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ABSTRACT 

It is known that precoding a signal prior to its transmission through 
an unknown finite impulse response channel facilitates the equali- 
sation of the channel. Moreover, since linear precoders spread the 
spectrum, the equalisation process mitigates the effects of chan- 
nel spectral nulls caused by frequency selective fading. This paper 
argues that certain affine precoders are more efficient than linear 
precoders. Here, the efficiency of a precoder is a measure of its 
ability to enable the receiver to recover the source signal relative 
to the amount of redundancy introduced by the precoder. An effi- 
cient affine precoder is heuristically derived and simulations used 
to demonstrate that it is superior to both the traditional training se- 
quence method and the more recent filter bank precoding scheme. 
This precoding and equalisation scheme naturally extends to time 
varying channels. 

1. INTRODUCTION 

This paper propounds an efficient precoding scheme for the reli- 
able transmission of a signal through an unknown finite impulse 
response (FIR) channel. It is assumed that an upper bound on the 
channel length is known. This fundamental problem has been stud- 
ied extensively in the literature with many channel equalisation 
schemes proposed. Recently it was shown that linear precoders 
not only enable the equalisation of the unknown channel [ I ,  51, 
they also spread the spectrum [4], making it possible to mitigate 
the effects of spectral nulls in the channel. This paper takes the 
idea one step further by introducing afine precoders and demon- 
strating their superiority over linear precoders as well as over tra- 
ditional training sequence based methods. 

Only precoding and equalisation schemes which accurately re- 
cover the source signal from a very short output sequence are con- 
sidered here. This requirement is necessary if the channel param- 
eters vary with time. It has been shown in [5] that certain linear 
precoders (and hence affine precoders) enable the receiver to iden- 
tify the channel based solely on the algebraic structure of the pre- 
coded signal, that is, no statistical structure of the source signal is 
required. The philosophy adopted here is that statistical and finite 
alphabet properties of the source signal should be exploited only 
at a later stage, and only to enhance the overall performance. This 
eliminates the ill effects of short data lengths and statistical anoma- 
lies associated with receivers which rely on statistical structure. 

Optimal linear precoders and equalisers, under the simplify- 
ing assumption that the channel is known, are derived in [2,6] and 
references therein. When the channel is unknown though, the de- 
sign of efficient precoders is an unresolved problem. This paper 
shows that certain affine precoders are more efficient than linear 
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precoders. I t  also argues that affine precoders are efficient even 
when compared to non-linear precoders. 

The motivation for considering the class of affine precoders is 
the observation that neither a training sequence nor a linear pre- 
coder on its own is entirely adequate. A training sequence ef- 
ficiently identifies the channel but cannot guard against channel 
spectral nulls. A linear precoder guards against channel spectral 
nulls but simulations show it is not efficient' at identifying the 
channel [3]. The explanation for this is that each channel param- 
eter is a rational function (a ratio of two polynomial functions) of 
the channel output if a linear precoder is used [5]. Poor perfor- 
mance results when the denominator of this rational function is 
close to zero. This phenomenon shows up as heavy tails on the 
error distribution [3]; the performance of a linear precoder is sen- 
sitive to the actual sequence transmitted. 

This paper is based on two key ideas. The first is that if 
both a training sequence and a linear precoder are used then each 
method's strength compensates for the other's weakness. The sec- 
ond key idea, justified in Section 3, is that the consfellation of the 
precoder should be a subset of the surface of a sphere. Both these 
ideas are incorporated into a candidate affine precoder in Section 3. 
An interesting question to ask is how much power should be allo- 
cated to the training sequence, and how much to the linear pre- 
coder? Simulations in Section 4 study this issue. 

The remainder of this paper is organised as follows. Section 2 
states the channel equalisation problem and defines the class of 
affine precoders. Section 3 provides a geometrical interpretation 
of precoding followed by a series of arguments which lead to a 
candidate affine precoder. Also derived is an algorithm to deter- 
mine the MLE of the channel. Simulation results in Section 4 re- 
veal that the candidate affine precoder is more efficient than either 
a training sequence based method or a linear precoder on its own. 
Conclusions and further work are presented in Section 5.  

2. PROBLEM FORMULATION 

This paper studies the problem of transmitting a source vector s E 
Rp through an FIR channel of length L with unknown parameters 
h = [ho,. . . , h ~ - l ] ~ .  The source s is mapped to the vector 
x E The relationship between the transmitted vector 
2 = [ zz -L , .  . . , Z O , Z ~ , .  . . , znIT and the received vector I E 
R" is 

z = y + n ,  y = h * x ,  n - N ( 0 , a 2 1 )  ( I )  

where a* is the unknown noise variance and * denotes convolu- 
tion, that is, ?& = h i 2 k - i  for = I , . . .  ,n.  The noise 

'Recall it  is assumed that the source statistics are unknown. Linear 
precoders perform well if longer data lengths and knowledge of the source 
statistics are available. 
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vector n is referred to as AWGN (additive white Gaussian noise). 
A fundamental problem is to choose the mapping from s to x in 
such a way as to minimise the sensitivity of the receiver’s estimate 
of the source to different channel vectors h and noise power oz. 

The idea of using an affine precoder is introduced in this pa- 
per. That is, the relationship between the transmitted vector x and 
the source vectors  can be written as 

z = A s + b  (2) 

for some matrix A E R(n+L-’)Xp and vector b E Rn+L-’. It is 
assumed that A has full rank and that b is orthogonal to the range 
space of A, that is, bTAs = 0 for all s. 

For any precoder (2), define its constellation to be 

C = { z :  z = A s + b ,  s E R } ,  O C R P  (3) 

where R is the set of all possible source vectors s. It is shown in 
Section 3 that the intrinsic performance of a precoder depends only 
on its constellation. Also used in Section 3 is the fact that certain 
affine precoders can embed a low dimensional unit sphere into a 
high dimensional one. To state this precisely, define the sphere 

sp-l = {s E RP : llsll = 1) 

where 11.  ( 1  denotes the Euclidean norm. Under the assumption that 
bTAs = 0 for all s it is clear that 1 1 ~ 1 1 ~  = sTATAs+ bTb. Thus, 
if all the eigenvalues of ATA are equal to A’, llx112 = X211s112 + 
llb112. In particular, there exist invertible affine precoders which 
map SP-’ into Sn+L-z. 

3. PRECODER DESIGN 

This section derives a candidate affine precoder which is robust to 
unknown channels and additive noise, as well as an algorithm to 
compute the corresponding MLE of the channel. 

3.1. Geometric Interpretation of Precoding 

The following argument shows that the intrinsic performance of a 
precoder depends only on its constellation. Let f1 and f~ denote 
two precoders with the same constellation, that is, f i (R)  = f~ (0). 
(Note that any precoder is implicitly assumed to be invertible.) 
Then there exists an invertible function g such that f1 = fz o g 
where o denotes composition; the performance of fi is identical 
to the performance of fz under a suitable transformation of the 
source vector. 

The performance depends on the actual channel h through 
both its magnitude llhll and its direction h/llhll. Changing the 
magnitude I(hll simply scales the noise-free output y. The effect 
of changing h/llhll is more interesting and motivates defining the 
set 

p, = {y E Rn : y = h*x, h E SL-’} 

where SL-’ denotes the L - 1 pimensional sphere. Then for each 
transmitted vector x, the set Y, is an_ellipsoid. Moreover, for 
different 2, the shape of-the ellipsoid Y, is in general different. 
Two extreme cases are Y, being a sphere, and Y, being a line 
segment. An example of the former is z = [0, . . . , 0,1,0,  . . . , 01 
where there are L - 1 zeros both before and after the one. In this 
case, the channel output power lly1)2 does not depend on h/llhll. 

This is therefore the most robust way of identifying an unknown 
channel. The other extreme occurs in the infinite (and complex- 
valued) data case when a single (complex exponential) sinusoid 
is transmitted; the channel output is identical to the channel input 
except for a constant scaling factor. 

The above demonstrates the difficulty in designing an efficient 
precoder; different transmitted vectors z perform differently de- 
pending on the channel h. For simplicity, it is initially assumed 
that both the transmitter and the receiver know the channel vector 
h. The problem thus reduces to that of overcoming the AWGN. 
Applying Shannon’s ideas [7] suggests that the noise is best over- 
come in the finite alphabet case by choosing the set of possible 
output vectors y to contain equally spaced points inside the solid 
ball {y : llyll 5 l}. Moreover, Shannon argues that as the di- 
mension of y increases, these points will tend to cluster near the 
surface of the solid ball. 

If the transmitter does not know the channel it cannot ensure 
that y is equally spaced on the surface of the unit sphere. If how- 
ever it is known that the channel is close to being the identity then 
it is sensible to constrain x to the surface of the unit sphere. More- 
over, simulations show that the expected frequency response of a 
randomly chosen channel approaches that of the identity channel. 
This motivates requiring the constellation to be a subset of the unit 
sphere. If 0, the set of possible source vectors, is an infinite set 
then the requirement that different y are “equally spaced’ can be 
made precise in the following way. Assume that the “error” in- 
volved in choosing SI over s~ is a function of llsl - 5211. Then 
the precoder function G : R + should ensure the ratio 
llG(s1) - G(s2)11/11s1 - szll is as large as possible. In summary, 
the precoder G should satisfy 

where the maximisation is over some suitable function space, such 
as the class of all smooth functions G which satisfy G(R) C 

Henceforth it is assumed for convenience that the possible 
source vectors are points on the unit sphere, that is, s1 = SP-’.  
The objective is to find a precoder G which satisfies (4). Section 2 
shows that certain affine precoders embed SP-’ in Sn+L-2. I t  is 
now shown that these affine precoders also satisfy (4). Since the 
largest distance between any two points on a unit sphere is 2, it fol- 
lows that llG(s1) - G(s2)ll/llsl - szll 5 1 if s1 = -SZ E SP-’ 
and the precoder G satisfies G(Sp-’) C Sn+L-2. Let G be an 
affine precoder G ( s )  = As + b for which bTAs = 0 for all s and 
all the eigenvalues of A T A  are equal to A’. Then, as shown in Sec- 
tion 2, llG(s)ll’ = X211s112 + llbJI2. Thus (4 )  is satisfied if Xz = 1 
and llbll = 0. Such a G is a linear precoder and, as eluded to in 
Section 1, suffers from the choice llbll = 0. If llbll > 0 then there 
is only 1 - llb112 units of power left for encoding s. Moreover, the 
affine precoder G fully utilises this power when X2 = 1 - llb112. 

In summary, there is a compromise between choosing a pre- 
coder G which satisfies (4) and sending a fixed training sequence 
b; the greater the power llbll the less spread out the possible trans- 
mitted vectors can be. Nevertheless, subject to the constraint of 
sending a fixed training sequence b, the class of affine precoders 
G P )  = ils + b satisfy (4) for any A such that the eigenvalues of 
A A are all equal to 1 - llb1I2 and bTAs = 0 for all s. 

Sn+L-Z 
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3.2. Candidate Affine Precoder 

This section imposes further requirements on an affine precoder. 
The first requirement is that a consecutive training sequence be 
used. If the training sequence is not consecutive then the channel 
parameters h will be rational, rather than polynomial, functions 
of the channel output y. The presence of a polynomial term in 
the denominator makes the channel estimates sensitive to the ac- 
tual sequence transmitted. If L denotes the length of the channel 
then the most efficient training sequence is [O, . . . , 0,1,0, . . . , 01 
where there are L - 1 zeros both before and after the one, a total 
of 2L - 1 symbols. Not only is the power output of the channel 
constant regardless of the channel parameters and thus best suited 
to resisting the effects of AWGN, this training sequence also intro- 
duces the least amount of redundancy. Indeed, it is shown in [5 ]  
that almost all linear precoders require the equivalent of 2L known 
symbols to identify a channel with L unknown parameters. 

The second requirement is that a linear precoder must have a 
zero prefix. A zero prefix is a sequence of L - 1 zeros which reset 
the initial state of the channel to zero. Linear precoders which 
do not have a zero prefix perform poorly [3] because estimating 
the initial state of the channel is an ill-conditioned problem. Both 
requirements are expediently met by placing the training sequence 
in front of the linear precoder. The trailing L - 1 zeros of the 
training sequence double as a zero prefix for the linear precoder. 

A11 that remains is the choice of a linear precoder which satis- 
fies the eigenvalue constraint X2 = 1 - llb1I2 made in Section 3.1. 
Perhaps the simplest such linear precoder is one which introduces 
evenly spaced zeros. This leads to the following family of candi- 
date affine precoders: 

Break the source s into blocks so that sT = [SI,. . . , sm]. 
For instance, i f s  h a s p  = 15 elements then it can be grouped into 
m = 3 blocks SI, ~ 2 , s ~  of five elements each. Choose a X which 
lies between zero and one. Then the transmitted vector 2 is 

where there are L - 1 zeros both before and after the d m  
term. 
Remark: If ho is close to zero then the estimate of the last el- 
ement sp of the source s will be inaccurate. To overcome this, 
simply append one or more trailing zeros to the above affine pre- 
coder. 

3.3. Maximum-Likelihood Estimate of the Channel 

Computing the MLE under the assumption llsll = 1 is a con- 
strained optimisation problem and can be solved by a number of 
standard routines. A suitable cost function is now derived. 

Define for k = 0, . . . , L - 1 the ( p  + m - 1) x ( p  + m - 1) 
matrix J k  whose i j th  element is (Jk). . = b ( i  - j - k )  where 
6 is Dirac's delta function. That is, J o  is the identity matrix, J1 
the shift matrix, and in general Jk = (J1)k. Define the ( p  + m - 
1) x (p  + m - 1) Toeplitz channel matrix H = hoJo + . . .  + 
h ~ - 1 J ~ - '  and the (p  + m - 1) x p precoder matrix P such that 
[Xsl, 0, Xs2,0,. . . , = Ps. Thus, if the affine precoder 
(5) is used, the channel output y is 

Partition z analogously so that zT = [z:, za ] .  The MLE of 
h and s is obtained by minimising the cost function $(s ,h)  = 
$1 (h) + $z(s, h) where 

This is a separable least squares problem; for fixed h the MLE of 
s is 

E = -(HP)+%Z, 1 ( H P ) +  = (PTHTHP)-l  P T H T .  
X 

Define the separated cost function 9 ( h )  = $(E, h). It can be 
shown [3] that its gradient vector is 

*(h) = (1 - A') h - J 1 - 2 ~ 1  + XZT ( X H P S  - ~ 2 )  

where 2 = [JOPf,. . . , JL-'PE]. Thus the MLE is calculated 
by minimising 9 ( h )  subject to the constraint g ( h )  = 0 where 
g(h)  = f ( ~ ~ ~ ~ ~ 2  - 1). The gradient vector of g(h) is determined 
by differentiating the pseudo-inverse; the element equals 

- F ( H P ) +  [J"E+ (J"(HP)+)T (HPE-  31 

4. SIMULATION STUDY 

Two precoders were simulated. The MLE of s and h was found 
by using the Matlab function constr to minimise the cost func- 
tion 9 ( h )  subject to the constraint g ( h )  = 0. In addition, two 
other estimators were_used. One estimated h from the training se- 
quence only, that is, h = The other estimated h from the 

training sequence but under the constraint that Ilsll = 1, that is, by 
minimising $l(h) subject to the constraint g(h) = 0. 

Each precoder was simulated 200 times for various values of X 
and U' .  Foreach iteration,p = 12 source symbols were uniformly 
randomly generated on the surface of the unit sphere llsll = 1. The 
FIR channel h of length L = 3 was also uniformly randomly gen- 
erated on the unit sphere llhll = 1 subject to the constraint that 
lhol 2 0.7. This constraint ensures that at least half the power 
is transmitted without delay. As remarked in Section 3.2, if i t  is 
believed that ho is close to zero then trailing zeros should be ap- 
pended to the precoder. 

Precoder One is the affine precoder ( 5 )  where 7n = 4 and 
each of the four blocks SI,... ,s4 contain three elements. For 
comparison, Precoder Two merely adds a training sequence, that 
is, it is the affine precoder ( 5 )  with m = 1 and s1 = s. Because 
the encoded vector 2 lies on the unit sphere, the signal to noise 
ratio is SNR = -lOIoglo (nu'). The following two quantities 
were estimated by simulation. 

m. 

MSE = 10loglo (E[lls - Ell '])  
SD = standard deviation of 10loglo 11s - El l2 .  

The MSE is the mean-square error between the estimated and ac- 
tual source vector, while SD is a measure of how sensitive the MSE 
is to different source and channel vectors. These values are repre- 
sented in Tables 1 to 5 as MSE f SD. 
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0.3 f 2.4 -19.5 f 2.6 -39.7 f 2.7 

Table 1: MSE f SD for Precoder One using the training sequence 
only to estimate the channel. 

-2.4 f 2.2 -20.0 f 2.6 -40.1 f 2.8 
-13.7 f 2.6 -33.7 f 2.6 -53.7 f 2.7 

Table 2: MSE f SD for Precoder One using the training sequence 
only to estimate the channel but subject to the constraint llEll = 1. 

-2.5 f 2.2 -20.0 f 2.6 -40.1 f 2.8 
-13.7 f 2.6 -33.7 f 2.6 -53.6 f 2.7 

0.9 -17.6 f 2.7 -38.0 f 2.5 -58.8 f 2.6 
0.95 -17.9 f 2.8 -37.6 f 2.9 -58.7 f 2.8 

Table 3: MSE f SD for Precoder One using the full MLE to esti- 
mate the channel subject to the constraint 11Z11 = 1. 

5.8 f 4.4 -14.4 f 4.4 -34.4 f 4.3 
-6.7 f 4.5 -28.1 f 4.5 -48.9 f 4.2 

Table 4: MSE f SD for Precoder Two using the training sequence 
only to estimate the channel. 

-2.2 f 2.1 -17.4 f 3.5 -35.7 f 3.9 

Table 5:  MSE f SD for Precoder Two using the training sequence 
only to estimate the channel but subject to the constraint = 1. 

Discussion of Results: The simulations verify that a training se- 
quence used in conjunction with a linear precoder, such as Pre- 
coder One, outperforms either a training sequence on its own, such 
as Precoder Two, or a linear precoder on its own. That Precoder 
One outperforms Precoder Two can be seen by comparing Table 3 
to Table 5; not only does Precoder One improve the MSE by on 
average 3-6dB, it is more robust to different source and channel 
vectors (as seen by the significantly lower SD values). That Pre- 
coder One outperforms a linear precoder can be seen from Table 3 
which shows that as X -+ 1 the MSE and SD start to increase. 
This is consistent with the argument that linear precoders without 
a training sequence are sensitive to different source and channel 
vectors. 

Tables 2 and 3 refer to Precoder One and show that using only 
the training sequence to identify the channel gives comparable re- 
sults with the full MLE. This supports the intuition that the training 
sequence is best used for identifying the channel while the linear 
precoder is best used for spreading the spectrum to avoid channel 
spectral nulls. 

Comparing Table 1 with Table 2, and Table 4 with Table 5, 
shows that the constraint 11E;11 = 1 plays an important role in re- 
ducing the MSE. The constraint regularises the inversion of the 
channel, which is especially important when the SNR is low since 
the channel inversion problem becomes ill-conditioned. 

5. CONCLUSION 

This paper studied the problem of designing a precoder to facilitate 
the reliable transmission of a short message through an unkown 
FIR channel. It was argued that it is efficient to use a training 
sequence in conjunction with a linear precoder. Simulation results 
support the claims made throughout this paper. 
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