for
f(P) to achieve the lower bound in (8) is for n¿pL
in a cyclic pre7xed system, or for n¿pL − L +
1 in a ZP system. Another necessary condition is
PH
P−1 = I for any channel h having unit norm.

Proof. Consider Lrst a cyclic preLxed system.
If equality holds in (8) then Theorem 1 states
tr{(PH
P)−1} is constant with probability one. Pre-
coders satisfying this property are called uniform
precoders in Part I and it was proved the necessary
conditions for a precoder to be uniform are as given
here. For ZP systems, if P achieves the lower bound
in (8) then the associated cyclic preLxed system P̃ in
(6) must also achieve the lower bound. Since P̃ has
L− 1 more rows than P, the theorem follows.

Since (PH
P)−1 is the error covariance matrix at
the output of the linear equaliser (3) depicted in Fig.
1, if (PH
P)−1 = I for all channels h having unit
norm then the precoder has eliminated the frequency
distortion caused by the memory of the channel. Part
I calls such precoders strictly uniform.
It is reasonable to expect the MSE of a MMSE lin-

ear precoder to decrease as the amount of redundancy
increases. For n × p MMSE linear precoders, it is
straightforward to prove the MSE cannot increase if
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p decreases while n stays Lxed. However, if p is held
Lxed and n increases (such as in Fig. 5), the size and
hence the geometry of the channel 
 changes. It is
therefore diJcult to prove (and may not be true) that
increasing n by one causes the MSE to decrease. How-
ever, since the next section shows the lower bound in
(8) is achievable if n is suJciently large, it is clear
the MSE must decrease if n is increased suJciently.

3.2. Precoders achieving the lower bound

Theorem 4 is analogous to Theorem 11 in Part I.
Its trivial proof is omitted.

Theorem 4. For any cyclic pre7xed system operat-
ing over a length L channel, precoders of the form

P = Ip ⊗ e1; (9)

where p is an arbitrary positive integer, Ip is the
p×p identity matrix, ⊗ is Kronecker’s product and
e1 is the length L column vector [1; 0; : : : ; 0]T, satisfy
(1=p)tr{(PH
P)−1}=(1=n)tr{
}. Thus (9) achieves
the lower bound in (8) regardless of the probability
distribution of the channel. Furthermore, the amount
of redundancy meets the lower bound in Theorem 3.
For a ZP system, any precoder obtained by omitting
the last L − 1 rows of a precoder in (9) also meets
both bounds with equality.

Precoders of the form (9) transmit L − 1 zeros af-
ter each symbol and are therefore unattractive coding
schemes. The importance of Theorem 4 is it gives the
limiting form of MMSE linear precoders as n=p→ L.

3.3. An algorithm for computing MMSE precoders

This section derives an algorithm for computing
MMSE linear precoders. The algorithm converges to
a local minimum of f(P) in (7) subject to the peak
power constraint PHP = I . (The algorithm is readily
modiLed to use the average power constraint {PPH}=
p instead.) Although the theory only guarantees a lo-
cal minimum is found, empirical evidence suggests
this is not a problem in practice.
The diJculty in minimising E[tr{(PH
P}] is the

expectation does not have a closed form expression
in general. It was proposed in [17] to approximate the
expectation by a Lnite summation over a set of test

channels and apply the optimisation technique in [15].
This section a more natural approach based on the
theory of stochastic optimisation [1].
Stochastic gradient algorithms replace the gradient

of the cost function by a stochastic approximation.
Under mild conditions [1], a cost function of the form
E[g(P;
)], where expectation is with respect to 
, is
minimised by the iteration

P(k+1) = P(k) − 1
k
@g(P;
(k))

@P

∣∣∣∣
P=P(k)

;

k = 1; 2; : : : ; (10)

where 
(k) is a sequence of independently generated
random realisations of the channel 
 and 1=k is inter-
preted as a decreasing step size. The decreasing step
size means the trajectory of (10) eventually “follows
closely” the trajectory of the associated ODE [1]
dP
dt

= E
[
−@g(P;
)

@P

]
: (11)

Swapping the expectation and partial derivative oper-
ators shows (11) is a gradient Uow converging to a
local minimum of E[g(P;
)], as required. This jus-
tiLes interpreting the partial derivative term in (10)
as an approximation of the true gradient of the cost
function E[g(P;
)].
Choosing g(P;
) = tr{PH
P} in (10) leads to an

algorithm for constructing MMSE linear precoders
if the constraint PHP = I is enforced. This is done
[1] by constraining the gradient to lie in the tangent
space of the surface PHP = I and projecting P back
onto this surface at each iteration. As shown in [15],
the projection is accomplished by replacing P with
its “Q-Factor” qf{P} deLned as follows. If P has p
columns and its QR decomposition [6] is P=QR then
qf{P} is the matrix formed from the Lrst p columns
of the unitary matrix Q. (This is actually a projection
onto a Grassmann manifold but since f(P) satisLes
f(PU ) =f(P) for any unitary matrix U , it is the ap-
propriate projection to use [15].)

Algorithm 5 (MMSE linear precoder). The follow-
ing algorithm produces a sequence of isometric
precoders P(k) converging to a local minimum of
E[tr{(PH
P}].

1. Initialise P(1) to a randomly chosen isometric ma-
trix and set k := 1.
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2. Generate a channel 
 at random. (See Section 2
for the deLnition of 
.)

3. Calculate the stochastic steepest descent direction
G := 
P(k)((P(k))H
P(k))−2.

4. Perform the projection G := G − P(k)(P(k))HG.
5. Take a stochastic descent step P(k+1) := P(k) +

(1=k)G.
6. Renormalise the columns of P(k+1) by setting
P(k+1) := qf{P(k+1)} (see above paragraph).

7. Set k := k + 1 and go to step 2.

Explanatory notes: The matrix G in Step 3 is the
gradient of −tr{(PH
P)−1}. The projection in Step 4
ensures the gradient lies in the tangent plane of the
Grassmann manifold. Step 6 performs a numeri-
cally stable Gram–Schmidt orthogonalisation on the
columns of P and is equivalent to projecting P onto
the Grassmann manifold. See [15] for details.

Remark. The convergence rate of stochastic gradient
algorithms can be speeded up by stochastic averaging
techniques [7, Section 11]. This is not considered here
because MMSE precoders are usually constructed of-
Uine and a fast convergence rate is not essential.
In practice, it is suggested Algorithm 5 is Lrst run

for ten thousand or so iterations with P(1) equal to the
pseudo-identity matrix and the MSE E[tr{PH
P}] of
the resulting precoder evaluated by Monte Carlo sim-
ulation. Then Algorithm 5 can be run several more
times, each time with P(1) randomly chosen. The pre-
coder having the smallest MSE is the one ultimately
chosen. Choosing a channel distribution satisfying
(A1) improves convergence.
Empirical evidence suggests the problem of local

minima is not severe. Choosing di7erent initial val-
ues for P(1) usually leads to precoders having similar
MSEs. Further evidence is given in Section 5.1. The
only explanation o7ered for the good performance of
Algorithm 5 is that by generating a di7erent random
channel at each iteration the precoder is moulded to
perform well over a wide range of channels. In fact,
Algorithm 5 can be interpreted as a learning algo-
rithm whereby the precoder learns the characteristics
of the random channel.

Extensions: The cost functions in [9,19] when the
channel is known extend to cost functions when the
channel is random by taking their expected values.

Algorithm 5 is readily modiLed to compute opti-
mal precoders with respect to these cost functions.
Moreover, Algorithm 5 can be used as an adaptive
algorithm for updating the precoder when more in-
formation about the channel (obtained via a reverse
link) becomes available to the transmitter.

4. MMSE linear precoders for known channels

Theorem 6 obtains an expression for MMSE linear
precoders operating over known channels. TheMMSE
linear precoder is compared with other optimal designs
proposed in [9,19]. (Further comparisons are made in
Section 5.3.)
The constrained minimum of tr{(PH
P)−1} has an

intuitively pleasing solution; Theorem 6 proves the
columns of P must span the principal subspace of 
.

Theorem 6. Let P be a matrix with p columns and
at least p rows. Let 
 be a Hermitian matrix with
eigenvalue decomposition 
=VH�V where � is a di-
agonal matrix with elements arranged in descending
order. Then tr{PH
P)−1} achieves its minimum sub-
ject to �max{P}6 1 when P is the sub-matrix formed
by the 7rst p columns of V .

Proof. Theorem 1 in Part I proves it suJces to con-
sider isometric precoders. The Lagrange multiplier
technique shows a necessary condition for P to min-
imise tr{(PH
P)−1} subject to PHP = I is for the
columns of P to span an invariant subspace of 
. It
is then straightforward to show the minimum occurs
when the columns of P span the principal subspace
of 
.

In [9] the optimisation problem di7ers from the one
here in two ways; the MSE of the precoder is not mea-
sured by tr{(PH
P)−1} but by the MSE at the output
of a biased MMSE equaliser, and furthermore, the av-
erage power constraint tr{PPH}6p rather than the
peak power constraint �max{P}6 1 is used. The so-
lution though also uses the principle subspace but the
less restrictive power constraint provides scope for ad-
ditional power allocation strategies within the princi-
pal subspace. Note that using the MMSE precoder in
Theorem 6 does not preclude such power allocation
strategies because the optimal precoder in [9] factors
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as PA where P is a MMSE precoder and A is a square
matrix performing the power allocation. (This is con-
sistent with the formulation in Part I that the ECC is
designed after the precoder is designed.) Therefore,
despite the di7erent criteria used, it can be said MMSE
precoders are equivalent to the precoders in [9] if the
channel is known.
In [19] the precoder is designed to optimise the mu-

tual information between the source symbols and the
channel output. Section 5.3 explains why this criterion
is not appropriate when coding over multiple blocks
is prohibited. Interestingly though, the optimal pre-
coders in [19] also use the principal subspace of the
channel and are thus equivalent to MMSE precoders
if the channel is known.

5. Discussion

Designing a good codeword constellation for a
Lxed 1 but unknown channel with memory is the un-
derlying problem in packet networks and time-critical
block transmissions described in Section 2.1 of Part I
yet is an open problem. It is shown in [22] that using
a linear precoder to shape the constellation yields
better performance than using a simple ECC. How-
ever, the asymptotic analysis in [4] suggests there
is no need for a linear precoder; standard ECCs are
adequate. This section o7ers a simple explanation for
these observations in addition to an interpretation of
the theoretical results in this paper.

5.1. Numerical examples

Part I argued the trace of the Cramer–Rao Bound
matrix tr{R(h)} measures the intrinsic performance
of a linear precoder. Figs. 2 and 3 corroborate this
assertion because they both show the BER decreases
as tr{R(h)} decreases. (That tr{R(h)} decreases as n
increases is seen from Fig. 5 and is discussed shortly.)
Moreover, as anticipated in Part I, the performance of
a linear precoder used in conjunction with a good ECC
(Fig. 3) is signiLcantly better than when no ECC is
used (Fig. 2).

1 Although the channel is quasi-stationary and changes from
block to block, because coding across multiple blocks is prohibited
in the problem formulation, the channel is e7ectively Lxed but
unknown for the duration of a single block.
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Fig. 2. Graphs of BER versus Eb=N0 (or SNR) for BPSK trans-
missions over a normalised Rayleigh fading channel of length 4
using MMSE linear precoders of various sizes at the transmit-
ter and a minimum variance unbiased equaliser at the receiver
followed by quantisation. The size of each precoder is n by 15,
where n ranges from 15 (top line) to 57 (bottom line).
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Fig. 3. Graphs of BER versus Eb=N0 (or SNR) for BPSK trans-
missions over a normalised Rayleigh fading channel of length 4
using a BCH (15,7) code followed by a MMSE linear precoder
at the transmitter and a minimum variance unbiased equaliser fol-
lowed by a nearest neighbour decoder at the receiver. The size
of each linear precoder is n by 15, where n ranges from 15 (top
line) to 57 (bottom line).

Section 1 referred to the histogram in Fig. 4 to illus-
trate Algorithm 5 Lnds precoders with a signiLcantly
smaller MSE than those generated at random; this not
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Fig. 4. Histogram showing the distribution of the MSEs of 1000
randomly generated isometric precoders of size 21× 15 as mea-
sured over a normalised Rayleigh fading channel.
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Fig. 5. Graph of MSE versus redundancy of MMSE linear pre-
coders operating over a normalised Rayleigh fading channel of
length 4. Here, the redundancy is deLned as n=15 where each
linear precoder is of size n by 15.

only demonstrates the correct functioning of Algo-
rithm 5 but raises the question of whether or not re-
sults based on randomly generated precoders [4] hold
for “optimal” precoders.
Fig. 5 also demonstrates the correct functioning of

Algorithm 5 by showing the MSE of precoders found
with the algorithm decreases as the redundancy in-

creases, as to be expected. Furthermore, the conver-
gence to the lower bound of unity is in perfect agree-
ment with the theory in Section 3.1.

5.2. Interpretation of results

From both a robust and a MMSE perspective, this
paper proved the best a linear precoder can do is con-
vert the multipath channel into an AWGN channel.
The performance cannot be reduced beyond this point.
That is to say, a linear precoder cannot o@er any pro-
tection against additive white Gaussian noise. This
observation is consistent with, but does not follow
from, the readily veriLable fact that a redundant linear
precoder reduces the capacity of an AWGN channel;
since Eb=N0 is constant, the capacity per symbol of the
linearly precoded channel is the same but the time it
takes to transmit each symbol is longer [3]. (See Sec-
tion 5.3 for a discussion on the relevance of channel
capacity though.) Therefore, a linear precoder should
be used in conjunction with an ECC capable of com-
batting AWGN. The substantial performance gains in
Fig. 3 over Fig. 2 corroborate this recommendation.
The following intuitive explanation is o7ered. In

the frequency domain, linear precoders spread the
spectrum in an orderly way [16]. This spreading re-
duces the e7ects of frequency distortion caused by
the memory of the channel. On the other hand, Shan-
non has shown ECCs designed for AWGN channels
must spread the symbols in the time domain. There-
fore, the best performance results when both types of
coding are present. (The best is if a codeword con-
stellation having both properties can be constructed;
the choice of a standard ECC followed by a linear
precoder should be viewed as either an interim or a
low complexity solution to this coding problem.)
The results also suggest the linear precoder should

introduce only a small amount of redundancy, that is,
(n− p)=L should be close to zero where n× p is the
size of the precoder matrix and the normalising con-
stant L is the length of the channel. (Since a length
L channel has at most L − 1 spectral nulls, L gives
an indication of the amount of frequency distortion
the linear precoder must overcome.) This is deduced
from Fig. 5 which shows the MSE initially decreasing
sharply as n increases but then tapering o7. Specif-
ically, because redundancy must be shared between
the linear precoder and the ECC, the best is to allo-
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cate just enough redundancy to the linear precoder to
let it combat the frequency distortion and to allocate
the remaining redundancy to the ECC for combatting
AWGN. The initial steep slope of Fig. 5 suggests pre-
coders with small values of (n−p)=L are a good com-
promise between combatting frequency distortion and
leaving redundancy available for the ECC.

5.3. Comparison with other approaches

5.3.1. Comparison of design criteria
In [4,9], the performance of a precoder is measured

by the MSE at the output of a biased MMSE equaliser
rather than at the output of the minimum variance un-
biased equaliser (3). This is because MMSE equalis-
ers generally have a better BER when followed by
per-symbol quantisation. However, this paper assumes
an optimal detector is used, in which case trading bias
for MSE reduction cannot improve the BER. Indeed,
Eq. (5) in Part I shows the covariance matrix R(h)
of (3), and not the covariance matrix of the MMSE
equaliser, directly inUuences the output of the optimal
detector.
Another performance measure [19] is the mutual in-

formation between a block of source symbols and the
corresponding channel output. However, mutual in-
formation is only meaningful if the ECC is permitted
to code over multiple blocks, thereby exploiting time
diversity [3]. Since coding over multiple blocks is for-
bidden in the problem formulation here, mutual infor-
mation is not an appropriate performance measure.

5.3.2. Comparison of conclusions
The results in this paper do not conUict with those

in [4,22]. The observation in [22] that linear precoders
o7er advantages over simple ECCs can be explained
by postulating it is more important to combat fre-
quency distortion using a linear precoder than it is to
combat AWGN with a simple ECC under the condi-
tions in [22]. The asymptotic analysis in [4] suggests
linear precoders are not needed. However, the analy-
sis assumes both n and p go to inLnity with n=p Lxed,
where n×p is the precoder’s size. This means n−p
goes to inLnity too, and in particular, the argument
in Section 5.2 that n − p should be small if the pre-
coder is to have any beneLt is not contradicted. It is
also mentioned that [4] considers random precoders
whereas Section 1 gives a numerical example showing

MMSE precoders di7er substantially from randomly
generated precoders.

6. Conclusion

This two-part paper studied the linear precoder de-
sign problem from a novel perspective. An intrinsic
performance measure was introduced and used to for-
mulate the precoder design problem as a constrained
optimisation. Optimal solutions were found and used
to gain a greater understanding of the strengths and
limitations of linear precoders. A stochastic optimi-
sation algorithm for constructing optimal linear pre-
coders operating over random channels was also pre-
sented. The main Lnding is linear precoders should
introduce a small amount of redundancy and be used
in conjunction with ECC capable of correcting errors
caused by additive white Gaussian noise.
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