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ABSTRACT

Motivated by applications in fuzzy control, robotics and vi-
sion, this paper considers the problem of computing the cen-
tre of mass (precisely, the Karcher mean) of a set of points
defined on a compact Lie group, such as the special orthog-
onal group consisting of all orthogonal matrices with unit
determinant. An iterative algorithm, whose derivation is
based on the geometry of the problem, is proposed. It is
proved to be globally convergent. Interestingly, the proof
starts by showing the algorithm is actually a Riemannian
gradient descent algorithm with fixed step size.

1. INTRODUCTION

A fundamental operation in signal processing and control
is averaging. For instance, given a set of noise corrupted
measurements, the signal to noise ratio is improved by aver-
aging. Geometrically, the measurements can be thought of
as points scattered around the true value and averaging com-
putes the centre of mass of these points. If the points don’t
lie in a flat space like Euclidean space though, but instead
lie on a curved space like the sphere — such as geographi-
cal locations marked on a globe of the world do — then the
averaging operator is generally more complicated.

On the sphere, or more generally any Riemannian man-
ifold M , one averaging operator is the Karcher mean [8] of
the points. Specifically, if d(·, ·) is the distance function on
M , the Karcher mean of the points Q1, · · · , Qk ∈ M is the
point X minimising

f(X) =
1

2k

k
∑

i=1

d2(Qi, X). (1)

This reduces to the usual averaging operator when M is a
Euclidean space. If M has positive curvature though (such
as if M is a sphere), there might not be a unique mini-
mum of (1). It is known though that as long as the points
Q1, · · · , Qk are not spaced too far apart, the global mini-
mum of (1) is unique [8, 9].
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The Karcher mean of points on a sphere has been stud-
ied, amongst other places, in [5], where it is shown the
sphere is relatively special. Indeed, the sphere is the only
compact manifold for which the Euclidean concept of cen-
tre of mass extends. (In Euclidean space, although the cen-
tre of mass and the Karcher mean correspond to the same
point, their definitions are different.)

Another well-known non-negatively curved and com-
pact space is the special orthogonal group

SO(n) =
{

X ∈ R
n×n : XT X = I, det X = 1

}

(2)

consisting of all orthogonal matrices with unit determinant.
(Every orthogonal matrix has a determinant of either 1 or -1,
so the special orthogonal group is the connected component
containing the identity matrix of the orthogonal group.) The
case n = 3 is especially well-known, since SO(3) is the set
of rotations acting on R

3. It has been studied in [13], and
applications requiring finding the Karcher mean include [1,
10, 12].

Despite the Karcher mean being a fundamental opera-
tion, the author is unaware of any general purpose algorithm
for computing the Karcher mean. For instance, no numeri-
cal algorithm for SO(3), much less SO(n), was given or
referenced in the recent study [13]. The contribution of
the present paper is to derive such a general purpose algo-
rithm for a special class of manifolds, namely compact Lie
groups (which include the special orthogonal group), and to
prove global convergence of said algorithm. Here, global
convergence is under the necessary proviso that the points
Q1, · · · , Qk are sufficiently close together; recall that if this
is not so, the Karcher mean is not well defined.

The reason for considering only compact Lie groups is
twofold. Firstly, the proposed algorithm exploits the natural
correspondence between a Lie group and its associated Lie
algebra. The algorithm also exploits the fact that compact
Lie groups, as opposed to more general Lie groups, have
non-negative curvature. Extending the algorithm to more
general Lie groups and other Riemannian manifolds will be
the topic of future study.

The reader is referred to [2, 4, 14] for general informa-
tion on Lie groups and Riemannian manifolds.



2. LIE GROUPS AND THE ALGORITHM

For the impatient reader, the proposed algorithm is stated up
front. In Algorithm 1, G denotes a compact Lie group and g

its corresponding Lie algebra. Recall that the Karcher mean
is defined to be the minimising X of (1).

If G = SO(n) then exp and log are the matrix exponen-
tial and principal matrix logarithm functions respectively.
Moreover, the standard Frobenius norm can be used in Step
3 of Algorithm 1 in this case.

Algorithm 1 Given points Q1, · · · , Qk ∈ G, compute the
Karcher mean X ∈ G.

1. Set X := Q1. Choose desired tolerance ε > 0.

2. Compute A := 1
k

∑k

i=1 log(X−1Qi).

3. If ‖A‖ < ε then stop.

4. Update X := X exp(A) and goto step 2.

Notes: i) exp denotes the Lie group exponential map from
G to g. Its inverse about the origin is denoted by log. It
is implicitly assumed Q1, · · · , Qk are sufficiently close to-
gether that X−1Qi remains in the domain of definition of
log. See Section 6 for conditions under which this is true.
ii) Any norm on the Lie algebra g can be used in step 3.
See Section 6 for more information. iii) In practice, nu-
merical errors can cause the iterate X to diverge from the
manifold G. This can be prevented by projecting the iterate
back onto the manifold after each iteration. For example, if
X = USV T is the singular value decomposition of a matrix
X ∈ R

n×n, then π(X), the Euclidean projection of X onto
SO(n), is given by π(X) = UV T ; see [11] for a proof.
Alternatively, projecting A onto the Lie algebra straight af-
ter step 2 appears to work well and is usually numerically
cheaper to compute. For SO(n), this is achieved by setting
A := (A − AT )/2.

An example of the performance of the algorithm appears
in the next section. The required concepts from Lie group
theory are now introduced.

2.1. A Metric Structure for Lie Groups

A Lie group G is simultaneously a smooth differentiable
manifold and a group, and moreover, the group operations
of multiplication and inversion are smooth mappings [3, p.
81]. The example used throughout this paper of a (com-
pact, connected, semisimple) Lie group is SO(n), defined
in (2). Multiplication and inversion on SO(n) are given by
standard matrix multiplication and inversion.

The distinguishing feature of a Lie group compared to
other manifolds is its symmetry. Perhaps the simplest (but
non-compact) Lie group is R

n with group multiplication
given by vector addition. In R

n, every point looks like every

other point, in that any neighbourhood N ⊂ R
n of a point

x ∈ R
n can be translated to a neighbourhood N − x about

the origin without altering the geometry.
The same is true on an arbitrary Lie group G, but due

to the non-commutativity, there are two different ways of
translating points, namely left translation and right transla-
tion. Left translation is the operation lY : G → G mapping
X to Y X , where Y ∈ G. Similarly, right translation rZ

maps X to XZ.
If the Karcher mean is to reflect the Lie group structure

then the Karcher mean must be left and right translation
invariant, meaning that for all Y ∈ G, the Karcher mean
of lY (Q1), · · · , lY (Qk) is lY (X), where X is the Karcher
mean of Q1, · · · , Qk, and similarly for right translation.
This is so if the distance function in (1) is itself bi-invariant.

There is a standard method of making a compact semi-
simple Lie group G into a Riemannian manifold in such a
way that the resulting distance function is bi-invariant. The
method can be extended to an arbitrary compact Lie group.
This is now explained.

Let G be a compact Lie group. Since it is a manifold, it
has a tangent space TXG associated with it about each point
X ∈ G. For example, thinking of SO(n) as a submanifold
of R

n×n, the tangent space TXSO(n) at X ∈ SO(n) is
identified with the vector space

TXSO(n) =
{

XA : A ∈ R
n×n, AT = −A

}

. (3)

Let I denote the identity element of G. (If G = SO(n)
then I is simply the identity matrix.) The tangent space
at I is called the Lie algebra of G and denoted by g. If
G = SO(n) then g = so(n) where so(n) is the space of
n × n skew-symmetric matrices. Note the dimension of
so(n), and hence of SO(n), is n(n − 1)/2.

Differentiating the left translation operator lY yields the
linear map (lY )∗ : TXG → TY XG sending U to Y U . Sim-
ilarly, (rZ)∗ : TXG → TZXG sends U to UZ. Given a
vector A ∈ g = TIG, it can be pushed forward using (lY )∗
to a vector in the tangent space about the point Y ∈ G. The
resulting vector field on G is called a left invariant vector
field.

The Lie bracket of two vector fields on a manifold is an
operation returning a vector field [15, p. 36]. When applied
to two left invariant vector fields on a Lie group, it returns a
left invariant vector field. Since a left invariant vector field is
specified uniquely by its value at the identity, the Lie bracket
induces an operation on the Lie algebra. On SO(n), the Lie
bracket of A, B ∈ so(n) is [A, B] = AB − BA.

Define the linear map adA : g → g by adA B = [A, B].
The Killing form of A, B ∈ g, denoted 〈A, B〉, is defined to
be

〈A, B〉 = tr {adA ◦ adB} . (4)

On so(n), 〈A, B〉 = −(n − 2) tr
{

BT A
}

. In this case, and
indeed for any compact semisimple Lie group, the Killing



form is negative definite. The Lie algebra of a compact Lie
group decomposes [7, Proposition 6.6] as a direct sum of its
centre and the derived group [g, g]. The latter is semisim-
ple. Therefore, after choosing an arbitrary negative definite
bilinear form on the centre of g, a negative definite bilinear
form can be defined on the whole of g by using the cho-
sen form on the centre and the Killing form on the derived
group.

Given a negative definite bilinear form on g, the inner
product of two tangent vectors U, V ∈ TXG can be defined
by

〈U, V 〉
X

= −c 〈(lX−1)∗U, (lX−1)∗V 〉 (5)

where c > 0 is an arbitrary constant. Alternatively, right
translation could have been used. The key feature of the
above choice of bilinear form involving the Killing form is
that left and right translation lead to the same inner product,
or in other words, 〈U, V 〉

X
is a bi-invariant metric. This

means the induced distance function is bi-invariant, as re-
quired. Note that on SO(n), the resulting metric structure
is

〈U, V 〉
X

= tr
{

V T U
}

, U, V ∈ TXSO(n). (6)

2.2. Geodesics and the Distance Function

In order to determine the distance function, it is necessary
to know what the curve of shortest distance between two
points looks like. Such curves are called geodesics, and
on compact manifolds, existence of a geodesic of shortest
length connecting any two points is assured. This leads to
the introduction of the Lie group exponential map.

A one-parameter subgroup is a smooth curve γ : R → G
satisfying: γ(0) = I , γ(s + t) = γ(s)γ(t) and γ(−t) =
[γ(t)]−1. Note γ′(0) is an element of g. In fact, the map
from a one-parameter subgroup γ to an element γ ′(0) of the
Lie algebra is a bijection. The inverse of this map is called
the Lie group exponential map and is denoted by exp : G →
g. That is, if A ∈ g then γ(t) = exp(At) is the unique one-
parameter subgroup with γ ′(0) = A. If G = SO(n) then
exp is the standard matrix exponential map.

It is a standard result that the geodesics of a Lie group
G equipped with a bi-invariant metric (5) are the curves
γ(t) = X exp(At), where X ∈ SO(n) and A ∈ so(n)
are arbitrary. It follows that the distance between the points
X and X exp(A), provided they are not so far apart that
there is a shorter geodesic connecting them, is

√

〈A, A〉 =
√

tr {−A2}. Thus, the squared distance between any two
points is

d2(X, Y ) = min
A

exp(A)=X
T

Y

〈A, A〉 . (7)

Let log denote the inverse of exp about the origin. Then,
provided X and Y are sufficiently close,

d2(X, Y ) =
〈

log(XT Y ), log(XT Y )
〉

. (8)

On SO(n), d2(X, Y ) = (−1/2) tr
{

[

log(XT Y )
]2

}

, with

log denoting the standard principal logarithm of a matrix.
How close X and Y need to be for (8) to be valid is dis-
cussed in Section 4. (On SO(n), the above formula is valid
globally.)

2.3. Derivation of The Algorithm

Algorithm 1 was derived as follows. A necessary condition
for X to be the Karcher mean is for the gradient of (1) to be
zero.

Lemma 2 The gradient of (1) is

gradf(X) = −
1

k
X

k
∑

i=1

log(X−1Qi). (9)

PROOF. Let expX : TXG → G denote the Riemannian
exponential map. Its relation to the Lie group exponential
map is expX(XA) = X exp(A). Theorem 1.2 of [8] im-
plies grad f(X) = (−1/k)

∑k

i=1 exp−1
X

Qi. The lemma
follows. 2

It is straightforward to deduce that grad f(X) = 0 if
and only if 1

k

∑k

i=1 log(X−1Qi) = 0. Geometrically, this
condition says that the ordinary centre of mass of the points
log(X−1Qi) for i = 1, · · · , k is at the origin of the Lie
algebra.

The second observation is that the Lie algebra serves
as the first order approximation of the Lie group about the
identity. Therefore, if the Qi are very close to the identity,
one would expect the Karcher mean to be approximately

exp
(

1
k

∑k

i=1 log(Qi)
)

.

These two observations motivated Algorithm 1. How-
ever, they do not on their own guarantee that Algorithm 1
actually converges. After presenting a numerical example,
the rest of this paper is concerned with proving Algorithm 1
is a globally convergent algorithm provided the Qi are all
within a certain distance of each other.

3. A NUMERICAL EXAMPLE

Three points Q1, Q2, Q3 ∈ SO(5) were generated at ran-
dom. Since SO(5) is a ten dimensional space, these points
are plotted as asterisks in Figure 1 by first mapping them to
the respective points log Q1, log Q2, log Q3 in the Lie alge-
bra and then projecting onto a two dimensional subspace.

To illustrate the curvature of SO(5), the geodesic tri-
angle formed by Q1, Q2, Q3 is also plotted. In Euclidean
space, the Karcher mean of three points can be found by
first drawing the triangle connecting the three points and
then drawing three lines, each from a vertex to the midpoint
of the opposite side. These three lines will meet at a single
point, the Karcher mean. In SO(5), a similar construction



can be undertaken, but in ten dimensions, these three lines
will not meet. Even when projected onto a two dimensional
subspace, Figure 1 shows these lines do not meet at a single
point.

Algorithm 1 is used to compute the Karcher mean of the
three points. The sequence of iterates is plotted in Figure 1
as circles. These circles appear to converge to the Karcher
mean after the second iteration. In finer detail, Figure 2
shows the norm of the gradient of the cost function f(X)
decreasing at a linear rate until machine precision is reached
on the 15th iterate.

4. CONVEXITY ON LIE GROUPS

The Lie group SO(2) is isomorphic to a circle, with dis-
tance measured by arc length. By considering two or more
equally spaced points around the circle, it becomes clear
that the global minimum of (1) is not unique in general.

Therefore, the result this paper aims for is that there ex-
ists a calculable radius r such that if Q1, · · · , Qi ∈ B(I, r),
the open ball of radius r centred at the identity of G, then the
Karcher mean exists, is unique, and Algorithm 1 converges
to it.

The first restriction on r comes from the need for log
in (8) to be well-defined. The radius of injectivity is, by
definition, the largest ρ such that exp is a diffeomorphism
from B(0, ρ) onto its image. Here, B(0, ρ) denotes the
open ball centred at the origin of g. In particular, r must
be such that B(I, r) is a subset of exp (B(0, ρ)). However,
exp (B(0, ρ)) = B(I, ρ), hence the requirement is simply
r ≤ ρ.

The second restriction is that B(I, r) be a convex set
and g(X) = d(I, X) be a convex function on B(I, r), and
indeed, the largest such r is called the convexity radius.
Here, a set Ω ⊂ G is convex if for any X, Y ∈ G there
is a unique geodesic wholly contained in Ω connecting X
to Y and such that it is also the unique minimising geodesic
in G connecting X to Y . (Such a set is called strongly con-
vex in [4].) A function f : Ω → R is convex if for any
geodesic γ : [0, 1] → Ω, the function f ◦ γ : [0, 1] → R is
convex in the usual sense, that is,

f(γ(t)) ≤ (1 − t)f(γ(0)) + tf(γ(1)), t ∈ [0, 1]. (10)

If strict inequality holds then f is strictly convex.
These two restrictions are quite standard for Karcher

means [4, 8]. It is not necessary though to use the same
metric to define the open balls above as the metric (6) used
to define the cost function (1). In fact, larger open balls can
be obtained by using “better” norms. This generalisation is
not pursued in full here though for reasons of space.

The third restriction is that f(X) in (1) be strictly con-
vex. Indeed, the convergence proof for Algorithm 1 is based

on showing it is actually a Riemannian gradient descent al-
gorithm applied to a strictly convex function.

5. JACOBI FIELDS AND BOUNDS

The previous section explained why there are restrictions
on how far apart the points can be if the Karcher mean is to
be unique and Algorithm 1 convergent. This section gives
closed form expressions for these restrictions. It is based
closely on the ideas and results in [6, 8].

Define on g the norm ‖A‖2 = 〈A, A〉, where the inner
product is the bi-invariant inner product constructed accord-
ing to the procedure in Section 2.1. By scaling the inner
product if necessary, it is assumed — call this assumption
(A1) — that the chosen inner product induces a norm satis-
fying the inequality

‖[A, B]‖ ≤ ‖A‖ · ‖B‖, A, B ∈ g. (11)

For instance, it can be shown (6) (evaluated at X = I) in-
duces a norm satisfying (11) if g = so(n).

Recall that the construction in Section 2.1 required an
arbitrary choice of an inner product on the centre of g. Be-
cause this choice does not affect the inequality (11), it is
necessary to make the further assumption (A2) that the in-
jectivity radius of exp restricted to the centre is at least π.
This is always achievable by scaling the chosen inner prod-
uct on the centre of g.

Under (A1) and (A2), Proposition 1.4 of [6] proves the
injectivity radius of exp is at least π.

Under (A1) and (A2), Theorem 3.5 of [6] proves the
convexity radius is at least π/2.

To enforce the third requirement that f(X) be strictly
convex, bounds on the eigenvalues of the Riemannian Hes-
sian of f(X) must be determined. As shown in [8], the
Hessian of f(X) can be expressed in terms of Jacobi fields.
Moreover, bounds on the Hessian are obtained by using
standard bounds on how much the curvature of the space can
affect these Jacobi fields. It follows immediately from the
definition of sectional curvature (see [2]) that, under (A1),
the sectional curvatures of G lie in the interval [0, 1/4]. This
knowledge is enough to apply the results of [8] to obtain the
required bounds. However, as the first step towards gener-
alising the results here to “better” norms (see Section 4), it
is shown how the results of [6] and [8] can be combined.

The Hessian of f(X) about the point X is found as
follows [8]. Let γ : (−ε, ε) → G denote a geodesic cen-
tred at X , that is, γ(0) = X . Let ci(s, t) be a family of
geodesics from Qi to γ(t), with ci(0, t) = Qi and ci(1, t) =
γ(t). This family induces a Jacobi field along the geodesic
ci(s, 0) from Qi to X . Let Ji(s) denote this Jacobi field
and J ′

i(s) its covariant derivative. Note J(0) = 0 and



Ji(1) = γ̇(0). Then

d2

dt2

∣

∣

∣

∣

t=0

f(γ(t)) =
1

k

k
∑

i=1

〈Ji(1), J ′

i(1)〉
X

. (12)

Bounds on the eigenvalues of the Hessian are found by
bounding 〈Ji(1), J ′

i
(1)〉

X
. Since only norms and not inner

products are considered in [6], the following readily verified
formula is required:

‖A‖ (‖A‖ − ‖B − A‖) ≤ 〈A, B〉 ≤ ‖A‖‖B‖. (13)

Lemma 3 Let r ∈ (0, π/2) and assume (A1) and (A2) hold.
If X, Q1, . . . , Qk ∈ B(I, r) then the eigenvalues of the Hes-
sian of (1) at X lie in the interval [r/ tan(r), 1].

PROOF. Define Ji(s) as above. A geodesic from Qi

to X has length less than 2r. It follows from [6, (2.3.2)]
that ‖J ′

i
(0)‖ ≤ ‖Ji(1)‖. Since Ji(1) = γ̇(0), (12) and

(13) imply d
2

dt2

∣

∣

∣

t=0
f(γ(t)) ≤ 〈γ̇(0), γ̇(0)〉

X
, proving the

largest eigenvalue is at most 1. Proposition 2.4 of [6] im-
plies ‖Ji(1) − J ′

i
(1)‖ ≤

(

1 − r

tan r

)

‖J(1)‖. Hence (12)

and (13) imply d
2

dt2

∣

∣

∣

t=0
f(γ(t)) ≥ r

tan r
〈γ̇(0), γ̇(0)〉

X
. 2

6. GLOBAL CONVERGENCE PROOF

The following lemma states that the Riemannian gradient
descent algorithm with unit step size is guaranteed to con-
verge if the eigenvalues of the Hessian are bounded away
from zero and are at most one. It can be proved by extend-
ing the known proof in the Euclidean case to the Rieman-
nian setting.

Lemma 4 Let M be a Riemannian manifold and f : M →
R a function whose Riemannian Hessian has all its eigen-
values in the interval [δ, 1] for some δ > 0. Let expx denote
the Riemannian exponential map about the point x ∈ M .
Then, for any x0 ∈ M , the sequence

xk+1 = expxk
(− gradf(xk)) (14)

converges to the unique global minimum of f . Moreover,
the distance from x to the minimum is bounded above by
δ−1‖ gradf(x)‖.

Somewhat surprisingly, given the way it was derived, it
turns out that Algorithm 1 is actually a Riemannian gradient
descent algorithm.

Theorem 5 (Global Convergence) Let G be a compact Lie
group made into a Riemannian manifold by choosing a bi-
invariant inner product on the Lie algebra (see Section 2.1).
Moreover, assume the inner product is such that (A1) and
(A2) of Section 5 hold. Assume Q1, · · · , Qk ∈ B(Y, r) for

some Y ∈ G and r ∈ (0, π/2). Then Algorithm 1 converges
to the unique Karcher mean of Q1, · · · , Qk. Moreover, if
the norm in Step 3 of Algorithm 1 is the norm induced by
the inner product on the Lie algebra then Algorithm 1 ter-
minates only when X is within a distance of tan r

r
ε of the

Karcher mean.

PROOF. Note first that by exploiting the bi-invariance of
the metric, it may be assumed without loss of generality that
Y = I .

Sections 4 and 5 ensure the Karcher mean exists and is
unique. In particular, Lemma 3 shows that f(X) is strictly
convex, implying it has a unique global minimum. (Exis-
tence and uniqueness of the Karcher mean is also proved in
Theorem 3.7 of [6].)

Recall that the Riemannian exponential map expX on G
is defined by expX(XA) = X exp(A). Lemma 2 shows
that − gradf(X) = XA where A is as in Step 2 of Al-
gorithm 1. Thus, Step 4 of Algorithm 1 is equivalent to
X := expX(XA) = expX (− gradf(X)). In particular,
Algorithm 1 is indeed a Riemannian gradient descent algo-
rithm with unit step size. The proof is completed by com-
bining Lemma 4 with the bounds on the Hessian obtained
in Lemma 3. 2

It is remarked the bound tan r

r
ε in Theorem 5 is identical

to the bound in [6, (3.7.1)]. The advantage of deriving it
here based on Lemma 4 is that it emphasises the origin of
the bound is merely the lower bound on the eigenvalues of
the Hessian, and not something more sophisticated.

It is also remarked that the constraint r < π/2 in The-
orem 5 is conservative. That is, for particular Lie groups,
it might be possible to prove Algorithm 1 continues to con-
verge for larger values of r.

Moreover, by exploiting further the ideas in [6], it is pos-
sible to replace the open ball B(Y, r) in Theorem 5 by one
with respect to a different norm. By an expedient choice
of norm, the volume of the open ball can be significantly
increased while still guaranteeing the convergence of Algo-
rithm 1.

7. CONCLUSION

This paper proposed a general purpose algorithm for com-
puting the Karcher mean of points on a compact Lie group.
By showing the algorithm is actually a Riemannian gradient
descent algorithm and then using Jacobi fields to compute
bounds on the Hessian of the cost function (1), it was proved
the algorithm is globally convergent provided the points are
contained in an open ball of a particular size.
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Figure 1: The three asterisks denote three points on SO(5).
All lines are geodesics. The outer ones connect the three
points together, forming a geodesic triangle. Each inner line
connects a vertex to the midpoint of its opposing side. In
Euclidean space, these inner lines always meet in a single
point, the point being the Karcher mean. In curved spaces,
as the figure shows, this is no longer true. The circles denote
successive iterates of Algorithm 1. Although twenty circles
are plotted, the circles have converged after the second iter-
ate.
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Figure 2: The norm of the gradient of the cost function (1)
is plotted against the iteration number of Algorithm 1. Note
the linear rate of convergence. Machine precision is reached
after 15 iterations in this example.


