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Information transfer through a single neuron is a fundamental com-
ponent of information processing in the brain, and computing the
information channel capacity is important to understand this informa-
tion processing. The problem is difficult since the capacity depends on
coding, characteristics of the communication channel, and optimization
over input distributions, among other issues. In this letter, we consider
two models. The temporal coding model of a neuron as a communication
channel assumes the output is T where 7 is a gamma-distributed random
variable corresponding to the interspike interval, that is, the time it takes
for the neuron to fire once. The rate coding model is similar; the output
is the actual rate of firing over a fixed period of time. Theoretical studies
prove that the distribution of inputs, which achieves channel capacity, is a
discrete distribution with finite mass points for temporal and rate coding
under a reasonable assumption. This allows us to compute numerically
the capacity of a neuron. Numerical results are in a plausible range
based on biological evidence to date.

1 Introduction

It is widely believed that neurons send information to other neurons in the
form of spike trains. Although precise timings of spikes are important for
information transfer, it appears that spike patterns are not deterministic but
noisy (Mainen & Sejnowski, 1995). Information theory shows that when
a communication channel is corrupted with noise, the rate at which the
information can be transmitted reliably through the channel is limited. The
upper bound on the rate is known as the channel capacity (Shannon, 1948)
(in the rest of the letter, it is referred to simply as “capacity”). When a single
neuron is considered as a channel, the capacity is one of the fundamental
problems in neuroscience.
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The problem has been studied theoretically (MacKay & McCulloch,
1952; Rapoport & Horvath, 1960; Stein, 1967) and biologically (Borst &
Theunissen, 1999). Computing capacity is difficult since it depends on
multiple factors—type of coding, characteristics of the channel, and input
distributions. The type of coding has long been a subject of discussion
(MacKay & McCulloch, 1952; Baker & Lemon, 2000; Rullen & Thorpe,
2001). Mainly two types of coding, temporal and rate coding, have been
considered. Temporal coding uses interspike intervals (ISIs) to code
information, and rate coding uses the number of spikes in a fixed interval.
This letter examines both of them.

The channel model is deeply related to the noise of ISIs. Baker and
Lemon (2000) reported that the statistical properties of ISIs recorded from
primary motor cortex and supplementary motor area (SMA) of monkeys
are similar to the gamma distribution. Shinomoto, Shima, and Tanji (2003)
and Shinomoto, Miyazaki, Tamura, and Fujita (2005) studied spike trains
from multiple areas and proposed a statistical index that describes the
randomness of ISIs.! The index is deeply related to the gamma distribution
(Shinomoto et al., 2003; Ikeda, 2005). In this letter, ISIs are modeled with
a gamma distribution. The model is different from the channel model in
MacKay and McCulloch (1952), where spikes are assumed to be aligned
within a fixed time precision.

The capacity is defined as the supremum of mutual information over
possible input distributions. In this letter, a natural assumption is posed,
that is, the average firing rate of a single neuron is restricted in an interval.
Under this assumption, we consider all possible input distributions
and prove that the capacity of each coding is achieved by a discrete
distribution that has only finite mass points. The proof of the discreteness
of capacity-achieving distributions for each coding shares the steps with
other studies of information theory (Smith, 1971; Shamai (Shitz), 1990;
Abou-Faycal, Trott, & Shamai (Shitz), 2001; Gursoy, Poor, & Verdd, 2002,
2005). These studies have shown the discreteness for some channels with
appropriate assumptions on the input distributions. Our result shows
that the information is maximally transmitted through a single neuron
when the inputs to the neuron have only a fixed number of “modes.”
This is important for biological experiments, since if the input distribution
is discrete, the experimentalists have to consider only discrete and finite
modes of inputs or stimuli. After the proof, the capacity and the capacity-
achieving distribution for each coding are computed. Unfortunately
we have not obtained any analytical solution, and they are computed
numerically. The results show that the capacity is around 15 to 50 bits

IData from pre-SMA, SMA, rostral cingulate motor area (CMATr), and prefrontal corti-
cal area (PF) of monkeys are studied in Shinomoto et al. (2003), while data from different
layers of area TE of monkeys are studied in Shinomoto et al. (2005).
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Figure 1: Simulated spike trains. ISIs follow a gamma distribution, where the
shape parameter « is 0.75 for A and 4.5 for B. The expected values of ISI are
5msec in the upper trains and 50 msec in the lower trains for both Aand B.

per sec, the same order with the values reported in Borst and Theunissen
(1999).

The problem is formulated mathematically in section 2, and the dis-
creteness for each coding is proved in section 3. Section 4 shows numerical
studies, and the final section concludes with some discussion. Most of the
mathematical proofs are summarized in the appendix.

2 Single Neuron Channel

2.1 ISIs and Communication Channel. It has been reported that a
gamma distribution is a suitable model to describe the stochastic nature of
ISIs (Baker & Lemon, 2000; Shinomoto et al., 2003). The gamma distribution
has two parameters: the shape parameter « and the scale parameter 6. From
some studies, « of individual neuron appears to be constant (the value of
x may depends on the type of neuron), while 6 changes dynamically over
time.

Figure 1 shows simulated spike trains with two different shape param-
eter «’s. It is 0.75 in Figure 1A and 4.5 in Figure 1B. When « is small, spike
trains become more irregular. Ikeda (2005) and Miura, Okada, and Amari
(2006) studied the estimation methods of « from spike trains. Estimation of
k is regarded as the semiparametric statistical estimation (Bickel, Klaassen,
Ritov, & Wellner, 1993).

In this letter, we focus not on the estimation but on the information
processing of a single neuron. Based on the gamma distribution model, the
capacity of a neuron is investigated in the following sections.

2.2 Communication Channel and Capacity. Let X be the input to a
noisy channel and Y be the output. In the following, we assume X € X C
R is a one-dimensional stochastic variable, and let F(-) be a cumulative
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distribution function of X. Communication channel is defined as a stochastic
model described as p(y | x), and the mutual information is defined as

p(y | x)
p(y)

where p(y) = / . p(y | x) dF(x).

= [ Pl | 9)log du(y) dF(x),
xeX Jye

@.1)

Here, 11(y) denotes the measure of y € ). Since the channel is defined as
p(y | x), I(X; Y) is a functional of F(-), and we denote it as I (F).

Let F be the set of cumulative distribution functions of X. The channel
capacity is defined as

C =sup I(F). (2.2)
FeF

For a noisy channel, one interesting fundamental problem is to compute
the capacity C. Another interesting problem is to obtain the distribution, if
it exists, which achieves the capacity.

2.3 Single Neuron: Channel and Coding. Let us discuss a neuron
model. First, we have to define X and Y of a neuron communication channel.

The distribution of each ISI is assumed to be independent and to follow
a gamma distribution. Let T denote an IS, a stochastic variable following
a gamma distribution, that is, T ~ I'(k, #), where x > 0 and 6 > 0 are the
shape and the scale parameter, respectively.

We assume « of each neuron is fixed and known. Shinomoto et al. (2003)
define a statistical index Ly (local index), to characterize each neuron. For a
T ~T'(k,0), Ly = 3/(2« + 1) holds. From their investigation with biological
data, it seems most of the cells” Ly are lying in an interval (0.3-1.2), and «
is thus assumed to be in an interval « € [k, kpm] (kn and Kk are set to 0.75
and 4.5, respectively, in section 4).

Under the assumption, the scale parameter 6 is the only variable param-
eter that plays the role of input, that is, X in section 2.2. The density function
of tis

., k,0>0,t>0,

t”1> exp[—t/6]

pe10i) = (G ) L

where we denote it as p(f | 0; k) to show 6 is a stochastic variable and « is
a parameter. The gamma distribution is an exponential family:

p(t1]0; k) =exp [—%t + (k —1)logt —logI'(k) — k log9:| . (2.3)



1718 S. Ikeda and J. Manton

The sufficient statistics are T and log T. The expectations of them are

T =«0, logT =y(k)+logo,

where v (-) is the digamma function defined as ¥ (x) = I''(x)/ I'(x) for x > 0.
The conditional entropy becomes

H(T | 0;/{):—/0 p(t10;k)log p(t | 0; k)dt
=k — (k — D (x) +log ' («) + logo.

Next, let us consider the family of all the possible distributions of input 6.
Noting that ISI is positive and is not infinite if the neuron is active, it is
natural to assume that the average ISI, which depends on 6 and «, is limited
between ap and by (a9 and by are set to 5msec and 50 msec, respectively, in
section 4), that is,

a9 <T =« <bg, where 0 <ay< by < 0.

Thus, 6 is bounded in (k) = {6 | a(x) < 6 < b(x)}, where a(x) and b(x) are
defined as

a(k) =ag/k, bk)="Dby/k.

In the following, a(k), b(x), and ©(x) are denoted as a, b, and ®, respec-
tively, as far as no confusion arises. Let us define F () as the cumulative
distribution function of # and F as the set of all possible F (), that is,

F={F:R—[0,1]| F©)=0, (V0 <a),
F@)=1, (¥0 > b)l. (2.4)

Note that every F e F is right-continuous and nondecreasing on ®, and F
includes continuous and discrete distributions of 6.2

Next, let us consider Y, the output of the channel of a neuron communica-
tion channel. There are mainly two different ideas in neuroscience. One idea
is that Y is ISI, T, itself (see MacKay & McCulloch, 1952, for example). This
is called temporal coding (see Figure 2). The other is that Y is the rate, which
is the number of spikes in fixed time intervals (see Stein, 1967). This is called
rate coding (see Figure 2). In communication theory, “coding” is often used

2In Stein (1967), the distribution of 6 was assumed to be discrete. We do not assume it
in this letter.
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Figure 2: Two types of coding: temporal coding and rate coding.

Y

for “source coding,” “error-control coding,” and “cryptography coding.”
It seems that modulation is a more suitable term for the above definition.
However, we follow the standard usage of the neuroscience community.
How to encode (or to modulate) the input 6 to the neuron channel depends
on which coding is used. For temporal coding, 6 is fixed during the interval
t, while 0 is fixed during A for the rate coding. We discuss this in section 5.

Mutual information and the capacity also depend on coding. The capac-
ity of each coding is formally defined in the following.

2.3.1 Temporal Coding. In temporal coding, received information is T.
For F € F, we define the marginal distribution as

b
peFoo) = [ pt1 0550 dF@) 25)

where p(t | 0; ) is defined in equation 2.3. The existence of p(t; F, k) follows
from the existence of p(t | 0; k). The mutual information of T and 6 is
defined as

b
IT(F):/ ir(9; F)dF(®), where

o Py= [ : pit16:0)
ir(0; F)_/(; p(t|6;«)log (& F. %) dt. (2.6)
Let us define g(t; F, k) and rewrite p(t; F, k) as
(l" F ) — /b M,ﬂ:(@) (i" F ) = ﬁ (i" F ) (2 7)
g(t; ,K—u o . plt ,K_F(K)g, L K). .

The mutual information I7(F) is rewritten as

IT(F) = I’lT(F; K) — K I’ZTW(F; I() — K,
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where
hr(F; )= —/ p(t; F,k)logg(t; F, k) dt,
0
b
hT‘g(F; K)=/ IOdeF(G)

Hence, the capacity per channel use or equivalently per spike is defined as

CT = sup IT(F) = sup(hT(F; IC) — KI/ZT‘@(F; I()) — K.
FeF FeF

The capacity Cr and the distribution that achieves Ct are studied in the
next section.

2.3.2 Rate Coding. In rate coding, a time window is set, and the spikes
in the interval are counted. Let us denote the interval and the rate as A and
R, respectively, and define the distribution of R as p(r | 6; x, A). The form
of the distribution of R is shown in the following lemma:

Lemma 1. The distribution p(r | 6; k, A) has the following form,
p(r |05k, A) = P(re, A/9) — P((r + 1)k, A/O), v € Z%, (2.8)

where Z* denotes the set of nonnegative integers and P(w, x) is the reqularized
incomplete gamma function:

1 X
P0,x)=1, P(a, x)= @/0 t~le~tdt, fora,x > 0.

Proof. See Appendix A. The same distribution is discussed in Pawlas,
Klevanov, and Prokop (2008).

When « =1, a gamma distribution is an exponential distribution, and
the distribution of R becomes a Poisson distribution:

p(r16:1,A) = <§>rexp[—A/9]_

r!

Foran F € F,letus define the following marginal distribution p(r; F, «, A):

b
p(riF .k, A) = / p(r | 0: k. A) dF(0).
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The existence of the integral follows from the existence of p(r | 8; «, A). The
mutual information of R and 6 is defined as

b
IR(F):/ ir(0, F) dF(9), where

p(r16;x, A)

ir (0, F):Z p(r 105k, A)log m

r=0

(2.9)

Hence, the capacity per channel use or, equivalently, per A is defined as

Cr = sup Ir(F).
FeF

The capacity Cr and the distribution that achieves Cr are studied in the
next section.

3 Theoretical Studies

The cumulative distribution F € F is a right-continuous nondecreasing
function on a interval ®. Thus, 6 can be a discrete or continuous random
variable over ©®. In this section, the capacity-achieving distribution of a
single neuron channel is proved to be a discrete distribution with finite
mass points for both temporal and rate coding.

For some channels, the capacity-achieving distributions have been
shown to be discrete under some conditions (Smith, 1971; Shamai (Shitz),
1990; Abou-Faycal et al., 2001; Gursoy et al., 2002; Tchamkerten, 2004). The
neuron channel with temporal coding is different from those because it does
not have an additive noise and the proof must be provided independently.
The rate coding with « = 11is equivalent to the Poisson channel, and the dis-
creteness of the capacity-achieving distribution is proved in Shamai (Shitz)
(1990). The proof is easily extended to the case where « is a positive integer.
But we need to prove it for positive real «’s. Note that although the proofs
of the discreteness in this letter are original, they follow the same steps of
those papers.

3.1 Steps to Prove the Discreteness of the Capacity-Achieving
Distribution. The common steps of the proof for the discreteness of the
capacity-achieving distributions are shown in this section. In the follow-
ing, the results of optimization theory and probability theory will be used.
Suppose X is a normed linear space. In optimization theory, the space of
all bounded linear functionals of X is called the normed dual of X and is
denoted X*. The weak* convergence is defined as follows:

Definition 1. A sequence {x;;} in X* is said to converge weak* to the element x* if
for every x € X, x(x) — x*(x). In this case, we write x*(x)=>x*(x) (Luenberger,
1969, 5.10).
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If X is the real normed linear space of all bounded continuous functions
on R, X* includes the set of all probability measures, and it is clear that
“weak convergence” of probability measures is “weak* convergence” on
X*. The results of optimization theory are applied to probability measures
with this equivalence. The following theorem is used to prove the existence
and the uniqueness of the capacity-achieving distribution:

Theorem 1. Let | be a weak® continuous real-valued functional on a weak*
compact subset S of X*. Then ] is bounded on S and achieves its maximum on S.
If S is convex and | is strictly concave, then the maximum,

C = max J (x¥), (3.1)

x*eS
is achieved by a unique x* in S.

Proof. See Luenberger (1969, 5.10), Abou-Faycal et al. (2001), and Gursoy
et al. (2002).

From the above discussion, F in equation 2.4 is a subset of X*. It is clear
that F is convex. Thus, if F is weak* compact and Ir(F) (or Ir(F)) is a
weak* continuous functionon F € F and strictly concave in F, the capacity
is achieved by a unique distribution Fy in F. This is the first step of the
proof. The following proposition states F is compact.

Proposition 1. F in equation 2.4 is compact in the Lévy metric topology.

Proof. For the proof of compactness, see Smith (1971) (proof of proposi-
tion 1). The proof is a direct application of Helly’s compactness theorem
(Doob, 1994, sec. X).

The Kuhn-Tucker (K-T) condition on the mutual information is used for
the next step of the proof. Before showing the condition, we define the weak

differentiability:

Definition 2. Let | be a function on a convex set F. Let Fy be a fixed element of
F and n € [0, 1]. Suppose there exists a map ] : F — R such that

FekF.

1—n)F F)—]J(F
Byl L@ = DFa+0F) = (F)
nl0 n
Then | is said to be weakly differentiable in F at Fo and ] (F) is the weak
derivative in F at Fy. If | is weakly differentiable in F at Fy forall F € F, | is
said to be weakly differentiable in F.
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The K-T condition is described as follows:

Proposition 2. Assume | is a weakly differentiable, concave functional on a
convex set F. If | achieves its maximum on F at Fy, then a necessary and sufficient
condition for Fy to attain the maximum is to satisfy the following inequality for all
FeF:

J£,(F) < 0.
Proof. See proposition 1 in Smith (1971).

If I7(F) (or Ir(F)) is weakly differentiable, the K-T condition is derived
immediately with the theorem. Finally, the discreteness is proved by deriv-
ing a contradiction based on the K-T condition and the assumption that Fy
has infinite mass points as its support. Thus, in order to show the discrete-
ness of the capacity-achieving distribution for temporal and rate codings,
the following properties must be shown:

1. Ir(F) and Ir(F) are weak* continuous on F and strictly concave.
2. Ir(F)and Ir(F) are weakly differentiable.

After these are shown, the K-T condition is derived, and the discreteness
and the finiteness will be checked.

3.2 Discreteness of the Capacity-Achieving Distribution for Temporal
Coding. In this section, the capacity-achieving distribution for temporal
coding is shown to be a discrete distribution with a finite number of points.
We start with the following lemma:

Lemma 2. I7(F) in equation 2.6 is a weak* continuous function on F € F and
strictly concave in F.

Proof. Section B.1 proves I7(F) is a weak* continuous function. It(F) can
be proved to be strictly concave following the proof of lemma 2 in Abou-
Faycal et al. (2001).

Lemma 2 and theorem 1 imply that the capacity for temporal coding is
achieved by a unique distribution in F. In order to show it is a discrete

distribution, the following lemma and corollary are used:

Lemma 3. I (F)inequation 2.6 is weakly differentiable in F. The weak derivative
at Fo € F has the form

b
Ij . (F) = / i7(0: Fo) dF — Ir(Fo) — . (3.2)
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Proof. See section B.2.

Corollary 1. Let E denote the points of increase of Fo(6) on 6 € [a, b]. Fy is
optimal if and only if

it(0; Fo) < It(Fp) +k, VO €@ (3.3)

ir(0; Fo) = It(Fo) +«x, V6 € Ey. )
Proof. This is proved following the same steps in Smith (1971, corollary 1),
with equation 3.2.

The main result of this section is summarized in the following theorem:

Theorem 2. Under the constraint 6 € ®, the channel capacity of a single neuron
channel with temporal coding is achieved by a discrete distribution with a finite
number of mass points.

Proof. The extension of ir(6; Fy) to the complex plain z is analytic for
Rez > 0, which is defined as

it(z; Fo) = —« logz — / p(t | z; k)g(t; Fo, k) dt.
0

If Eo in corollary 1 has infinite points, since ® is bounded and closed, Ej
has a limit point. Hence, from corollary 1, the identity theorem implies
it(z; Fo) = IT(Fo) + « for the region Rez > 0. This region includes positive
real line R, and

—/ p(t | 0; «)logg(t; Fo, k) dt =k log6 + It(Fo) +«k, 6 € RT (3.4)
0

is implied. The left-hand side of equation 3.4 is bound as follows (see
section B.1, equation B.4):

%/ tp(t|9;/c)dt—|—/<logu§—/ p(t | 6;«k)logg(t; Fo, ) dt
0 0

1 o0
Sz;/ tp(t|6;k)dt+klogh. (3.5
0

Since the expectation of T with regard to p(t | 0; «) is k8, equation 3.5 shows
that the left-hand side of equation 3.4 grows linearly with 6. Since the right-
hand side increases only with log 6, equation 3.4 cannot hold for all 6 € R*.
This is the contradiction, and the optimal distribution has a finite number
of mass points.
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3.3 Discreteness of the Capacity-Achieving Distribution for Rate Cod-
ing. The capacity-achieving distribution for rate coding is shown to be a
discrete distribution with a finite number of points. Shamai (Shitz) (1990)
proved that the capacity-achieving distribution of a Poisson channel under
peak and average power constraints is a discrete distribution with a finite
point of supports. Since 6 € © is a peak constraint, this directly proves the
case k = 1. For « # 1, further study is needed.

Lemma 4. Ig(F) in equation 2.9 is a weak* continuous function on F € F and
strictly concave in F.

Proof. Section C.1 proves Ir(F) is a weak* continuous function. The con-
cavity of Ir(F) can be proved as in Abou-Faycal et al. (2001). The proof for
the strict concavity follows the proof in section 7.2 of Shamai (Shitz) (1990),
which is an application of Carleman’s theorem (Akhiezer, 1965).

Lemma 4 and theorem 1 imply that the capacity for rate coding is
achieved by a unique distribution in F:

Lemma5. Ig(F)inequation 2.9 is weakly differentiable in . The weak derivative
at Fy € F has the form

b
Ij 5. (F) = / ix(0: Fo) dF — Ix(Fo). (3.6)

Proof. The proof is identical to the proof of lemma 3 in section B.2.

Corollary 2. Let E denote the points of increase of Fo(6) on 0 € [a, b]. Fy is
optimal if and only if

ir(0; Fo) < Ir(Fp), VO €©O a7
ir(0; Fo) = Ir(Fp), V6 € Ey. :

Proof. This is proved following the same steps in Smith (1971, corollary 1)
with equation 3.6.

Finally, the following theorem proves that the capacity-achieving distri-
bution is a discrete distribution with a finite number of mass points:

Theorem 3. Under a peak constraint, the channel capacity of a single neuron
channel with the rate coding is achieved by a discrete distribution with a finite
number of mass points.
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Outline of proof. The proof follows the same steps of theorem 2. The
extension of iz(6; F) to the complex plain z is defined as

. - p(r |z k, A)
. F :2 ke, A)log 22
ir(z; F) 2 p(r |z «, A)log o FoxA)’

p(r | z; 6, A)=P(re, AJz) — P((r + 1)k, A/z).

Since P(w,z) and logz is analytic for Rez > 0, ir(z; Fo) is analytic for
Rez > 0.

If Eo in corollary 2 has infinite points, since ® is bounded and closed, Eg
has a limit point and, hence, from equation 3.7, the identity theorem implies
ir(z; Fo) = Ir(Fp) for the region Re z > 0. This region includes positive real
line RT, and

p(r|6;x, A)

2 — JR(F R* .
o(r: Fo.x, &) r(Fo), 0 € (3.8)

Z p(r|0;«, A)log

r=0
is implied. The proof (see section C.2) is completed by deriving a contra-
diction for equation 3.8. The contradiction is derived for x > 1 and « < 1

separately.

4 Numerical Studies

Although the capacity-achieving distribution of each coding has been
proved to be discrete with a finite number of mass points, position and
probability of each point are not provided. Unfortunately, we do not have
an analytic solution. This is also the case for related work (Smith, 1971;
Shamai (Shitz), 1990; Abou-Faycal et al., 2001; Gursoy et al., 2005). In this
section, the capacity and the capacity-achieving distribution are computed
numerically for temporal and rate coding.

4.1 Common Steps of Numerical Experiments. Computing the capac-
ity and the capacity-achieving distribution of the neuron channel is difficult
since the closed-form expression of ir(0; F) in equation 2.6 and ig(0; F) in
equation 2.9 is not provided for a general discrete F (¢). Instead, we need to
evaluate integrals for i7(9; F) and summations of infinite series for ir(0; F).
For the numerical studies, integrals for it (0; F) are evaluated with the
Gauss-Laguerre quadrature, and infinite series for iz(¢; F) are truncated to
sufficiently long finite series.

The strategy to compute the capacity and the capacity-achieving distri-
butions for temporal and rate coding is as follows. Note that related work
uses similar methods (Smith, 1971; Abou-Faycal et al., 2001; Gursoy et al.,
2005).
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—

Initialize N, the number of points, as 2.
2. Set the position and probability of each point as 6; and 7, (j =
{1, ..., N}), respectively, where

alk)<6y <---, <0y <b(k),

N
anzl, wi>0, je{l,...,N}
j=1

3. Starting from some initial values, maximize the corresponding mu-
tual information (I7(F) or Ir(F)) with respect to {#;} and {7;} until
convergence with a gradient method.

4. When it converges, check the corresponding K-T condition in (equa-
tions 3.3 or 3.7) to see if it is the capacity-achieving distribution.

5. If the K-T condition is satisfied, the capacity and the capacity-
achieving distribution are obtained. Otherwise, increase N by 1 and
go to step 2.

The range of 6 must be specified for the numerical studies. The range of
the expected firing rate is defined as from 5msec to 50 msec and 5/« < 0 <
50/« . The choice of the range is discussed in section 5.

The capacity and the capacity-achieving distribution for temporal and
rate coding are computed for multiple values of k. As described in
section 2.3, a statistical index Ly has been proposed that characterizes
spike trains (Shinomoto et al., 2003). Its expectation is related to « as
Ly =3/(2« + 1). In the following numerical studies, we vary « from 0.75
to 4.5 (the corresponding Ly is from 0.3 to 1.2) for every 0.05. The range
corresponds to the most of the cells” Ly in Shinomoto et al. (2003, 2005).

4.2 Temporal Coding. Figure 3A shows the computed capacity for each
k. The capacity Cr (bit per channel use) increases monotonically as « in-
creases.’ This is natural since as k increases, ISIs become more regular, and
more information can be transferred. The capacity becomes larger than 1 bit
when k becomes 3.85.

The capacity-achieving distributions are shown in Figures 3C and 3D.
For each «, the distribution has only two or three points. Moreover, two of
them are ends of the range ©(x) (a0/« and bo/«). If « is smaller than 2.10,
there are only two points. When it is equal to 2.10, the number of points
becomes three. The position of the third point is very stable for different
«’s. The probability of each point is shown in Figure 3D. The probabilities
of both ends tend to be similar, while the probability of the third point
increases gradually as « increases.

The capacity Cr, is the maximum information transferred per spike. It is
also important to show the information rate. Since the capacity-achieving

3We used bit instead of nat by dividing capacity defined in equation 2.2 by log 2.
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distribution is computed, the following C7. (bit per sec) is defined:

N
Cr =Cr/T, where T=« anGj. 4.1)
j=1

Note that T is around 25 msec for all « in the experiments. The information
rate is shown as the function of « in Figure 3B. Further discussion is provided
in section 5.

4.3 Rate Coding. In rate coding, the time window A must be defined.
Since the average time for sending a symbol with temporal coding is around
25msec, A is set to 25 msec in the numerical experiment.

Figure 4A shows the computed channel capacity for each «. Cy increases
monotonically as « increases. The value is larger than Cr for the same «. It
becomes larger than 1 bit when x becomes 2.15.

The capacity-achieving distributions are shown in Figures 4C and 4D.
For each «, the distribution has two to four discrete points, and two of
them are ends of the range ©(x) (a9/x and by/«). For k < 1.25, there are
only two points. For 1.25 < k < 4, there are three points, and it becomes
four for ¥ > 4.0. The probability of each point is shown in Figure 3D. The
probabilities of both ends tend to be similar, while the probability of the
third point increases gradually as « increases. When the number of mass
points is four, two middle points have similar probability.

In rate coding, the information rate is easily computed. Since A is
fixed, the rate is computed as C; = Cr/A (bit per sec), which is shown in
Figure 4B.

5 Discussion and Conclusion

We have proved the channel capacities of a single neuron with temporal
and rate coding are achieved with discrete distributions. Numerical studies
show that the number of mass points is from two to four depending on
coding and «. The capacity of a single neuron evaluated in this letter is
lower than what has been reported in MacKay and McCulloch (1952) and
Rapoport and Horvath (1960) (1000 to 4000 bits per sec), and its order
is similar to biologically measured capacities of sensory neurons (Borst
& Theunissen, 1999). However, this does not mean the capacity can be
achieved biologically. The problem has been simplified in our study, and
the details should be discussed. Since channel capacity depends on various
factors, each factor is discussed separately in the rest of this section.

5.1 Encoding: Input Distribution of 0. First, we discuss the input 6.
Since the ISI is positive and is not infinite if the neuron is active, the
constraint (¢ < 6 < B) seems to be natural. The range of 6 has been set
to [5msec, 50 msec] throughout the letter. The firing rate of each neuron
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depends on its type, and this range may not be plausible for some neurons.
Note that for temporal coding, if the “dynamic range” of the firing rate is
10 dB, the capacity per channel use is identical to the result of this letter. The
capacity of rate coding depends on the dynamic range and A; therefore, the
capacity result of this letter may not be appropriate for some neurons.

In the range ©(k), the distribution of 6 has been assumed to be memo-
ryless, that is, 6 can be different for every channel use. Scale parameter 6
must be changed every 5msec at most in temporal coding and 25 msec in
rate coding. Biologically speaking, # corresponds to the input to a neuron,
and it cannot be changed quickly since the neuron has capacitance. Thus,
the source would have memory. This implies the biologically achievable
rate should be smaller than the capacity obtained in the numerical studies.

Another problem is the duration to keep the input 6, especially for tem-
poral coding. When 6 is fixed for some duration, the neuron fires according
to the gamma distribution; however, the “sender” cannot know when the
“receiver” receives the spike. In order to detect an ISI, the receiver must
receive two spikes, and it is not clear how the sender can be synchronized
with the receiver. One idea is to have a common clock and fix 6 in an inter-
val. This situation turns out to be rate coding. Another idea is to fix 6 for a
time proportional to the expected ISI, k6. In this case, the receiver may miss
some spikes. In either case, the transmitted information will be lower than
the numerically computed capacity.

When « = 1, the rate coding becomes identical to the “Poisson channel”
(Bar-David, 1969; Shamai (Shitz), 1990; Guo, Shamai (Shitz), & Verdu, 2008).
There is a great deal of work on the Poisson channel communication, and
many types of constraints on the input distributions have been considered
(Verdu, 1999, provides a summary of Poisson channel communications).
Our constraint is a memoryless peak energy constraint, and other con-
straints can be added. One of the commonly used constraints is the average
energy constraint, that is, 62 < C. Even if we add an average energy con-
straint to a peak power constraint, we believe the optimal distribution is
still discrete for each coding. This has been proved for Poisson channel in
Shamai (Shitz) (1990), and its extension to general values of k seems possi-
ble. For the temporal coding, the proof can be straightforwardly extended,
as in Smith (1971). However, we do not know how to set C, which prevents
us from employing an average energy constraint. Note that adding an av-
erage energy constraint possibly makes the set F, and thus the capacity,
smaller, and our result is the upper bound of the capacity with an average
energy constraint.

The capacity-achieving distributions are discrete distributions with finite
mass points. Although this is good in the sense that neurons can transfer
information maximumly with discrete numbers of “firing modes,” this does
not imply neurons are using only discrete modes. The input of each neuron
may vary continuously. The result in this letter shows that even if the
input has rich information, the sender cannot send more information than
a Markovian source with finite discrete states.
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5.2 Noisy Channel Model. Characteristics of neurons strongly depend
on their types. MacKay and McCulloch (1952) assumed that a neuron is
be able to fire within a fixed time precision. They have concluded that the
each spike can carry up to 9 bits of information, and approximately 1000
to 3000 bits per second could be transferred theoretically. Compared to
some biological studies summarized in Borst and Theunissen (1999), this
observation might be optimistic. We modeled the stochastic property of
them with a gamma function. This is quite different from the model in
MacKay and McCulloch (1952).

We set the value of « between 0.75 to 4.5, which has been indicated in
Shinomoto et al. (2003); however, in Baker and Lemon (2000), « is set to
16, which is much larger than our choice.* As k increases, the capacity and
the number of mass points of the capacity achieving distribution increase;
therefore, the capacity and the number of mass points for « = 16 would
be much larger than our numerical results. We have not shown numerical
results for « = 16, since it is difficult to carry out numerical experiments
with a large x because of numerical precision. This may be solved in the
future.

Itis also interesting to consider the communication channel with multiple
neurons. If there are m neurons, which follows the same gamma distribution
I'(k, 6), the sum of ISIs follows I'(mk, #) and the average of ISIs follows
I (mk, 0 /m). Since the channel capacity Cr and Cr increases as k increases,
the channel capacity will be larger with multiple neurons. Note that the
capacity-achieving distribution is still a discrete distribution with finite
probability mass points.

5.3 Decoding. The capacity is the maximum of transferred information.
In order to achieve the capacity, the receiver must act as an optimal de-
coder. Let us define the position and probability of the capacity-achieving
distribution for temporal and rate codings as {0r;, 7r;} and {6r;, 7R},
i=1,..., N, respectively. The optimal decoder for the temporal decoder
computes the following posterior probability when ¢ is observed,

mr,i pt | 015 k)
WT,i

L= L ie{l,... N},
Yoomri p(t | Oris k)

while the optimal decoder of the rate coding computes the following
posterior probability when r is observed:

R p(r | Oris &, A)
WR,i

i= , ief{l,...,N}L
' Yoo R P | Oris Kk, A)

“One of the reviewers indicated the value of ¥ might be much larger than that given
by current references in the literature.
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The discrete distributions wr; and @wg; are the posterior distributions of
the input 6 conditioned on the observations. This “soft decoding” is natural
from a mathematical viewpoint; however, it may not be plausible to assume
that the postsynaptic neuron is computing wr; and @y ; since the compu-
tation is complicated and the value of x must be known by the neuron.

Another natural decoding is hard decoding; depending on ¢ or r, only
a single 6 is considered as the decoding result. The Bayes optimal hard
decoding is to choose the 6; which maximizes the posterior distribution. In
the case of single-neuron information channels, the hard coding results for
temporal and rate coding are defined as, respectively,

Or =argmax wr,; = argmax nr; p(t | Or.i ; k),
or.i or.i

Or =argmax wg,; = argmax wr,; p(r | Or,i; k, A).
OR,i OR,i

Each decoder becomes a simple threshold function. Figure 5 shows the hard
decoding boundaries for temporal and rate coding. In temporal coding, t is a
nonnegative real number, and decision boundaries are shown in Figure 5A.
In rate coding, r is a nonnegative integer, and decisions for integers are
shown in Figure 5B.

Note that the boundary in Figure 5A is stable between « = 0.75 to 2.6,
and even if the capacity-achieving distribution has three states for x > 2.10
(see Figure 3), the third point does not appear in decisions until « > 2.6.
Similar results are observed for rate coding. Although the number of points
is more than 3 if ¥ > 1.20 (see Figure 4), the decision becomes three points
only when « > 1.55. Even if the number of points is four for « > 4.00, it
does not appear as the hard decision. Decision boundaries are not sensitive
to small changes of «.

When hard decoding is employed, both input and output are discrete,
and transferred information can be computed easily. The transferred in-
formation with the capacity-achieving distribution and the optimal hard
decoders are shown in Figure 6. It shows that the transferred information
is degraded from the optimal soft decoder; however, the lost information is
not very large.

5.4 Related Work. Stein (1967) has discussed the channel capacity of the
rate coding where a gamma distribution with a fixed « was the ISI model.
The input was assumed to be a discrete distribution of the scale parameter
0 on an interval, which happened to be optimal, and the capacity was
computed numerically in a similar manner.

Although the assumption corresponds to the optimal distribution, the
discreteness had not been proved. We believe this letter is the first to prove
the discreteness of the optimal distribution for general «, not only for rate
coding but also for temporal coding.
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Finally we note that similar work has emerged recently in a slightly
different context (McDonnell & Stocks, 2008; Nikitin, Stocks, Morse, &
McDonnell, 2008).

5.5 Conclusion. The channel capacity and the capacity-achieving distri-
bution are obtained for a single neuron information channel. ISIs are mod-
eled with a gamma distribution, and two types of coding, temporal and rate,
are considered. Capacity-achieving distributions are proved to be discrete
distributions with a finite number of points. Numerical studies show that
the number of the points is relatively small for a moderate choice of «. It
should also be noted that neurons may not use efficient error-control codes,
which requires a fairly long delay. Instead, the actual encoding and decod-
ing may be very simple and far from optimal as far as the rate is concerned.

The result does not necessarily imply that the neuron is using discrete
states as ISIs or that the decoding is soft decoding. However, the infor-
mation capacity gives the upper bound of the information, which can be
transferred through a single neuron. This limit has implications. If the input
is a continuous distribution, the transferred information is lower than the
capacity, and if hard decoding is employed, the transferred information is
lower than the capacity.

Inneurophysiological experiments, many trials are accumulated because
signals are generally noisy. The results of this letter provide a general guide
for how much information could be obtained through a single recording.
Also it gives suggestions for the field of brain-machine interface or brain-
computed interface (BCI), which tries to extract information from neurons’
spikes.

Appendix A: Proof of Lemma 1

The lemma is proved by induction.
p(0 ] 0; k, A) is the probability that T is larger than A. Since T ~ I'(x, 0)

1 Ay 1
=1- ““eTMdu=1— Pk, Ap),
) /0 u“ e "du (k, Ay)

where Ay = A/6. Assuming equation 2.8 is true for a m € Z*, p(m+1 |
0; k, A) is written as follows:

A k—1 _
p(m+1|9;K,A):/O <t0K )%p(ﬂﬂ@;x,(A—t))dt

Ag
= F(l/c) /0 e [P (mk, (Ag — 1))

— P((m + D)k, (Ag — u))] du. (A1)




Capacity of a Single Spiking Neuron Channel 1737
If the following relation holds for m € Z*, it completes the proof:

1
(k)

/AH wle " P(mk, (Ag — 1)) du = P((m + 1)k, Ag). (A.2)
0

Equation A.2 is easily checked for m = 0: m € Z* (Z* denotes the set of
positive integers) is justified as follows:

1 Ay )
K=lp=up (A — d
T /0 u"e (mk, (Mg —u)) du
1 Ag 00 A _ mi+i
= / wlemH [ e (Ao Z o1 du
(k) Jo = FC(mk +1+1)
_ 1 e—AH i 1 /Agux—l(Ae _ u)m/(+i du
(k) = F(mk +i+1) Jy
00 A (et

= P((m+ Dk, Ap),

ViV
=¢ ;F((m—l—l)/c—i-i—l—l)

where the following relations of P(«, x) and the beta function have been
used:

S et
P(ax—exZFa+l+1 a,x >0,
i= (A3)
- - T (r)
B(B,y) =/ 1 -ttt = ——"2 B,y > 0.
0 r+vy)
Note that equation A.3 follows from the following equation:
n-1 ot
P(a,x)=Pla+n,x)+e* _—,
(@ x) (@ ) ; Mo +1+1) (A.4)
lim P(w +n,x)=0, «,x>0.

n—oo

Since equation A.2 holds for m € Z*, equation A.1 becomes
pm+1]0;«, A) = P((m+ 1k, Ag) — P((m+2)k, Ag).

Equation 2.8 holds for every r € Z*.
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Appendix B: Capacity-Achieving Distribution
for Temporal Coding

B.1 Proof of Lemma 2: IT(F) is Weak* Continuous. Ir(F) is weak*
continuous if the following relation holds,

F,F = Ip(F,) — Ir(F), (B.1)
since IT(F) = hr(F; k) — k hrjp(F; k) — k; more precisely,
FuS F = hy(Fpi k) — hr(Fik) and  hppp(Fn: &) = hrpp(F: k).

hrio(Ey; k) = hro(F; «) holds since hrg(Fp; k) = f: log 6 dF,(6) and log#6
is a bounded continuous function for § € ©.
Next we show the following equalities:

lim hp(Fy;6)=— lim/ p(t; Fu, k)log g(t; Fu, k) dt
n n 0
= —/ lim p(t; Fy, «)logg(t; Fu, k) dt (B.2)
0 n
:—/ p(t; F,k)logg(t; F, k) dt = ht(F; k). (B.3)
0

The interchange of integral and limit in equation B.2 is justified as follows.
From equations 2.5 and 2.7, p(t; F, ) and g(¢; F, k) are bounded as follows:

=1 exp[—t/a] _
be W < p(t,Fn,K') <

=1 exp[—t/b]
ax (k)

(B4)

t t
i klogh <logg(t; Fy, k) < T kloga.

From these bounds, p(t; F,, «)log g(t; F,, «) is bounded for all F,, with finite
A; and A, as follows:

|p(t; Fy, k) 1og g(t; Fp, k)| < Apt“Le /0 4 Ay t<e™'/", (B.5)

The right-hand side of equation B.5 is integrable as

/ [ArtTle " + Ay te /] dt = T(c)b" (A + kb A).
0
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Since equation B.5 is bounded from above with an integrable function,
equation B.2 is justified by the Lebesgue-dominated convergence the-
orem. Since p(t | 6;«) and exp[—t/60]/6* are continuous bounded func-
tions of 6 € ®, p(t; F,«x) and g(t; F, k) are a continuous function on F,
p(t; Fu, k)log g(t; Fu, k) is also continuous for every F, € F. These argu-
ments justify equation B.3, and equation B.1 is justified.

B.2 Proof of Lemma 3. Let us define F, and rewrite it(f; F) in equa-
tion 2.6 as follows:

Fy=(1—n)Fo+nF,
it(0; F)=—«log6 — / p(t|6;k)logg(t; F,«) dt.
0
Then
b b
In(F,) — Ir(Fo) = / ir(6: F,) dF, - / i (9: Fo) dFy

b b
= [ [ire: £y de— [z, dFo] (B.6)

b
+ / lir (6 F,) — i7(0: Fo)] dF. (B.7)

The weak derivative of I7(F) at Fo is defined as I1 ¢ (F) = limyo(Ir(F;) —
I7(Fo))/n. By dividing the term in equation B.6 with n and by taking | 0,
it becomes

b b b
/ i (6: Fo) dF — / i7(6; Fo) dFo = / ix(0: Fo) dF — Ir(Fo) — k.
a a a

By noting g(t; F,, k) = (1 —n)g(t; Fo, k) +ng(t; F,«), the term in equa-
tion B.7 becomes 0. Thus, the weak derivative becomes

b
Iy (F) = [ (01 Fo) dF — Ir(Fo) —x,
a
which does exist and Ir(F) is weakly differentiable.

Appendix C: Capacity-Achieving Distribution
for Rate Coding

C.1 Proof of Lemma 4. First, the following proposition is shown:

Proposition 3. The expectation of R with respect to p(r | 0; k, A) is finite.
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Proof. The expectation of R is

00 oo 00 00 A1K+1
RK,A9=Zr p(r|9,K,A)=ZP(7’K Ae HZZFI’K—FZ-’—l
r=0 r=1 r=1 i=0

Since P(«, x) is a strictly decreasing function of & fora > 0, x > 0,ifx > 1
P(ri, Ag) < P(r|k], Ay), reZ.

Thus, the upper bound is given as

fLKJ+1 Ar+1
—Ay —AH
Rea, <e <
B ;;F(I‘LKJ-FZ-FD ZZF(r+1+1)
=R1.a, = A,

where R; A, = Ap holds from the fact that p(r | 0; 1, Aglis a Poisson distri-
bution. For k <1, P(r«, Ag) < P(|rk], Ap) holds, and R, A, is bounded as
follows:

N Ar:(+z . AU’KJ-H
Reay=e ;;F(I’K-I-l—f-l) ZZF(WHzH)
17 o e AL 1
< 0 [ — A -
_IVK—‘e ;;F(r+i+1)+ K
1
<’7*—‘(A9+1)
K

Ir(F) is weak* continuous if the following relation holds:
F, 5 F = Ig(F,) — Ix(F). (C.1)
From the definitions of Iz(F) and ir(0, F) in equation 2.9,
b
Ir(F) = / ir(0, F) dF(9).
a

Since ir(0, F) is a positive continuous function of 6, if it is bounded from
above, this is justified from the Helly-Bray theorem. It will be shown sepa-
rately for« > 1and « < 1.
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For « > 1: Since P(«, Ap) is a decreasing function of a, the following
inequality holds from equation A 4.
P(ri, Ag) — P(rc + k], Ag) < p(r | 05k, A)

< P(rk, Ag) — P(ri + k7, Ag)
lk]—1

ety A 16 )
Y s K,
L T +it1) |
R [k1-1 A;K+i
<e™ Y Be c2
=° ;r‘(rx+i+1) (©2)

With the above equation, p(r; F, k, A) is bounded from below as follows:

lx]=1 i
A:';H—z

p(r; F,k, A) = /pr|9KA)dF(9)>eAMZm,

where A, = A/b and Ay = A/a are the minimum and the maximum of
Ay, respectively. Thus,

k]=1 A
p(r10;k, A) _ Bt 2i%0 TG riD) = Bt (Ag)w
“F k. A lel-1 _ Apt A ’
pr: E k. A) Y20 oo "

where B is the following upper bound:

[k1-1 A Tk1—1 I'(re+1) Mk1-1
Zi:O l“(rk+8i+1) 1 + Z AIQ C(re+i+1) <1 + KZ Ai —B
ZLKJfl Al 1 + ZLKJ 1 Ai Tkt -
i=0  T(re+i+1) mT(re+i+1) i

With the result of proposition 3, iz(0, F) is bounded from above:

pr16;x, A)

:ZP(T |9,K, A)logm

r=0

A
<KAglogA—9—A9+AM+logB.

m
For k < 1: When « < 1, the following relation holds from equation A.4:

—Ag A(97+1)K

pr16:k, &) = Plric, o) = P((r + 1k +1, Ao) = o=
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Since P(w, x) is a decreasing function, the following relation holds:

E_A"Agﬂ)'(
C((r+ 1 +1)
< p(r10;«, A) < P(rk, Ag) — P(re + 1, Ag)

P(TI(, Ag) — P(TK +1, Ag) —

e R A C(rc +1)

- v AN~ 7 . A

F(rlc—i-l)( ToerrgD) SO IEA)
e—AgAzl(

The above equation gives the following bound of p(r; F, k, A):

b
p(r; F.,k, A)=/ p(r|0;k, A) dF(0)

—AM ATK
J AL 1- A%, I(re +1) '
C(re +1) I'(re +x+1)

From the property of the gamma function, I'(rk +1)/T'(r« + « + 1) de-
creases as r increases for r > 1/k, and there exists a finite positive integer
ro > 1/k such that, forallr > ro, the following inequality holds for a positive
real number C;:

I(re +1)

1-A,——— > Cy.

MT(rk +x +1) e

Thus,
p(r|0;k, A) e (Ag )rk 1 N (Ag )YK
LA i R 26 - )
; « _L@re+1)

p(r; F.k, A) An) 1= Ayt G Ay

With the result of proposition 3,

p(r16;«, A)

51:Zp(r | 6;k, A)log (i F . )

r=rp

1 A
<K ’7;—‘ (A@ +1)10gA79 — Ay —|—AM—IOgC1,

m

where S, is finite. It can be shown that there exists a real number C, > 0, such
that p(r | 0;x,A) > Cp forall 9 € ®, r € {0, ..., 79 — 1} and the following
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sum is finite:

ro—1

S = Z p(r 105k, A)log

r=0

p(r|6;«, A)
p(r; F, i, A)’

Thus igr(0, F) = S + S; is bounded from above.
C.2 Proof of Theorem 3. First, the following proposition is shown:

Proposition 4. As x — oo (x € R"), the following equation holds:

00 1
fim 2= PO —. mer*. (C.4)

X—00 X

Proof of proposition 4. From proposition 3 in section C.1, Y 72| P(rm, x) is
bounded from above with a linear function of x. Let us define the sum as
Sm(x). From equation A.3,

rm+1

Sp(x) = ZP(rm x)=e" er(rm—i-l-i-l)

r=1 i=0
It is easily checked that
xrm—k+i

d k . o0 00
<E+1> Sm(x)=e errm A kelo,...,m—1}.

r=1 i=0

Thus, the following linear differential equation is derived:

m +i

Z(—H) S (x)_e_xzzm

When the differential equation is solved, the general solution gives the
following form of S,,(x):

m—1
1 2ky/—1
S(x) = = + S et ~ B2 o —exp [”m} . (C5)

2
m
k=1

Since |Reay| <1, Re(—1+ax) <0 holds for ke{l,...,m—1}, and
limy o0 Sp(x)/x = 1/m.

Corollary 3. As 6 | 0, the expectation of R with respect to p(r | 0; k, A) grows
proportional to Ag = A /6.
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Proof of corollary 3. The expectation Ry, = o7 p(r |05k, A) is
bounded as follows:

D P(r[k1. Ag) < Ren, = Y Prc. Ag) < > P(rlil, Ay).

r=1 r=1 r=1

From proposition 4, > 72, P(r[«], Ag) and Y 2| P(r|«], Ag) grows propor-
tional to Ay, which proves the corollary.

Let us prove theorem 3.

For « > 1: From equation C.2, p(r; F, x, A) is bounded from above as
follows:

b [k1-1 ArK-H'
r; F,k, A) = 710k, A) dF@) < e ?n S
pri P )= [ p 1658 dF) > i
and
) ZLKJ71 Ag»cﬂ' "
pir 10, 8) phu—ty ZA=0 TEr D pyoa,-a, <&>
r;F,k, A M1-1 _ At A ’
P ) 20 ToarD M
where D is the following lower bound:
lxe]-1 A lk]=1 ri T(@rx+1)
20 TeeaD | 2ico DAbTrerin 1
W18y ST AL T T g R A
i=0  T(rx+it1) i=0 MT (re+i+1) i=1 M

This shows ig(#, F) is bounded from below as
. - Ay
ir(0, F) > k Ry a, logA— —Ag+ Ay +logD.
M

Since R,. A, grows with Ay as 6 | 0, the lower bound of ir(6, F) grows with
Aglog Ag. Thus, ig(0, F) cannot be finite and constant for V6 € R*, which
brings the contradiction.

For « < 1: From equation C.3, p(r; F, k, A) is bounded from above as
follows:

—A rK
e Sm A

p(r; F e, A) < m

(C.6)
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Let us denote r as

1
r=r'K+b, where K:’Vf-‘, r'ez*, bef0,...,K—-1}.
K

r"and b can be considered as stochastic variables, and the following relation
holds:

pr 10,6, A)=pr'K+b|0;6,A)=q@" |60;x, A)gb |1, 0;k, A),

K-1
q(r/lé;x,A):Zp(r/K—i—b|9;K,A),
b=0
0170k, p)y= POKEDIE 6 A)
eI 90716, B)

Let Hg and Hy be the entropy of R and R/, respectively and Hp g be the
conditional entropy of B given R’. The following relation holds:

Hr = Hp + Hpjg < Hr +log K,
which is justified from 0 < Hpr < log K. With this result,

Z p(r | 6;k, A)log p(r | 05k, A)
r=0

oo
> Zq(r’ | 6;x,A)logq(r' | 05k, A) —log K.
r'=0

Since |« K | = 1 holds, the probability q(r" | 9; k, A) is bounded as follows:
Ag/KK
I'rKe+1)

(C.7)

q(r' 1 6;6, A) = P(r'Kic, Ag) — P((r' + 1)K«, Ag) > e~

With equations C.6 and C.7,

q(r' | 6;«, A) q(r' | 0; k, A)

p(r; F.ie, A)  p(r’K +b; F,k, A)
Mg (K 4 b+ 1)
Ap—Ng [ 20 A bk
= (AM) M TP Kk + 1)

r' Kk
- Eon (Do)
Am
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where E is the following lower bound:

At ((r'K +b)c +1)
M T Kk +1)

> min {1, Ay T + 1), ..., Ay *I((K = 1) + 1)} = E.

This shows ig (0, F) is bounded from below as

. 0 r|0;k, A
ir(0, F):Z p(r | 6;k, A)log%
r=0 R
0o K-1 g’ | 6;k, A)
ZVZ:;)I,Z:; p(r'’K +b16:k, A)log p(’K +b; F. «, A) ~logK
> Zoo: (' | 65k, A)log [ Ee®n <A9>M<K —log K
r/:oq P K, g An &
= Zr’q(r'le;la A) KKlog(ﬁ>
r'=0 AM

—Ap+ Ay +1log E —log K.

Since Zf,ozo r'q(r" | 0; k, A)is equivalent to FK,(, Ay Proposition 4 shows that
it grows proportional to Ay as 6 | 0. Thus, ir(6, F) is lower bounded with
a term that grows with Aglog Ay and iz(0, F) cannot be finite and constant
for V6 € R*, which brings the contradiction.
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