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An Improved Least Squares Blind Channel
Identification Algorithm for Linearly and Affinely
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Abstract—Certain linear and affine precoders introduce
enough algebraic redundancy to enable the receiver to identify
a single-input single-output finite-impulse response channel
without making any statistical assumptions on the source se-
quence. However, quite surprisingly, the traditional steepest
descent least squares algorithm for estimating the channel often
fails to converge, even in the absence of noise. This letter explains
why this is the case and derives a novel steepest descent algorithm
on complex projective space that is guaranteed to converge. The
complex projective space formulation also provides a standard
framework for understanding different performance measures
proposed in the literature.

Index Terms—Algebraic channel identification, bilinear equa-
tions, linear precoders, optimization on manifolds, wireless com-
munications.

I. INTRODUCTION

CERTAIN linear and affine precoders [5], [9] allow the re-
ceiver to identify blindly a single-input single-output fi-

nite-impulse response (SISO-FIR) channel based only on the al-
gebraic redundancy introduced by the precoder [4] and, in par-
ticular, without any statistical assumptions on the transmitted
symbols. Specifically, in the presence of additive noise, the
channel can be estimated blindly by solving a nonlinear least
squares problem. A standard approach for solving nonlinear
least squares problems is to use a steepest descent algorithm.
It is known that under very mild conditions, a steepest descent
algorithm coupled with Armijo’s step size rule is guaranteed to
converge to a critical point [8]. It is, thus, surprising that it often
fails to converge (at least in a reasonable number of iterations)
when applied to the channel estimation problem. This letter
explains why this is the case and derives a novel steepest de-
scent algorithm that is guaranteed to converge. In doing so,
it also provides a unified framework in which to understand
the different performance measures proposed in the literature
[7], [10].

The signal model is as follows. A vector ofcomplex-valued
source symbols is affinely precoded [5] to form
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complex-valued encoded symbols according to
the rule

(1)

where and are known to the receiver, and is an upper
bound on the length of the SISO-FIR channel through which

is transmitted. Different choices of the matrix allow (1)
to model many popular precoding techniques, including filter
bank precoders and orthogonal frequency division multiplexing
(OFDM) schemes. The vectorallows for the inclusion of a
training sequence or pilot tones to assist in channel identifica-
tion. (When applied to block transmission systems, the vector
is taken to be one or more blocks of source symbols depending
on how many blocks are to be used in the identification of the
channel.)

In the noise-free case, theth element of the received output
vector is the convolution of the encoded symbols
with the unknown channel vector ,
namely

(2)

By introducing an -by- upper triangular Toeplitz
matrix having as its first row,
(2) can be written in matrix form as

(3)

In practice, the received signalis corrupted by additive noise.
It is, therefore, appropriate to solve (3) for bothand in the
least squares sense. Specifically, this letter studies the problem
of minimizing the nonlinear least squares cost function

defined to be

(4)

It is remarked that (2) is a bilinear equation, and in particular,
the results of this letter apply to the wider problem of solving
general bilinear equations in the least squares sense. It is also
remarked that conditions for (4) to have a unique minimum are
discussed in [6].

The motivation for considering this problem is that often the
structure (1), present in many communication systems, is not
fully exploited for the purposes of channel identification. A nat-
ural question, then, is whether or not the least squares channel
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estimate obtained by minimizing is to be preferred over
more traditional channel estimates. Before this question can be
answered though, it is necessary for an algorithm to be devel-
oped that minimizes . Surprisingly, the author discovered
the standard steepest descent method fails to minimize.
The main contribution of this letter, besides an explanation of
why the standard steepest descent algorithm fails to converge,
is the derivation of a novel steepest descent algorithm on com-
plex projective space for minimizing .

It is candidly stated that the advantages and disadvantages of
using the proposed least squares channel estimate are not in-
vestigated in this letter but rather are a topic of future research.
Indeed, the merits of a least squares channel estimator can only
be judged with respect to a specific affine precoder, whereas the
focus of this letter is on arbitrary affine precoders.

This section concludes with a brief discussion on the scale
ambiguity problem associated with all linear and some affine
precoders. If a linear precoder is used, then it is not possible
to determine the magnitude of the channel vector because, for
any nonzero , , where
denotes the convolution operation in (2). (Recall that bothand

are unknown to the receiver.) Moreover, the affine precoder
(1) removes the scale ambiguity if and only ifis orthogonal
to the range space of , i.e., , where
is the Moore–Penrose pseudoinverse of; thus, denotes
projection onto the range space of. The proposed algorithm
handles both cases: it identifies the channel up to an unknown
scaling factor if , and it identifies the channel
completely if .

II. STANDARD LEAST SQUARES

This section derives a standard steepest descent algorithm for
estimating the channel vector under the assumption that there
is no scale ambiguity. Then, it is explained why this algorithm
often fails to converge in a reasonable number of iterations. The
results of this section are used in Section III to derive a novel
algorithm for channel estimation.

Referring to (4), it is well known that for a fixed,
achieves its minimum whenequals

(5)

Therefore, the aim is to find the channelwhich minimizes
. To apply the steepest descent method, it is

necessary to calculate the derivative ofwith respect to .
The notation is used to

represent the derivative of with respect to , and similarly
for . Since , the derivative of is

. Explicitly, if is the -by-
matrix of the same form as but with all elements zero

except for the terms which are set to one, then

... (6)

Based on (6), a steepest descent algorithm using Armijo’s step
size rule (see [8, Sec. 1.2.3]) is readily implementable. Armijo’s

step size rule ensures that the cost function monotonically de-
creases and, under mild conditions (the cost function is con-
tinuously differentiable, bounded from below, and has compact
sublevel sets), the algorithm converges to a critical point (a point
where ). Surprisingly, then, simulations using ran-
domly generated affine precoders showed that the steepest de-
scent algorithm often failed to converge (the gradient did
not approach zero). When the algorithm failed to converge, it
was observed that the norm ofdecreased at each iteration.

The explanation is that is discontinous at the origin and,
thus, violates the conditions for guaranteed convergence. More-
over, it is not uncommon that, for a given, decreases
as approaches zero from above; roughly speaking, this occurs
when is a better estimate thanis, for instance. Thus, the
steepest descent algorithm can get pulled, increasingly slowly,
toward the origin. (It may eventually escape, but convergence is
intolerably slow even if it does.)

III. L EAST SQUARES INCOMPLEX PROJECTIVESPACE

Section II showed that the traditional steepest descent algo-
rithm often fails to converge because is discontinuous at
the origin. This section remedies this by minimizing on
complex projective space rather than on. Furthermore, it is
shown that when scale ambiguity is present, complex projective
space is the natural framework in which to study the channel es-
timation problem.

Complex projective space of dimension , denoted
, is the collection of equivalence classes of ,

where are equivalent if there exists a
such that . An element of is written as
where . Complex projective space is fundamental
to algebraic geometry.

Consider first the case when , i.e., there is
no scale ambiguity. Define to be

. Substituting (5) into (4) shows that

(7)

where is the identity matrix. Thus, achieves its min-
imum when equals

(8)

It can be shown that since ,
is nonzero for all , proving that is a smooth
function of .

The discontinuity of at the origin is removed by consid-
ering instead the cost function defined by

. (It is well defined because
for nonzero .) A steepest descent algorithm for minimizing the
smooth cost function on the compact manifold
is now derived. It is guaranteed to converge to a critical point
because the conditions for Armijo’s step size rule to converge
are now satisfied (in particular, the cost function is no longer
discontinuous).
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Analogously to Section II, the derivative of can be
shown to be

(9)

where is the complex conjugate of, and is defined in
(8). The tangent space at is the -di-

mensional [ -D] subspace of

. The gradient [1] of at a point is only defined once
is given an inner product structure. Choosing the standard

(Euclidean) inner product for results in the gradient being

, which is the projection of the gradient of
onto the tangent space . (See [2] and [3] for the theory be-
hind optimization on manifolds.) This leads to the following al-
gorithm for finding an that (locally) minimizes . The ac-
tual least squares channel estimateminimizing is, thus,

where is defined in (8).

Algorithm 1

1. Choose hhh 2 L such that khhhk = 1. Set the step
size  := 1.

2. Compute the steepest descent direction
zzz = � I � hhhhhhH fhhh(hhh). If kzzzk is sufficiently
small then stop.
3. If f(hhh) � f(hhh + 2zzz) � kzzzk2 then set  := 2 and
repeat Step 3.
4. If f(hhh)�f(hhh+zzz) < (1=2)kzzzk2 then set  := (1=2)

and repeat Step 4.
5. Set hhh := (hhh+ zzz)=(khhh+ zzzk). Go to Step 2.

Remarks: Steps 3 and 4 in Algorithm 1 implement the
Armijo step size rule [8]. Since is differentiable and
is compact, Algorithm 1 is guaranteed to converge monotoni-
cally to a critical point of the least squares cost function [8].

The case when is now considered. Since
implies for any nonzero ,

the cost function simplifies to
. Thus, Algorithm 1 can be used to estimate the channel by

replacing with and with .

IV. PERFORMANCEMEASURES

It is the secondary purpose of this letter to draw attention to
the fact that the natural setting for channel estimation in the
presence of scale ambiguity is in complex projective space. That
is, rather than consider the channel vectoras an element of ,
it is best considered as representing the equivalence classof
all channel vectors agreeing withup to scale.

The problem of measuring the accuracy of a channel estimate
when there is inherent scale ambiguity has been addressed in
[7] and [10], where a number of different definitions of distance
between the true and estimated channel vectors were proposed.
It is interesting to note the equivalence of these distances and
the distance functions (the more familiar term “metric” in other
branches of mathematics has a different meaning in differen-
tial geometry [1]) commonly used in complex projective space.

Fig. 1. Graph showing the superior performance of Algorithm 1 over the
steepest descent algorithm (Section II).

(In other words, the performance measures used in [7] and [10]
are natural measures to use from a mathematical perspective
because they are true distance functions on complex projective
space.) Moreover, the differences in the distances defined in [7]
and [10] potentially can be better understood by studying the
induced distance functions on . (For instance, some of
the distance functions on appearing in [2, Sec. 4.3] are
asymptotically equivalent.)

Remark: An example of a distance function on is the
Fubini–Study distance defined as follows. Let with

represent the points in -D
projective space. The Fubini–Study distance betweenand

is

(10)

Note that since ,
provides a sensible indication of how far apart and are.

V. NUMERICAL EXAMPLE

This section presents a simple example illustrating that the
traditional steepest descent algorithm can fail to converge in a
reasonable number of iterations. When applied to the same ex-
ample, Algorithm 1 converges to the correct answer.

The following affine precoder [5] was used (in Matlab,
zeros kron eye eye zeros ):

(11)

The true channel was chosen to be . Fig. 1 com-
pares the convergence rates of the standard steepest descent al-
gorithm and Algorithm 1. The true source symbols were

, and the initial channel estimate was .
Other examples, not presented here, exhibited similar behavior.

Remark: It is interesting to note that for this particular ex-
ample, the steepest descent algorithm eventually converged to
the correct answer after a few thousand iterations.
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VI. CONCLUSION

Section II explained why the traditional steepest descent least
squares algorithm often fails to converge. Section III remedied
this lack of convergence by introducing scale ambiguity into
the cost function and then minimizing the new cost function on
complex projective space. Section IV drew attention to the fact
that complex projective space is the natural framework to use in
the presence of scale ambiguity. Finally, a numerical example
in Section V supported the claims made in this letter.
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