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ABSTRACT

Traditionally, the majority of non-linear signal processing prob-
lems were tackled either by appropriate linearisations or by some
ad hoc technique. By contrast, linear signal processing problems
are routinely solved systematically by astute application of results
from linear algebra. This paper shows by example how differential
geometry provides the necessary tools and mindset for systemati-
cally solving certain non-linear problems commonly encountered
in signal processing.

1. INTRODUCTION

Linear functions on vector spaces (the most notable vector space
being R

n) commonly arise in signal processing and are invariably
dealt with using the machinery of linear algebra. Nonlinear differ-
entiable functions on R

n are amenable to differential calculus and
real analysis. (Sometimes though, there are more suitable tools
such as algebraic geometry.) A third type of function which can
arise in signal processing is a function defined on a more general
space than R

n, such as on a sphere or a torus (i.e., doughnut) in
the simplest of cases. Differential geometry is the study of such
functions.

Indeed, one way to motivate the development of differential
geometry is to ask for what spaces other than R

n can the ma-
chinery of differential calculus be extended to. Mathematicians
concluded the answer is manifolds. Roughly speaking, a manifold
consists of open sets of R

n glued together. (For a formal defini-
tion, see [4].) To visualise this definition, take a circle. The top
hemisphere consisting of all points with an angle strictly between
0 and π can be thought of as an open interval in R. The same goes
for the left, right and bottom hemispheres. The union of these four
“open sets of R” form a circle. Note that by necessity, some of
these open sets overlap; the left and top hemispheres overlap for
instance. Although this may sound meaningless on a first reading,
and is indeed totally inadequate as a formal definition of a mani-
fold, the key point to remember is that locally a manifold looks like
R

n whereas globally it doesn’t. For example, although in a neigh-
bourhood of a point on a circle, the circle looks like a segment of
R, if you travel in a “straight line” (a geodesic) on a circle then you
will soon end up where you started, thus concluding that globally
the circle does not look like R since if you travel in a straight line
on R you never come back to where you started. (Mathematically,
the circle cannot look like an open subset of R because the former
is compact but the latter is not; in particular, there does not exist
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a homeomorphism mapping an open subset of R onto the circle.
This is why hemispheres were glued together to form the circle.)

A more pragmatic motivation for the introduction of manifolds
and differential geometry is afforded by the following three prob-
lems arising in signal processing.

1. The parameter θ ∈ R
n is to be estimated from observed

data, and it is known that θ satisfies the constraint f(θ) = 0.

2. The complex channel vector h ∈ C
n can at best be esti-

mated up to an unknown scaling factor. How then should
the distance between the true channel h and an estimate bh
be measured?

3. Let A(t) ∈ R
5×5 denote a time-varying matrix. It is re-

quired to track the subspace spanned by the eigenvectors
associated with the two largest eigenvalues of A(t).

Given a differentiable function f : R
n → R

m, it is a standard
result that the set {x ∈ R

n|f(x) = 0} is a manifold1 provided
the Jacobian matrix f ′(x) has full row rank for every x satisfying
f(x) = 0. To understand this definition, first consider f(x, y) =
x2 +y2−1. Its Jacobian matrix is [2x 2y] and has full row rank at
all points on the circle x2 +y2 = 1, hence the circle is a manifold.
In contrast, the function f(x, y) = x2 + y3 fails the requirement
since the Jacobian matrix [2x 3y2] does not have full row rank
at the origin (0, 0). Indeed, plotting this function shows that the
origin is a cusp, hence x2 + y3 = 0 is not a “smooth surface” and
should not be thought of as a (smooth) manifold.

Thus, differential geometry is directly relevant to Problem 1 if
the set {θ|f(θ) = 0} is a manifold [28]. This is discussed further
in Section 4.

Focusing now on Problem 2, although the signal processing
community has introduced several ad hoc ways of defining the
estimation error in the presence of ambiguity, it wasn’t until re-
cently [15] that it was pointed out that the natural way of thinking
of this problem is to work not in C

n but in complex projective
space. First though, it is noted that differential geometry readily
extends to complex manifolds, either by treating C

n as equivalent
to R

2n or by defining manifolds as open subsets of C
n glued to-

gether. (See, for example, [16].)
Complex projective space is an example of how a new space is

obtained by starting with an existing space, C
n minus the origin in

this case, and then quotienting out the ambiguity, in this case the
equivalence relation stating that x, y ∈ C

n − {0} are equivalent
if there exists a scalar α ∈ C such that x = αy. In other words,
C

n −{0} is partitioned so that x and y are in the same partition if

1Strictly speaking, it can be made into a smooth manifold by giving it
a topology and a differentiable structure in a natural way.
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and only if they differ by a scalar multiple, and complex projective
space is the space formed by treating each partition as merely a
point. (See [5] for a detailed introduction to projective space.)

Treating the true channel h and its estimate bh as points in com-
plex projective space, it becomes obvious that what Problem 2
calls for is a metric d(h,bh) to be defined on complex projective
space.

Problem 1 exemplifies how a manifold can arise from a con-
straint while Problem 2 shows how a manifold can arise by quo-
tienting out an ambiguity. Problem 3 is an example of when a
manifold is essentially given to us directly. Specifically, the set of
all two dimensional subspaces of R

5 is, in a natural way, a man-
ifold. Indeed, it is called the (5, 2)-Grassmann manifold. There-
fore, even though the subspace tracking problem has a long history
in signal processing, its “correct” formulation as a tracking prob-
lem on the Grassmann manifold is only recently being realised.
The Grassmann manifold will be discussed further in Section 2.

Interesting research questions in the area of differential geom-
etry applied to signal processing include, but are by no means lim-
ited to, optimisation on manifolds (Section 3), statistics on mani-
folds (Section 4), tracking on manifolds (Section 5) and quantisa-
tion and interpolation on manifolds [23].

Differential geometry is not always the most relevant tool for
dealing with non-linearities. As but one example, when dealing
with polynomial equations, algebraic geometry should be used in-
stead [14, 21, 22]. The message is the same though; when faced
with a non-linear signal processing problem, first check to see if
geometry will provide a systematic framework for tackling it.

2. GRASSMANN AND STIEFEL MANIFOLDS

The (n, p)-Grassmann manifold is the set of all p-dimensional sub-
spaces in R

n. (The complex Grassmann manifold consisting of
all p-dimensional subspaces in C

n exists too.) Since subspaces
play a large part in signal processing, it is not surprising that the
Grassmann manifold has already turned up in a number of signal
processing applications [11, 12, 16, 17, 20, 23, 29].

Describing the Grassmann manifold as a collection of sub-
spaces obscures the way calculations on the Grassmann manifold
take place in practice. An equivalent definition of the Grassmann
manifold is given below to remedy this. First, it is required to intro-
duce another manifold, the Stiefel manifold, which is also relevant
to signal processing.

Consider the set of all matrices X ∈ R
n×p satisfying XT X =

I . (For the complex-valued version, see [16].) This set naturally
forms a manifold and is called the (n, p)-Stiefel manifold. Note
that when p = 1, the set is a sphere. A point on the Stiefel mani-
fold is simply a matrix X satisfying XT X = I . One way to think
of this though is that a point on the Stiefel manifold represents an
ordered basis for a p-dimensional subspace of R

n, the columns of
X being the basis vectors.

Given a point X on the Stiefel manifold, there corresponds a
point on the Grassmann manifold given by the subspace spanned
by the columns of X. Mathematically, there exists a projection
π from the Stiefel to the Grassmann manifold taking X to π(X).
This projection is many-to-one, since if Q is any orthogonal ma-
trix then π(XQ) = π(X) because the subspace spanned by the
columns of XQ is the same subspace spanned by the columns
of X. Therefore, a point p on the Grassmann manifold can be
stored numerically on a computer by storing the matrix X, where

X is any point on the Stiefel manifold satisfying π(X) = p. In-
deed, this is simply saying that a subspace is represented by writ-
ing down a basis for it, namely the columns of X. (An alternative
is to store the projection matrix whose range space corresponds to
the point on the Grassmann manifold one wishes to represent.)

In fact, the Stiefel manifold can be used to define the Grass-
mann manifold from scratch. As hinted at in the Introduction, a
new manifold can be created from an existing one by quotient-
ing out an equivalence relation. The Grassmann manifold is the
quotient space obtained by starting with the Stiefel manifold and
calling two points X, Y equivalent if there exists an orthogonal
matrix Q such that X = Y Q.

3. OPTIMISATION ON MANIFOLDS

Although minimising a cost function defined on a manifold has
a relatively long history [6], it has only been studied in the sig-
nal processing community recently [7, 13, 15, 16, 17, 18, 20]. A
fundamental question people have addressed is, how can the well-
known Newton algorithm for optimising a cost function f : R

n →
R be generalised to an algorithm for optimising a cost function
f : M → R defined on some manifold M?

Prior to the work in [16], the solution invariably involved en-
dowing the manifold M with a Riemannian structure. (This is a
generalisation of endowing R

n with an inner product and enables
one to measure distances and define geodesics on M .) For ex-
ample, the Newton method xk+1 = xk − [f ′′(xk)]−1f ′(xk) was
generalised to a manifold M by first endowing M with a Rieman-
nian structure, thus allowing f ′(xk) and f ′′(xk) to be replaced by
the gradient and Hessian of f at xk (without a Riemannian struc-
ture the gradient and Hessian are undefined), and then replacing
the vector addition xk+1 = xk + δk , δk = −[f ′′(xk)]−1f ′(xk)
by setting xk+1 to be the point reached by starting at xk and mov-
ing along the geodesic trajectory defined by δk for a distance of
one unit. In the Euclidean case, when geodesics become straight
lines, this reduces back to the ordinary Newton method.

Although this Riemannian-based approach is sensible, there
are at least four disadvantages. 1) Moving along geodesics can be
a computationally expensive operation. 2) Usually the cost func-
tion f has nothing to do with the Riemannian geometry so using
this artificial Riemannian geometry may actually slow down the
convergence. An example is given presently. 3) It does not follow
immediately (i.e. it has to be proved) that the Riemannian-based
algorithm has the same rate of convergence as it does in Euclidean
space. 4) There exist interesting manifolds for which no explicit
expression for a Riemannian metric is known. The Riemannian-
based algorithms are thus inapplicable in practice to such mani-
folds.

A new paradigm for optimisation on manifolds was introduced
in [16], aimed at avoiding these disadvantages. The idea is rela-
tively straightforward; since a manifold M locally looks like R

n,
about any point p ∈ M , there always exists a parametrisation (in
fact, there exist infinitely many) φp : R

n → M mapping (dif-
feomorphically) R

n into a subset of M containing p. (For con-
venience, assume φp(0) = p.) This means that the cost func-
tion f : M → R can be pulled back to the local cost function
f ◦ φp : R

n → R. Moreover, the point p ∈ M corresponds to the
origin in R

n by the assumption φp(0) = p. One step of the New-
ton algorithm (or any other optimisation algorithm) can be applied
to this local cost function to move from the origin to some point
z ∈ R

n. This point is now mapped back to the manifold, namely
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to the point φp(z). This completes one step of the algorithm. Note
that at the new point φp(z) a different parametrisation is used, and
this is what allows the algorithm to move around the whole mani-
fold rather than just be confined to part of the manifold.

It is important to note that this approach is a generalisation of
the Riemannian approach; a particular choice of φp (namely, the
Riemannian exponential map centred at p) will make the above
algorithm identical to the Riemannian-based algorithm.

By choosing φp differently, the computational cost of each it-
eration can often be reduced significantly, thus overcoming Disad-
vantage 1 above.

How Disadvantage 2 can be overcome is explained by way of
a trivial example. Consider the cost function f(x, y) = (x cos y−
2)2 + (x sin y − 3)2. The ordinary Newton algorithm can be
thought of as the Riemannian-based algorithm with respect to the
usual Euclidean inner product on R

2. Clearly, it will take an in-
finite number of iterations for this algorithm to converge to the
minimum if it is started away from the minimum. By comparison,
if the parametrisation φ is chosen to map Cartesian coordinates
into polar coordinates, then the local cost function (f ◦ φ)(x, y)
becomes quadratic and the new algorithm converges in a single
iteration.

In general, a strategic choice of parametrisations can be used
to reduce the contribution of the third and higher order terms in
the Taylor series expansion of the local cost function, resulting in
faster convergence. (Technically, the actual rate of convergence is
usually the same, e.g., quadratic, but it is the constant out the front
which can be decreased.)

It is remarked that the one time when it is very appropriate to
consider the Riemannian-based version is when the cost function
is related to the Riemannian geometry. A prime example is when
the cost function involves the Riemannian distance function, such
as in “centre of mass” type problems [18].

Disadvantage 3 is overcome in a paper to be submitted soon,
which proves that under very mild conditions on the parametrisa-
tions φp, the local convergence properties of the generalised al-
gorithm are equivalent to the local convergence properties of the
underlying algorithm. For example, since the Newton algorithm
is locally quadratically convergent, so too is the generalised algo-
rithm for all “sensible” choices of parametrisations φp. In fact, this
forthcoming paper will also point out that if the Euclidean Newton
algorithm is written as Ng(x) = x− [g′′(x)]−1g′(x) then the gen-
eralised algorithm takes the form E(p) = (φp ◦Nf◦φp ◦φ−1

p )(p),
showing explicitly that what is happening is that the generalised
algorithm is essentially the underlying algorithm but with respect
to a different coordinate system at each iteration.

Disadvantage 4 is overcome because manifolds always come
with parametrisations (or coordinate charts).

When told that the Riemannian structure of a manifold won’t
be used in an optimisation problem, people often ask where the
geometry comes into play then. The answer is that geometry helps
in choosing the parametrisations φp; note that a non-Riemannian
manifold can still have “geometry” or “structure” which can be
exploited. For example, the parametrisations in [16] were defined
by using Euclidean projections from the tangent spaces onto the
manifold. The cost per iteration is lower than a Riemannian-based
approach, and moreover, for certain cost functions relevant to sig-
nal processing, empirical evidence suggests fewer iterations are re-
quired to converge to within a specific tolerance of the minimum.

An important research area is the design of parametrisations
φp for specific classes of cost functions and specific manifolds.

4. STATISTICS ON MANIFOLDS

Manifolds can enter statistics in a number of ways. In parameter
estimation problems, it might be known that the parameter belongs
to a curved surface. Similarly, the observations might lie on a man-
ifold. It is natural to endeavour to extend statistical concepts and
procedures to these cases: [3, 25, 26, 28] and references therein.

For example, [8] derives a Cramér-Rao type lower bound for
manifold-valued parameters. However, it does not directly provide
a quantitative measure of how accurate an unbiased estimator can
be because it chose not to introduce a distance function on the
parameter space. The main contribution of [28] is to provide such
a quantitative measure, and moreover, a feature of the Cramér-Rao
type lower bound in [28] is that it reduces to the ordinary Cramér-
Rao lower bound when the manifold is Euclidean space.

Another example is that in Euclidean space, if the usual Fisher
information matrix is singular, it is common for people to derive
a Cramér-Rao type lower bound by taking the pseudo-inverse of
the Fisher information matrix. In [27], a geometric meaning is
attributed to this. Specifically, it is shown how the Cramér-Rao
type lower bound can be obtained by the geometric path in [8].

Differential geometry also interacts with statistics on the fol-
lowing, deeper footing. Certain sets of probability density func-
tions can be made naturally into manifolds; that is, each point on
the manifold corresponds to a probability density function [1, 2].
Quantities such as Kullback-Leibler divergence can then be given a
geometric interpretation. As but one application of this, a geomet-
ric interpretation of certain decoding algorithms is given in [9, 10].
This interpretation allows one to picture what is going on and thus
better understand the properties of these decoding algorithms.

5. TRACKING ON MANIFOLDS

Although the myriad papers on subspace tracking can be inter-
preted as tracking on the Grassmann manifold, few papers have
approached the subspace tracking problem in this way [25]. More-
over, even when manifolds are used [24], often the tracking is done
simply by iteratively minimising a cost function, as opposed to es-
timating optimally the subspace based on not only the observations
but also a stochastic model of the time-varying subspace.

A potential research area is to extend filtering algorithms, such
as the Kalman filter, to non-linear settings. Specifically, the linear
state-space model (xk+1 = Axk + Bwk, yk = Cxk + Dnk) can
be generalised by replacing the linear operations by group actions.
An example of a group action is a rotation applied to a point on
a sphere; if xk is a point on the sphere and R denotes a certain
rotation then it makes sense to set xk+1 = R · xk where · denotes
the group action. The noise can similarly be modelled by another
group action, this time a random one. That is, the state equation
becomes xk+1 = W · R · xk where W is a random group action
and R a known one. The observation equation can be modelled by
a random group action for the noise and a projection operation in
place of the C matrix.

It is remarked that the potential disadvantage of algorithms on
manifolds is that the computational cost might be relatively high.
This is not always the case (and often there is no choice but to work
on a manifold albeit implicitly), but it was the motivation behind
the subspace flows in [19] which were intentionally defined over
R

n so that numerical implementations of them wouldn’t have to
compute projections onto Stiefel manifolds.
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6. CONCLUSION

Differential geometry is an indispensable tool for solving certain
non-linear problems in signal processing. The advantages of dif-
ferential geometry include i) being able to better understand exist-
ing algorithms, often leading to the derivation of even better algo-
rithms; ii) providing an appropriate mindset for solving non-linear
problems; iii) allowing existing results in mathematics to be ap-
plied directly.
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[24] M. Nikpour, K. Hüper, and J. H. Manton. Generalizations
of the Rayleigh Quotient iteration for the iterative refinement
of the eigenvectors of real symmetric matrices. In Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing, Philadelphia, March 2005.

[25] A. Srivastava. A Bayesian approach to geometric sub-
space estimation. IEEE Transactions on Signal Processing,
48(5):1390–1400, 2000.

[26] A. Srivastava and E. Klassen. Monte Carlo extrinsic estima-
tors of manifold-valued parameters. IEEE Transactions on
Signal Processing, 50(2):299–308, 2002.

[27] J. Xavier and V. Barroso. The Riemannian geometry of cer-
tain parameter estimation problems with singular Fisher in-
formation matrices. In International Conference on Acous-
tics, Speech and Signal Processing, volume 2, pages 1021–
1024, Montreal, Canada, May 2004.

[28] J. Xavier and V. Barroso. Intrinsic variance lower bound
(IVLB): An extension of the Cramér-Rao Bound to Rieman-
nian manifolds. In International Conference on Acoustics,
Speech and Signal Processing, Philadelphia, March 2005.

[29] L. Zheng and D. N. C. Tse. Communication on the Grass-
mann manifold: A geometric approach to the noncoherent
multiple-antenna channel. IEEE Transactions on Informa-
tion Theory, 48(2):359–383, 2002.

V - 1024


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


