
Noname manuscript No.
(will be inserted by the editor)

A Highly Optimized Algorithm for Continuous Intersection Join Qu eries
over Moving Objects

Rui Zhang · Jianzhong Qi · Dan Lin · Wei Wang · Raymond Chi-Wing Wong

the date of receipt and acceptance should be inserted later

Abstract Given two sets of moving objects with non-zero
extents, the continuous intersection join query reports every
pair of intersecting objects, one from each of the two moving
object sets, for every timestamp. This type of queries is im-
portant for a number of applications, e.g., in the multi-billion
dollar computer game industry, massively multiplayer on-
line games (MMOGs) likeWorld of Warcraftneed to moni-
tor the intersection among players’ attack ranges, and render
players’ interaction in real time. The computational cost of a
straightforward algorithm or an algorithm adapted from an-
other query type is prohibitive and answering the query in
real time poses a great challenge. Those algorithms com-
pute the query answer for either too long or too short a
time interval, which results in either a very large computa-
tion cost per answer update or too frequent answer updates,
respectively. This observation motivates us to optimize the
query processing in the time dimension. In this study, we
achieve this optimization by introducing the new concept of
time-constrained (TC) processing. Further, TC processing
enables a set of effective improvement techniques on tra-
ditional intersection join algorithms. Finally, we provide a

Rui Zhang
University of Melbourne
E-mail: rui@csse.unimelb.edu.au

Jianzhong Qi
University of Melbourne
E-mail: jiqi@csse.unimelb.edu.au

Dan Lin
Missouri University of Science and Technology
E-mail: lindan@mst.edu

Wei Wang
University of New South Wales
E-mail: weiw@cse.unsw.edu.au

Raymond Chi-Wing Wong
Hong Kong University of Science and Technology
E-mail: raywong@cse.ust.hk

method to find the optimal value for an important parameter
required in our technique, the maximum update interval. As
a result, we achieve a highly optimized algorithm for pro-
cessing continuous intersection join queries on moving ob-
jects. With a thorough experimental study, we show that our
algorithm outperforms the best adapted existing solution by
several orders of magnitude. We also validate the accuracy
of our cost model and its effectiveness in optimizing the per-
formance.

Keywords Spatial databases· moving objects· continuous
intersection join

1 Introduction

Management of moving objects has become an imperative
task recently due to the increasing need for real time infor-
mation in highly dynamic environments. In many previous
studies, moving objects such as mobile phone users or ve-
hicles have been modeled as points. The reason is that the
objects’ extents are negligible compared to the size of the
whole region of interest. For example, ignoring the extents
of vehicles does not hurt much if we want to have an idea
of how many cars are in the central business district by per-
forming a window query. However, there are also many sce-
narios where the extents of objects cannot be neglected. For
example, Fig. 1(a) describes a scenario where we monitor
the movements of vessels and storms on the sea, and notify
vessels of possible encounters with the storms. As shown in
the figure, every vessel has an alert zone (a dotted rectan-
gle) and there are two regions in the sea covered by storms.
Navigation systems on vessels should continuously report
those vessels whose alert zones are intersected by the storm
regions, so that the vessels can be alerted to the possible im-
pact. For another example shown in Fig. 1(b), in a massively
multiplayer online game (MMOG), two teams of players are
in a battle. Each player has a sector-shaped region in front

2

of her as her attack range. The MMOG server needs to con-
tinuously keep track of the intersection among players’ at-
tack ranges at about the graphics frame rate, so that com-
bats between players can be processed and then rendered in
almost real time. The high frequency of intersection result
updates brings in a critical challenge to the server’s perfor-
mance and the immediate requirement of new query pro-
cessing techniques [11,42]. The current systems only allow
dozens of players and can not handle hundreds of thousands
players in a battle. Military simulations have similar require-
ments as MMOGs do. In a military simulation, there can
be up to 100,000 objects that are moving [25] and a primi-
tive data management requirement isinterest management,
which is actually an intersection join of the interest ranges
of objects [10,25].

The above applications represent the execution ofcon-
tinuous intersection join query over moving objects (with
nonzero extents) with updates, which monitors two sets of
moving objects and reports every pair of intersecting ob-
jects, one from each of the two sets, for every timestamp.
Here, updates refer to changes in the spatial attributes (posi-
tion or velocity) of the moving objects. They cause changes
in the result of the query. To help understand the nature of
this query, we express it in a SQL style as follows (for the
MMOG example).

SELECT P 1.id, P 2.id, t
FROM Player AS P 1, Player AS P 2
WHERE Intersect(P 1.rg, P 2.rg, t)

AND P 1.tid 6= P 2.tid

UPDATE RATE ur;

In this query,Player is a table of MMOG players;id,
tid andrg denote the ID, team ID and attack range of a
player;Intersect() is a boolean function that examines
whether one player intersects another player’s attack range
at timestampt, wheret is a parameter that tells the times-
tamp when an answer update is triggered; andUPDATE RATE
ur gives the frequency that the query processor updates the
answer. The parameterrg and the functionIntersect()
are supported in spatial databases to represent a region cov-
ered by a spatial object and to determine whether two spatial
objects intersect each other, respectively. The parameters t
andur show that this is a continuous query, and they tell
when the join results should be presented. These two param-
eters are not supported by the SQL language. However, in
a spatial-temporal database where continuous queries were
supported,t would be an intrinsic parameter andur would
be an input parameter that tells the database system how
frequently the answer set should be updated. In a moving
object management system, the continuous intersection join
result will update very frequently. It is this frequent answer
update that differs continuous intersection join query from
traditional spatial join queries.

To the best of our knowledge, no previous study has
specifically addressed the continuous intersection join query

StormVessel

2a
b

3a

a4
1b

a1

3

a5

b2

Team BTeam A

(a) (b)

Fig. 1 Motivating examples

over moving objects with updates. The only available way to
support this query type is through extending a previous tech-
nique which was designed for other types of queries such
as time-parameterized (TP) queries [39] (details are in Sec-
tion 4). Our experiments show that even with a small number
(1,000) of objects, this extended algorithm is still too slow
to produce the result in real time. In this article, we address
the problem of efficiently processing continuous intersec-
tion joins over moving objects with updates and make the
following contributions:

– Based on the key insight that the join result between
any two objects only needs to be valid until the next
update on any of the two objects, we propose the time-
constrained (TC) processing technique for the continu-
ous intersection join query and show how to optimize
the technique. Unlike previous studies, which optimize
from the spatial aspects, this is the first attempt to opti-
mize continuous spatio-temporal queries in the time di-
mension.

– We investigate a set of techniques to reduce the CPU
cost of traditional intersection join algorithms, enabled
by TC processing. We also provide a few techniques to
reduce the I/O cost of the algorithms.

– We provide a model for estimating the cost of the con-
tinuous intersection join query. This model allows us to
find the optimal value for an important parameter of the
moving object monitoring system, themaximum update
interval.

– We performed an extensive experimental study, which
shows that our algorithm outperforms the best adapted
existing solution by several orders of magnitude. We also
validate the accuracy of our cost model and its effective-
ness in optimizing the performance.

This article is an extended version of our earlier paper [45].
There we presented the TC processing technique and some
improvement techniques to reduce CPU cost of the join al-
gorithm. In this article, we present a few new techniques to
reduce the I/O cost of the algorithms. More importantly, we
model the cost of our join algorithm and thereby we can find
the optimal value for the maximum update interval. As a re-

3

sult, we obtain a highly optimized approach to the contin-
uous intersection join query. We have performed additional
experiments. The results show (i) the effectiveness of the
techniques for reducing the I/O cost of our algorithms, and
(ii) the accuracy of our cost model and its effectiveness in
optimizing the performance.

The rest of the article is organized as follows. Section 2
reviews related work. Section 3 gives the problem defini-
tion and a naive algorithm. In Section 4, we extend a pre-
vious technique to support the continuous intersection join
query. Section 5 presents the TC processing technique and
the improvement techniques for reducing CPU cost of our
algorithms. Section 6 presents some techniques to reduce
the I/O cost of our algorithms. In Section 7, we provide a
method for finding the optimal value of the maximum up-
date interval. Section 8 reports the experimental study and
finally, Section 9 concludes the article.

2 Related Work

We discuss three categories of work below: work on moving
objects in general, work on spatial joins on static objects,
and work on other types of continuous spatial join queries
on moving objects.

Moving objects in general: A traditional way to rep-
resent a moving object is to use its sampled locations on its
trajectory. One of the earliest work that manages moving ob-
jects [27] samples object locations for each timestamp and
then indexes such location data with an R-tree. Following
this work, there are a few studies [34,38] proposing differ-
ent index structures on sampled locations to support various
queries on moving objects.

The sampling based approaches require frequent posi-
tion updates, which impose a heavy workload on the system.
Thus, instead of sampling and updating continuously, Sistla
et al. [37] model moving objects using a linear function of
time t: P (O, t) = P (O, tref)+ (t− tref)V (O, tref) where
P (O, tref) andV (O, tref) are an objectO’s position and
velocity at a reference timestamptref . Under this represen-
tation, updates are only required when objects change their
velocities. This reduces the number of updates since objects
tend to move in a linear fashion for short periods. Civilis
et al. [9] report that using such representation can reduce the
number of updates by a factor of three for some vehicle data.
Following Sistla et al.’s work [37], many studies [18,32,35,
43,40] on querying moving objects model them by linear
functions of time. In this study, our problem considers mov-
ing objects with frequent updates. Thus, we model a moving
object using a linear function of time.

Other than modeling moving objects, many studies on
moving objects have focused on processing predictive queries.
Kollios et al. [20] use the dual transform to map a line (1-
dimensional trajectory) to a point and then exploit a spatial
point access method to process window queries. Agarwal

et al. [1] address the problem in two and higher dimensions
and propose algorithms with good asymptotic performance.
Zhang et al. [44] introduce the Transformed Minkowski Sum
to determine whether a moving bounding rectangle inter-
sects a moving circular query region, which enables tradi-
tional tree traversal algorithms to process window and kNN
queries. While the above results are mainly theoretical, other
studies aim at structures that yield good performance in prac-
tice. For example, the TPR-tree [35] is an extension of the
R*-tree [4] to manage moving objects, and later, the TPR*-
tree [40] enhances the TPR-tree through using a set of im-
proved construction algorithms. The Bx-tree [18] indexes
moving objects by a B+-tree using space-filling curve (Hilbert,
in particular) [6] values of the objects’ positions as keys.As
we use the TPR/TPR*-tree as the basic structure, we will
have a closer look at them in Section 3.2. Besides predic-
tive queries, querying historical spatio-temporal data isad-
dressed in several studies [21,34,7]. There are also studies
on continuously querying the current states of moving ob-
jects. For example, Ali et al. [2] study continuously moni-
toring the 3D objects around a moving object. Nutanong et
al. [28] study continuous detour queries on objects moving
in spatial networks. A number of other studies [15,26,29,
30] address continuous kNN queries over moving objects.
A more relevant work is the time parameterized join algo-
rithm [39], details of which are given in Section 4.

Spatial joins on static objects:Early spatial join algo-
rithms transform objects to 1-dimensional values to avoid
the difficulties in joining them because of their spatial extent
and dimensionality. For example, the first known spatial join
algorithm [31] indexes the objects with B+-trees using ob-
jects’ space-filling curve (z-ordering) values as the keys,and
then performs the spatial join in a sort-merge join fashion.

Later, Brinkhoff et al. [8] propose the R-tree Join (RJ)
algorithm and investigate techniques to improve both CPU
and I/O time of the R-tree matching based spatial intersec-
tion join algorithm for objects indexed in R*-trees [4]. The
two relevant improvement techniques, the plane sweep and
intersection check techniques, will be discussed in Section 5.4.
They were used for static object indexes like R*-trees by
Brinkhoff et al.; in this paper, we analyzed them and pro-
posed ways to take advantage of them on moving object in-
dexes with the consideration of constrained processing time.

Studies after RJ focus on joining datasets where at least
one dataset is not indexed. Lo and Ravishankar [23] pro-
pose Seeded Trees for cases where only one of the joining
datasets is indexed by an R-tree apriori. A Seeded Tree is
built using the existing R-tree as a skeleton, and then joined
with the existing R-tree. Patel and DeWitt [33] propose the
Partition Based Spatial-Merge Join (PBSM), which is a gen-
eralization of the sort merge join algorithm. The algorithm
uses a rectangular grid to partition the space, and hashes ob-
jects in both joining datasets into the partitions. It then joins

4

objects in the same partitions using the sort merge join algo-
rithm. Sevcik and Koudas [36] propose the Filter Trees and
subsequently they propose the Size Separation Spatial Join
algorithm [22] for cases where no index is available. The al-
gorithm organizes objects hierarchically based on their sizes
and assigns an object into only one partition. In the join
phrase, objects in one partition are joined with objects in
multiple partitions to form the join result. We assume our
joining datasets are both indexed in TPR/TPR∗-trees. Thus,
these techniques are not applicable.

Other types of continuous spatial join queries on mov-
ing objects: Despite many efforts devoted into moving ob-
jects and spatial joins, there is little work specifically ad-
dressing continuous intersection joins over moving objects
with updates. Mokbel et al. [24] use shared computation
to process multiple continuous queries on moving objects.
They do not address spatial join queries, but use a join of
queries to achieve shared computation. If we view the queries
as a set of objects joining with the real data objects, then
their algorithm is very similar to NaiveJoin in our article
(Section 3.3).

There are studies on other types of joins over moving
objects. Iwerks et al. [16] addresscontinuous semijoinsover
moving points. The semijoin on two datasetsA andB is de-
fined as all the pairs〈a, b〉, a ∈ A∩ b ∈ B, that are in Carte-
sian productA× B, andb is one of thek nearest neighbors
of a. Thek nearest neighbors ofa are bounded by a circle
that centers ata, which is named thefuzzy set circleof a.
The points in thefuzzy set circleof a, and the points that
will enter the circle sometime in the near future, form the
fuzzy setof a. Fuzzy sets provide answers to the continuous
semijoin. When there are updates in the datasets, the radii
of the fuzzy set circles change, which in turn cause changes
of fuzzy sets. In the continuous intersection join over mov-
ing objects with nonzero extents, we may use the fuzzy set
circle of an objectO to bound all the objects intersectingO.
However, this circle will have a large radius, since there is
no limit on the sizes of objects. A lot of objects not inter-
sectingO will also be contained in this circle, which makes
it inefficient to maintain the circle. Therefore, the fuzzy set
circle based method does not apply.

Arumugam et al. [3] address closest-point-of-approach
joins over moving object histories. They find the closest point
pair between two historical trajectories, which is a totally
different problem from the continuous intersection join.

U et al. [41] propose the exclusive closest pairs (ECP)
join on point data and further address the problem of con-
tinuous monitoring ECP pairs with updates on the datasets.
ECP join tries to match up the objects in two datasetsA

andB according to the distances between objects. In the
resultant object pair set, any object inA or B will only ap-
pear in at most one pair. Thus, ECP join can first compute
a set of nearest neighbors for every object inA, and then

pick objects from the nearest neighbor sets one at a time to
form the result set. Further, ECP join assumes small datasets
(e.g., matching cars with parking slots). While the intersec-
tion join can be used to compute the nearest neighbor sets
for ECP join, it does not have the above assumptions. Thus,
ECP join does not solve our intersection join problem.

Iwerks et al. [17] consider continuous range joins, which
can be viewed as intersection joins on circles. This is proba-
bly the closest work to ours. However, there are many cases
where ranges of objects are more tightly bounded by rect-
angles rather than circles such as the storms, vessels and at-
tack ranges of MMOG players in Fig. 1. Therefore, we still
need to study intersection joins on rectangular ranges. The
algorithms proposed by Iwerks et al. [17] work as follows. A
range join is computed to get the initial result set. Events that
will cause the query result to change (i.e., an object moves
into or moves out of the join range of another object) are
computed and enqueued in an event queue prioritized by the
event time. These events are then processed to keep the join
result set updated. This approach resembles the ETP join al-
gorithm (Section 4) in that they both generate large amount
of events; the difference is that this approach generates mul-
tiple events at a time, while the ETP join only generates the
next event after one event is processed. As the discussion in
Section 4 will show, these event based approaches are in-
efficient due to the huge number of events generated con-
tinuously. It is difficult for them to provide real time query
results to the continuous intersection join on large datasets
with frequent object updates.

3 Preliminaries
In this section, we define the problem and then describe
TPR/TPR*-trees [35,40] since we use them as the under-
lying access methods. Subsequently, we provide a naive al-
gorithm for solving the problem.

3.1 Problem Formulation

Representing moving objects:We follow the most popular
approach of representing positions of moving objects, i.e.,
by linear functions of time. An object of irregular shape is
represented by itsMBR (minimum bounding rectangle). The
sides of an MBR are parallel to the axes of the 2-dimensional
space1. The movement of an object is represented by itsVBR
(velocity bounding rectangle). The VBR describes how each
side of the object’s MBR moves. At timestampt, the MBR
of a moving objectO is denoted asMbr(O, t).

Mbr(O, t) = Mbr(O, tref) + (t− tref)V br(O, tref),

whereMbr(O, tref) = 〈ORx−, ORx+, ORy−, ORy+〉 (in
the subscript, “−” and “+” stand for lower bound and up-
per bound, respectively) is the MBR ofO at a reference
timestamptref andV br(O, tref) = 〈OV x−, OV x+, OV y−,

1 We focus on 2-dimensional spaces, although the proposed tech-
niques are applicable to higher-dimensional spaces.

5

OV y+〉 is the VBR ofO sincetref . We call this representa-
tion ofO a Time-Parameterized Bounding Rectangle (TPBR)
of O. Such representations require less updates with position
changes since an object’s VBR can usually stay unchanged
for a short while (e.g., a person walking on the street or a car
driving on the road).

Representing object updates:The join is performed on
two moving object sets,A andB. Each object inA ∪B has
a unique ID. A moving object management system main-
tains the information of the objects and process queries on
them. With the consideration that the size of the data may be
large and also in line with previous studies [16,24,35,40],
we have implemented our techniques assuming the data are
disk resident,although our techniques are applicable even
if the data are held in main memory. Each set of objects is
indexed by a TPR-tree (actually the variant TPR*-tree) due
to TPR-trees’ efficient management of moving objects with
nonzero extents.

An updateis sent to the management system when the
difference between the object’s actual parameters (position
or velocity) and parameters maintained in the management
system exceeds some threshold. It is represented in the form
of (oid,Mbr, V br, tu), whereoid, Mbr andV br denote the
unique ID, the new MBR and the new VBR of the updating
object, respectively, andtu denotes the timestamp when the
update is issued.

Following many previous studies [18,20,32,35,40,43],
if an object’s actual parameters do not change for a long
time, the system still requires the object to update at least
once everyTM timestamps. We callTM the maximum up-
date interval, which is the longest time interval allowed be-
tween two consecutive updates of an object. The reason for
the maximum update interval is as follows. Updates not only
keep the objects’ movement information up to date, but also
serve as heartbeat signals in practice. Without the maximum
update interval requirement, if an object does not commu-
nicate with the management system for a long time, it is
impossible to know whether the object keeps moving in the
same way or has disappeared accidentally without being able
to notify the management system.TM is a system parameter,
which is the same for all objects.

Problem definition: Orenstein [31] suggested that an
intersection join on irregular shapes should be processed in
two steps: (1)Filter Step: Find all the object pairs whose
MBRs intersect each other; (2)Refinement Step: For all the
object pairs found in the filter step, check whether the actual
shapes of the objects intersect. We focus on the filter step.

A formal definition of thecontinuous intersection join
queryis given as follows.

Definition 1 Let A, B be moving object sets,tc be the cur-
rent timestamp, andMbr(o, t) be a function that returns the
MBR of a moving objecto at timestampt. The continu-
ous intersection join queryfinds every pair〈a, b〉 for ev-

ery timestampt, a ∈ A, b ∈ B, t ∈ [tc,∞), that satisfies
Mbr(a, t) ∩Mbr(b, t) 6= ∅.

Overview of the System: Our continuous join process-
ing system consists of two components: ajoin processorand
a result presenteras shown in Fig. 2. The join processor is
responsible for producing intermediate results in the formof
(Oi, Oj , ts, te), where〈Oi, Oj〉 is an intersecting pair and
[ts, te] is the period when this intersecting pair is valid. The
intermediate results are passed to the result presenter and
maintained in an intermediate result list (denoted byirl),
sorted onts. A B+-tree can be used to implement it. When
there is an updated objectO, we need to remove intersect-
ing pairs involvingO from irl. To facilitate finding pairs
involving an object, a hash table (denoted byht) is main-
tained using the object ID as the key. Every entry of the hash
table contains an object IDoid and a linked list of pointers,
pointing to the intermediate results involving objectoid. At
every timestampt, we check every entrye from the begin-
ning of irl to the last entry withts equal tot (cf.Fig. 2). If
e haste < t (this meanse has expired), thene is discarded.
Otherwise,e is reported as an entry in the current join result.

Processor

4k
3k
2k

0k

1k

94

8

7

61

2010

1 , 10 , 1 , 6

6 , 8 , 6 , 8

4 , 9 , 5 , 6

8 , 9 , 4 , 7

7 , 4 , 3 , 4

1 , 6 , 2 , 8

intermediate
result list ()

the last entry
with t =4

irl

ht

s

Result Presenter

10 , 20 , 2 , 4

Join

hash table ()

Fig. 2 System overview

Since the join result has to be presented all the time, we
assume that it can always be held in main memory. Com-
pared with the result presenter, the join processor requires
much more computation. It is the focus of this paper and will
be investigated in detail in following sections. Processing
the continuous join consists of two phases: computing the
initial join pairs (initial join) and then maintaining the join
result continuously as objects are updated (maintenance).
The initial join is performed only once, therefore the main-
tenance has significantly higher weight in the total cost.

As our algorithms are based on TPR-trees, we describe
them before discussing the join processing algorithms.

Table 1 summarizes the frequently used symbols.

3.2 The TPR/TPR*-tree

The TPR-tree [35] extends the R*-tree [4] by attaching time
parameters to node regions so that the nodes can bound mov-
ing objects. Following the popular linear function of time

6

Table 1 Frequently Used Symbols

Symbol Explanation
O A moving object
Mbr(O, t) The MBR ofO at timestampt
〈ORx−, ORx+, ORy−, ORy+〉 The MBR ofO
〈OV x−, OV x+, OV y−, OV y+〉 The VBR ofO
A, B Two moving object datasets
nA The number of objects inA
trA A TPR-tree onA
N , e A tree node and an entry
pv Voluntary update probability
C Average per timestamp join cost
f Average per update join cost
SR(N, qT), ASR(N, qT) The region and its area swept by

N during time intervalqT
tc Current timestamp
tu Update timestamp
TM Maximum update interval

representation, in the TPR-tree, a moving objectO is repre-
sented by its MBR at reference timestamptref ,Mbr(O, tref),
and its VBR sincetref , V br(O, tref). Moving data objects
are indexed in the leaf nodes of the tree. A leaf node of a
TPR-tree is a moving object whose MBR (VBR) bounds the
MBRs (VBRs) of the data objects inside. A non-leaf node
of a TPR-tree is a moving object that bounds inside its chil-
dren, either leaf nodes or other non-leaf nodes. Fig. 3 gives
an example for a nodeN in a TPR-tree. NodeN indexes
objectsa and b at timestamp 0. Its MBR bounds the two
objects’ MBRs, and its VBR is formed by finding the maxi-
mum and minimum speeds of the two objects on each of the
dimensions (i.e.,x-dimension andy-dimension).

4

6

8

4 6 8 10 122

t = 0

2
N

t = 2

The trapezoid
swept by N
during [0, 2]

0

1

1
1

2

3
3

3 3

3 3

x

y

N

a

a

1

1

2
1

1

2 2

2 2

1

1

1

b
b

1

1

Fig. 3 A TPR-tree node

The TPR-tree supports time-slice queries as well as time-
range queries, i.e., queries on the status of the indexed ob-
jects at a given timestamp and during a given time range,
respectively. To illustrate how these two types of queries are
processed, we use the window queries as the examples. To
process a time-slice window query at timestampt, the MBR
of an objectO in the TPR-tree is computed asMbr(O, t) =

Mbr(O, tref)+(t− tref)V br(O, tref), and then compared
with the query window to determine whether they intersect
each other. To process a time-range window query with time
range[t1, t2], the region swept by an objectO in the TPR-

tree during[t1, t2] is first computed (a trapezoid, cf. Fig. 3),
and then compared with the query window to find the time
range when they intersect each other.

The insertion, deletion and update procedures of the TPR-
tree are similar to those of the R*-tree. Details are in Saltenis
et al.’s paper [35]. The TPR*-tree [40] uses a set of improved
algorithms to build the TPR-tree and achieves an almost op-
timal tree.

3.3 Processing Continuous Intersection Joins Naively

Recall that processing a continuous join (we omit “inter-
section” when the context is clear) consists of two phases:
the initial join and the maintenance. For the initial join, we
can use a naive algorithm described below to compute all
the possible join pairs from now to the infinite timestamp.
For the maintenance, whenever there is an object update, we
need to perform ananswer updateas follows. First, we re-
move all the pairs containing the updated object from the
current result; then we join the object with the other dataset
(still using the naive algorithm) from the current timestamp
to the infinite timestamp and the newly found pairs are added
to the current join result. Next, we give the naive algorithm
for computing join pairs.

Each dataset is indexed by a TPR-tree (trA andtrB for
A andB, respectively). The basic idea is to use the bound-
ing relationship between a node of the TPR-tree and the en-
tries inside it. LetNA (NB) be a node fromtrA (trB). If
NA does not intersectNB , then none of the entries in the
sub-tree rooted atNA could intersect2 any of the entries in
the sub-tree rooted atNB , therefore we need not visit the
sub-trees. Otherwise, there could be intersections between
entries in the sub-trees and we should check the entries in
them. This intersection-or-not checking is performed recur-
sively on both trees in a top-down manner, until all possible
intersections are explored. It is a synchronous traversal on
both trees. This algorithm is namedNaiveJoin and summa-
rized in Fig. 4. Throughout this article, we assume that the
two TPR-trees have the same height for brevity. If they do
not and the traversal reaches the leaf level of one tree first,
saytrA, then we only read the node on the next level oftrB
and join this new node oftrB with the leaf node entry of
trA, i.e., we perform NaiveJoin(eA,eB .ptr).

The functionintersect(eA, eB , tc,∞) in line 2 deter-
mines whether two entrieseA andeB (from trA andtrB , re-
spectively) intersect each other during time interval[tc,∞),
wheretc denotes the current timestamp and∞ denotes the
infinite timestamp. If yes, the time interval for the inter-
section,[t′s, t

′
e], is returned; otherwise,NULL is returned.

The function is based on the observation that for two ob-
jects to intersect, in every dimension, one object’s upper
bound must be larger than or equal to the other object’s

2 Actually the MBRs of the entries intersect each other. We omit
“MBR” when the context is clear.

7

Algorithm NaiveJoin (NA, NB)
1 for everyeA in NA

2 for everyeB in NB with
([t′s, t

′

e]← intersect(eA, eB , tc,∞)) 6=NULL
3 if NA is a leaf node
4 output〈eA, eB , t′s, t

′

e〉;
5 else
6 ReadPage(eA.ptr); ReadPage(eB .ptr);
7 NaiveJoin(eA.ptr,eB .ptr);
End NaiveJoin

Fig. 4 Algorithm NaiveJoin

lower bound. Thus, to compute the intersection time inter-
val for objectsa and b, intersect() first compute a time
interval whena(b)’s upper bound is larger than or equal
to b(a)’s lower bound for every dimension. Then, the in-
tersection of all the resultant time intervals is the time in-
terval whena and b intersect. Fig. 5 shows the details of
function intersect(). In this function,a and b denote the

Functionintersect (a, b, ts, te)
1 [t1−, t1+]← solutions ofaRx+(t) ≥ bRx−

(t);
2 [t2−, t2+]← solutions ofbRx+(t) ≥ aRx−

(t);
3 [t3−, t3+]← solutions ofaRy+(t) ≥ bRy−

(t);
4 [t4−, t4+]← solutions ofbRy+(t) ≥ aRy−

(t);
5 [t′s, t

′

e]← [ts, te] ∩ (∩4i=1[ti−, ti+]);
6 return[t′s, t

′

e];
End intersect

Fig. 5 Function intersect

two objects to be checked for intersection,ts (te) denotes
the starting (ending) timestamp of the time interval to be
checked, and the subscriptRx+(t)(Rx−(t)) denotes the up-
per (lower) bound of the MBR in dimensionx at timestamp
t, likewise for dimensiony. Lines 1 to 4 compute the time
interval when one MBR’s upper bound is greater than the
other’s lower bound for each dimension. There is only one
interval in the solution of each of these four inequalities
since we assume VBRs of the objects do not change until
a new update is issued. Then the time interval for MBRs’
intersection is the intersection of the time intervals obtained
from previous inequalities. Fig. 6 gives an example. Assum-

2 4 6 8 10

4

6

8

2

b1

a1

b2

1

a

1

1

1

11
2

y

x

10

0

Fig. 6 Intersection time interval computation

ing that the current timestamp is timestamp 0, to compute

the intersection time interval fora1 and b1, we first com-
pute the time interval whena1(b1)’s upper bound is larger
than or equal tob1(a1)’s lower bound for thex-dimension,
which is [0,∞)([0, 7]). Similarly, we compute two time in-
tervals for they-dimension, which are[0, 5] and[0,∞). Sub-
sequently, we compute the intersection time interval ofa1
andb1, which is[0,∞) ∩ [0, 7] ∩ [0, 5] ∩ [0,∞) = [0, 5].

In NaiveJoin, the time interval[tc,∞) is input to the
function intersect() so that we find all possible join pairs
in the future in one (synchronous) tree traversal. We call the
time interval for which the algorithm needs to compute the
join pairs theprocessing time interval. Here, the process-
ing time interval is[tc,∞). If eA intersectseB and they are
not leaf nodes, then the algorithm traverses to the next level
of both trees synchronously, i.e., to retrieve both the pages
pointed to byeA andeB (through pointers associated with
them,eA.ptr andeB .ptr, respectively).

NaiveJoin is also used for processing updates. When an
objectO updates, we first remove from the current answer
those join pairs that containO. Then,O is treated as a TPR-
tree of a single node with a single object and joined with the
other dataset (the dataset thatO is not in) by NaiveJoin; this
is effectively awindow query[35] on the other dataset using
O as the window and[tc,∞] as the query time interval.

4 Extending Time-Parameterized Joins for Con-
tinuous Joins

In this section, we extend a previous technique, thetime-
parameterized joinalgorithm [39] to support the continu-
ous join query. To the best of our knowledge, this is the
only existing way to support the continuous intersection join
query. However, since this previous technique is originally
designed for some other type of queries, extending it does
not result in an efficient solution to our problem. Therefore,
it is still important to design algorithms that can efficiently
solve our problem, and this extended technique will only
serve as a baseline technique.

Tao and Papadias presented [39] a set of spatio-temporal
queries called time-parameterized (TP) queries, including
the TP (intersection) join query. While the TP join query
does not answer the continuous join query directly, it can be
extended to support the continuous join query. Next, we first
show how a TP join query is processed, and then show how
it can be extended for the continuous join query.

A TP query returns: (i) theobjectsthat satisfy a certain
spatial query; (ii) theexpiry timeof the result given in (i);
(iii) the eventthat changes the result. That is, the answers are
in the format of triples,(objects, expiry time, event). Fig. 7
shows a TP intersection join query example. Moving object
setA consists of objects{a1, a2, a3, a4} and moving ob-
ject setB consists of objects{b1, b2, b3, b4}. The current re-
sult is {〈a1, b1〉}. Suppose the current timestamp is 0. The
first result change happens at timestamp 1 whenb2 starts

8

4

3N

4NN3

2N
4a

N2

N1

1N

3a

3b

1e 2e

4a3a2a1a

3e 4e

4b3b2b1b

2b

1a
1b

4b

2

8

6

4

108642

1

y

1

1

1

1

1

1

1

11

0

10

x

N

a2

root B

root A

TPR−tree A

TPR−tree B

1

1

Fig. 7 A running example

to intersecta2, so the expiry time of the current result is 1
and the event causing this change is{〈a2, b2〉}. Therefore,
the answer for the TP join query at the current timestamp
is the triple ({〈a1, b1〉}, 1, {〈a2, b2〉}). At any timestamp,
there is a “next event” that will change the result and the
corresponding timestamp is called theinfluence timeof the
event. In this example, whena2 intersectsb2 at timestamp 1,
the next event isb1 leavinga1 at timestamp 3, denoted by
(〈a1, b1〉, 3) where 3 is the influence time. The subsequent
events are(〈a2, b2〉, 4), (〈a3, b4〉, 6) and(〈a3, b4〉, 8).

The TP join algorithm (TP-Join) is described as fol-
lows. Each set of objects is indexed by a TPR-tree. A depth-
first (or best-first) traversal is performed on each tree syn-
chronously starting from the root. SupposeeA andeB are
two entries in non-leaf nodes, one from each TPR-tree. The
traversals go down the sub-trees pointed to byeA andeB
if one of the following conditions hold: (i) the MBRs ofeA
andeB intersect; or (ii)TINF (eA, eB) is less than or equal
to the minimum influence time of all object pairs seen so
far, whereTINF (eA, eB) means the influence time of the
pair 〈eA, eB〉. Condition (i) finds the current join pairs and
condition (ii) identifies the next event. The traversals stop
when leaf levels are reached for both trees. Fig. 8 summa-

Algorithm TP-Join (NA, NB , NE, TMINF)
1 for everyeA in NA

2 for everyeB in NB

3 if eA.mbr ∩ eB .mbr 6= ∅
4 if NA is a leaf node
5 output〈eA, eB〉;
6 else
7 ReadPage(eA.ptr); ReadPage(eB .ptr);
8 TP-Join(eA.ptr,eB .ptr, NE, TMINF);
9 else ifTINF (eA, eB) < TMINF

10 TMINF ← TINF (eA, eB);
11 if NA is a leaf node
12 NE ← 〈eA, eB〉;
13 else
14 ReadPage(eA.ptr); ReadPage(eB .ptr);
15 TP-Join(eA.ptr,eB .ptr, NE, TMINF);
End TP-Join

Fig. 8 Algorithm TP-Join

rizes the algorithm, whereTMINF denotes the minimum in-

fluence time of all object pairs seen so far andNE denotes
the corresponding object pair (the event atTMINF). The pa-
rametersTMINF andNE are gradually updated during the
execution of the algorithm (lines 10 and 12). When the al-
gorithm stops,TMINF becomes the time of the next event
that changes the result andNE becomes the next event. In
Fig. 7, at timestamp 0,e1 intersectse3 so nodesN1 andN3

are accessed. Assuming a depth-first traversal here, after all
entries inN1 are compared to those inN3, the algorithm
obtains (i) the current join pair〈a1, b1〉 and (ii) the mini-
mum influence time of all object pairs visited so far, which
is 1 caused by〈a2, b2〉. None of the other entry pairs from
rootA androotB has influence time less than 1, so the al-
gorithm terminates the tree traversals and returns the result
({〈a1, b1〉}, 1, {〈a2, b2〉}).

In the same paper [39], Tao et al. suggested a way to
extend TP-Join to produce answers for the continuous join
query. The extended algorithmETP-Join is described as fol-
lows. First, TP-Join is run to obtain the current answer and
the next event. As time goes to the next event and the result
changes, an answer update is performed by running TP-Join
to get the new next event (no need to search for the new cur-
rent answer since they can be computed from the previous
answer and the event). When there is an update on object
O, an answer update is also performed by traversing the tree
to find the object’s influence timeTINF (O). If TINF (O) is
before the current expiry time, thenTINF (O) becomes the
current expiry time andO becomes the next event; other-
wise, the update is simply ignored (the tree has already been
traversed). By this means, join pairs can be obtained for all
the time. The ETP-Join algorithm is summarized in Fig. 9,
wherewq() is a function that performs a window query on
the other joining tree using the updated objectO as the query
window to compute the influence time ofO, TINF (O), and
the corresponding eventNE(O) (line 8). In Fig. 7, first

Algorithm ETP-Join (root A, root B)
1 NE ← ∅; TMINF ←∞;
2 TP-Join(root A, root B,NE, TMINF);
3 while true
4 Wait until next answer update;
5 if the answer update is a change of the result
6 TP-Join(root A, root B,NE, TMINF);
7 else// the answer update is an object update
8 〈NE(O), TINF (O)〉 ← wq(O, the other joining tree);
9 if TINF (O) < TMINF

10 TMINF ← TINF (O); NE ← NE(O);
End ETP-Join

Fig. 9 Algorithm ETP-Join

the answer{〈a1, b1〉} is obtained for continuous join for
the period[0, 1) from the TP Join result at timestamp 0,
{〈a1, b1〉, 1, 〈a2, b2〉}. The continuous join answer becomes
{〈a1, b1〉, 〈a2, b2〉} at timestamp 1. At this moment, TP-Join
is run to get the next event(〈a1, b1〉, 3). Then we know the
continuous join answer during the period[1, 3) keeps to be

9

{〈a1, b1〉, 〈a2, b2〉} and it changes to{〈a2, b2〉} at timestamp
3. Again, TP-join is run at timestamp 3 to find the next event
and the influence time, which are(〈a2, b2〉) and 4, respec-
tively. During period[3, 4), the continuous join answer stays
to be{〈a2, b2〉}. At timestamp 4, TP-join is triggered again
by the event ofb2 leavinga2. The answers for subsequent
timestamps can be obtained similarly.

5 Our Approach

We first analyze the NaiveJoin and ETP-Join algorithms,
and then present our approach to the problem, namely time-
constrained query processing.

5.1 Analysis

Given a periodT , the computational cost of any of the con-
tinuous intersection join algorithms described in this paper
is determined by the cost of processing an answer update
and the number of answer updates inT . Here, the cost of
processing an answer update is proportional to the num-
ber of nodes processed by the algorithms. Letpx be the
number of nodes processed for an answer update by algo-
rithmX andux be the number of answer updates performed
in algorithmX. Then, the computational cost of algorithm
X is O(pxux). Using this notation, the computational cost
of NaiveJoin and ETP-Join are denoted asO(pnun) and
O(peue), respectively.

We first compare the number of answer updates of the
two algorithms. NaiveJoin needs an answer update upon ev-
ery object update, while ETP-Join needs an answer update
upon not only every object update but also everychange in
the result. In highly dynamic environments, result changes
happen frequently. There usually are multiple result changes
between two object updates. For the example in Fig. 7, ETP-
Join performs four (synchronous) tree traversals during the
time interval [0,5] (at timestamps 0, 1, 3, 4) for changes in
the result, while NaiveJoin does not perform any traversal
since there is no object update. Therefore, ETP-Join has a
much larger number of answer updates, i.e.,ue ≫ un.

On the other hand, the per update computational cost of
NaiveJoin is much higher than that of ETP-Join. The reason
is as follows. In NaiveJoin, the algorithm in Fig. 4 is exe-
cuted for each answer update, which is effectively a time-
range window query with the updated objectO as the query
window and[tc,∞) as the processing time interval. The al-
gorithm needs to process all the nodes that intersectO in
[tc,∞). In ETP-Join, algorithm TP-Join (a component of
ETP-Join) is executed for each answer update, which per-
forms a time-range window query using the updated ob-
ject as the query window if it is triggered by an object up-
date, or joins two TPR-trees if it is triggered by a change in
the result. The processing time interval is[tc, TINF), where
TINF is the minimum influence time of all object pairs seen
so far in the algorithm. If TP-Join is triggered by an ob-

ject update, then it needs to process all the nodes that in-
tersect the updated object in[tc, TINF). If TP-Join is trig-
gered by a change in the result, then it needs to process all
the nodes that intersect each other in[tc, TINF). Since∞ is
usually much larger thanTINF , the processing time interval
of NaiveJoin is much larger than that of ETP-Join. Unless
the velocities of the objects are highly skewed (e.g., all mov-
ing in the same direction), an MBR will expand in all four
directions (x−, x+, y−, y+), so two MBRs must intersect
sometime in the future. This causes all the tree nodes being
accessed per answer update for NaiveJoin (i.e.,pn is large).
Therefore,pn ≫ pe. For the example in Fig. 7, NaiveJoin
comparesroot A with root B,N1 with N3 andN2 with N4,
while ETP-Join only comparesroot A with root B andN1

with N3 in its first TP-join run. For trees with more nodes,
this difference will be much more significant.

To summarize, ETP-Join has to run TP-Join frequently
because updates and changes of results are frequent. The
problem of ETP-Join is computing the result fortoo short a
time interval in each run, i.e., having a too short processing
time interval. NaiveJoin has a high computation cost per run
because it returns the answer up to the infinite timestamp.
The problem of NaiveJoin is computing the result fortoo
long a time interval in each run, i.e., having a too long pro-
cessing time interval. This motivates us to optimize query
processing in the time domain. The crux of the problem is to
choose a “good” processing time interval for each join run.
Next, we introduce the concept of time-constrained (TC)
processing, based on which we propose our MTB-Join al-
gorithm to achieve a similar per update cost to that of the
ETP-Join algorithm while retain the same small number of
answer updates as that of the NaiveJoin algorithm.

5.2 Time-Constrained Processing

Our key insight is that the join result between any two ob-
jects only needs to be valid until the next update on any
of the two objects. Actually, if an object issues an update,
all the predictions about this object’s intersection with other
objects in the future may become invalid immediately. We
have to perform a join between the updated object with the
other dataset anyway. In other words, an update of an object
invalidates the object’s join result starting from the update
timestamp to the future. Therefore, an ideal time interval
for computing join pairs for an object is from the current
timestamp to the object’s next-update timestamp. This ideal
case is impossible in reality because we could not know in
advance an object’s next-update timestamp. However, fortu-
nately we have an upper bound of an object’s next-update
timestamp, i.e.,TM from now.TM is the maximum update
interval described in Section 3.1. For an object, we only need
to find its join pairs with the other dataset during the period
[tc, tc + TM]. Beforetc + TM , this object will have to is-
sue an update and we will then find its join pairs with the

10

other dataset again for anotherTM period. By this means,
we can obtain correct answers for this object continuously.
One question remains: while doing this on one object seems
correct, can we do this on all objects and still get correct join
pairs between any two objects and for all the time? Theo-
rem 1 below gives a positive answer to the question.

Theorem 1 Let O be an object andotherset(O) be the set
O does not belong to. Lettu be the update (or insertion)
timestamp ofO. For anyO, if we always process the join
betweenO and all the objects inotherset(O) for the time
interval [tu, tu + TM] whenever there is an update (or in-
sertion) ofO, the union of all the produced join pairs is the
correct answer for the continuous join query for all the time.

Proof Omitted due to space limit. 2

This theorem indicates that, whenever we process the
join, either for the initial answer or for the updates, we can
use the processing time interval[tu, tu + TM] instead of
[tu,∞]. It effectively imposes a constraint on the query pro-
cessing in time. Therefore, we call ittime-constrained (TC)
query processing. To apply it on the NaiveJoin algorithm,
we simply changeintersect(eA, eB , tc,∞) in line 2 of the
algorithm tointersect(eA, eB , tu, tu + TM). We call the
resultant algorithmTC-Join.

TC-Join has the advantages of both ETP-Join and Naive-
Join, i.e., it has a small computation cost per object update
([tu, tu + TM] is much smaller than[tu,∞]) and only needs
to update the answer when there is an object update. For the
example in Fig. 7, supposeTM = 5. During the time inter-
val [0,5], TC-Join only performs one tree traversal; for this
traversal, it only comparesroot A with root B andN1 with
N3 (TC-Join does not accessN2 andN4 because it knows
they will not intersect in the time interval [0,5] by compar-
ing e2 ande4). TC-Join is better than both ETP-Join, which
has four tree traversals, and NaiveJoin, which performs one
tree traversal but with all nodes accessed. This clearly shows
the benefit of TC processing.

5.3 Improving TC Processing with the MTB-tree

SinceTM is the maximum time interval between two up-
dates of an object, the actual time interval between two up-
dates may be much shorter thanTM . If we consider a uni-
form distribution, the average update time interval between
two updates isTM

2 . Therefore, one may ask: can we obtain
better processing time interval than[tu + TM]? The answer
is again positive based on Theorem 2 below. We reuse the
notation for Theorem 1. In addition, if there is an update on
any object in setZ, we say that there is an update onZ.
Let lu(Z) denote the latest update onZ before the current
timestamp.

Theorem 2 For anyO, if we always process the join be-
tweenO and all the objects inotherset(O) for the time in-
terval [tu, t(lu(otherset(O))) + TM] whenever there is an

update (or insertion) ofO, the union of all the produced join
pairs is the correct answer for the continuous join query for
all the time.

Proof Omitted due to space limit. 2

An example for Theorem 2 is as follows. SupposeTM =
5, the current timestamp is 7, and we know that all the ob-
jects inB were updated before timestamp 4. Then for an
update onA at the current timestamp, we only need to com-
pute its join pairs withB until timestamp 9 (9=4+5), which
means the processing time interval is [7,9]. This is even
shorter than [7, 12] (12=7+5).t(lu(otherset(O))) is thelat-
est update timestamp(lut) of otherset(O) beforeO is up-
dated. The smaller thelut, the stricter the time constraint for
processing the query.

Theorem 1 is a special case of Theorem 2. If there is at
least one object update onotherset(O) at every timestamp,
we gett(lu(otherset(O))) = tu. Therefore, in this case,
tu+TM is the optimal upper bound of the time intervals for
which the join betweenO and all the objects inotherset(O)

is processed whenever there is an update (or insertion) ofO.
The problem now is how to reduce thelut for a set of

objects. Given a set of objects, we cannot change thelut of
it. However, part of the set could have smallerlut and if we
can separate them from those that have largelut, then we can
still achieve stricter time constraint for processing thatpart
of the set. We propose to group objects into time buckets
based on their latest updates; therefore the set of objects in
each time bucket (except the last one) has a smallerlut than
that of the whole dataset. To group objects into time buck-
ets for TPR-trees, a similar idea as used in the Bx-tree [18]
can be exploited. Particularly, we divide the time axis into
equi-length time buckets; for each time bucket, a TPR-tree
is used to index all the objects whose latest update time fall
in the bucket. This results in a group of TPR-trees based on
multiple time buckets, which we call theMTB-tree. Up-
dates in the MTB-tree are handled as follows. When an ob-
ject updates, we first identify which time bucket the object is
currently indexed from its last update timestamp3. We delete
the object from the TPR-tree in that time bucket and insert it
into the current TPR-tree. The cost of updating an object in
the MTB-tree is almost the same as the cost of updating an
object in a regular TPR-tree, because even if the objects are
indexed by a regular TPR-tree, an object update still involves
deleting an object from the tree first and then insert the up-
dated object. The only overhead of an MTB-tree object up-
date compared to a TPR-tree object update is identifying the
time bucket in which the updated object is currently indexed,
which is done by a simple modulus operation and hence the
overhead is negligible. Typically the length of a time bucket
can divideTM exactly. Fig. 10 shows an example where the

3 We assume that the last update timestamp is sent together with the
update information.

11

length of a time bucket isTM

2 and the current timestamptu
is in the third time bucket[TM , 3TM

2]. Updates result in dele-

1 2 3

M 2TTTT1
2

3
2

tr tr tr

time0 M

update insert

insert

update

MM

TPR−trees

MTB−tree

Fig. 10 The MTB-tree

tions fromtr1 or tr2 and insertions totr3. Here,lut for the
whole dataset istu (tu > TM), while thelut for the objects
in tr1 and tr2 are TM

2 andTM , respectively. Thereby we
reducelut for many objects in the set.

The continuous join is processed as follows. The initial
join is still performed on two single TPR-trees. After the
maintenance phase begins, we start to divide the time axis
into time buckets and change the single TPR-tree into an
MTB-tree. When there is an object update onA, it is first
updated on the MTB-tree onA; then it is joined with the
MTB-tree onB. Specifically, the object is joined with each
TPR-tree ofB using the TC-Join algorithm, but for an even
shorter period[tu, teb + TM], whereteb denotes the end of
the time bucket of the TPR-tree. Since the join is between an
object and a TPR-tree, it is effectively a time-range window
query on the TPR-tree using the MBR of the updated object
as the query window and[tu, teb + TM] as the query time
range. Suppose the MTB-tree in Fig. 10 is forB, then we
join the updated object withtr1, tr2 and tr3 for the time
interval[tu,

3TM

2], [tu, 2TM] and[tu,
5TM

2], respectively. We
call the above methodMTB-Join.

We usem to denote the number of time buckets thatTM

is divided into. Then there are at mostm+1 TPR-trees in the
MTB-tree. The choice of the value ofm affects the perfor-
mance of join operation, i.e., time-range window queries be-
tween updated objects and TPR-trees. A largem can reduce
the cost of a single time-range window query since it reduces
the processing time interval. However, it also increases the
number of time-range window queries to process an update
because it increases the number of TPR-trees in an MTB-
tree. Also, more TPR-trees in an MTB-tree means less ob-
jects in a tree, which may lead to worse clustering of objects
and hence worse performance. Due to the various compli-
cated factors affected by the value ofm and many of these
factors being system dependent, it is difficulty to have an
accurate theoretical model to determine an optimal value of
m. Following a previous study [18], we take an empirical ap-
proach and find a suitable value ofm through experiments.

As shown by our experiments,m = 2 gives the best perfor-
mance and this result accords with the result of the previous
study [18].
5.4 Computational Improvements Enabled by TC Pro-

cessing
Besides cutting the workload in the time dimension, TC pro-
cessing enables a set of techniques that can help the tradi-
tional intersection join algorithm perform better by reduc-
ing the number of entry pairs to be checked for intersec-
tion when joining two nodes. We explore these improve-
ment techniques below. First, we adopt the plane sweep (PS)
technique, which sorts the entries with respect to their coor-
dinates in a certain dimension and can prune some of the
entry pairs from being checked for intersection according to
the sorting result. Then we provide a method to choose the
dimension for entry sorting based on entry speed. Adding
to the PS technique, another improvement technique called
Intersection Check is explored to filter the non-intersecting
entries from entering the PS process, and hence fewer entry
pairs are required to be checked for intersection.
5.4.1 Plane Sweep
Various studies [8,33] have shown that the plane sweep (PS)
technique provides a good order of accessing two sets of
rectangles and hence saves computation for processing spa-
tial joins on static rectangles. However, no study has shown
how to apply this technique to moving rectangles. The tra-
ditional PS is not applicable since the rectangles not inter-
secting each other at a timestamp may intersect later due
to their movements. In what follows, we will first describe
PS for static rectangles and then discuss how to adapt PS to
moving rectangles for a constrained time interval.

First, the two sets of rectangles are sorted respectively
based on their lower left corners in a dimension, sayx, to ob-
tain two sorted sequencesSa=〈a1, a2, ...〉 andSb=〈b1, b2, ...〉.
Then, all the rectangles in both sequences are processed in
increasing order of theirx-coordinates of the lower left cor-
ner. Letc be the current rectangle to be processed. Letc.x−
(c.x+) denote the lower (upper) bound of rectanglec in di-
mensionx. Supposeb1.x− < a1.x+, then initiallyc is set to
b1. The rectangles inSa are scanned until a rectanglee with
e.x− > b1.x+ is found. The scanned rectangles inSa must
overlapb1 in dimensionx, so they are further checked for
overlap withc in dimensiony. If any of them also overlapsc
in dimensiony, it is added to the join answer set. Nowb1 is
done and marked as processed. Then,c moves on to the next
rectangle with the smallestx−-value inSa ∪ Sb, say,a1. At
this time,Sb is scanned and compared withc similarly as
above. This process continues until a sequence is processed
completely.

We find that essentially PS needs two parameters to work,
a lower boundlb and an upper boundub. Lower boundlb is
used to keep two sets of objects sorted in two sequences;
and then they are accessed in increasing order oflb. While

12

Algorithm PSIntersection(Sa, Sb, t0, t1)
1 i← 1, j ← 1, Sc ← ∅;
2 while(i ≤ |Sa| andj ≤ |Sb|)
3 if ai.lb < bj .lb

4 while(j ≤ |Sb| andbj .lb ≤ ai.ub)
5 if ([t′s, t′e]← intersect(ai, bj , t0, t1) 6= NULL
6 Append〈ai, bj , t′s, t

′

e〉 to Sc;
7 j ← j + 1;
8 i← i+ 1;
9 else
10 while(i ≤ |Sa| andai.lb ≤ bj .ub)
11 if ([t′s, t′e]← intersect(ai, bj , t0, t1) 6= NULL
12 Append〈ai, bj , t′s, t

′

e〉 to Sc;
12 i← i+ 1;
13 j ← j + 1;
End PSIntersection

Fig. 11 Algorithm PSIntersection

an object is accessed, itsub is checked againstlb of the ob-
jects from the other sequence. Two objectsO1 andO2 may
not intersect ifO1.ub < O2.lb. This is the fundamental re-
quirement for choosing the two parameters. As seen from
the previous sections, our join algorithm has a time con-
straint [t0, t1] as part of the input. This means we need to
consider the movements of the rectangles in[t0, t1]. Suppose
we decide to sort in dimensionx. LetORx−(t) (orORx+(t))
denoteO’s lower (or upper) bound at timestampt. We can
usemin(ORx−(t0), ORx−(t1)) as lb andmax(ORx+(t0),
ORx+(t1)) asub since they satisfy the requirement described
above. The algorithm to compute intersections of two sets
of moving objects using PS, calledPSIntersection, is pre-
sented in Fig. 11. In this algorithm,Sa (Sb) is the sequence
of entriesai (bi) from nodeA (B) sorted onlb values,[t0, t1]
is the time interval the join is processed for, andSc is a se-
quence to keep the join results in the output order.

Note that the constrained processing time[t0, t1] is nec-
essary to enable the lower/upper bound property for PS. Oth-
erwise, if [t0,∞] is the time interval for processing the in-
tersection, then we will not be able to usemax(ORx+(t0),

ORx+(t1)) asub because of the infinite timestamp. Further,
the time constraint[t0, t1] greatly reduces the chance of in-
tersection and makes PS more effective than the static case.

5.4.2 Dimension Selection Based on Speed

We need to sort the entries (moving rectangles) before run-
ning PSIntersection. The choice of sorting dimension also
has an impact on the computation cost. Consider the two
examples in Fig. 12. Lines 1, 2, 3 and 4 are the projec-
tions of some entries on dimensionx. The dashed lines show

x

0

1

0

1

t

t

t

tt

t

1 2 3 41 2 3 4

(b)(a)
x

Fig. 12 Selecting sorting dimension

their movements as time goes fromt0 to t1. Line 1 corre-
sponds to entrya1 from nodeNA; Lines 2, 3 and 4 cor-
respond to entriesb2, b3 and b4, respectively, from node
NB . For Fig. 12 (a),a1.ub > b2.lb, a1.ub < b3.lb, b4.lb,
therefore, we only check whethera1 intersectsb2 during PS.
For Fig. 12(b),a1.ub > b2.lb, b3.lb, b4.lb, thus, we need to
check whethera1 intersectsb2, b3 and b4 during PS. Sup-
posea1 intersectsb2, b3 andb4 in dimensiony. Hence,a1
actually only intersectsb2 in both cases. However, the en-
tries in Fig. 12(b) have an intersection test cost three times
that of Fig. 12(a). This cost difference is caused by the dif-
ference of their speeds. The larger the speed, the larger the
region the entry moves, and hence the greater the chance that
bi.lb is smaller thana1.ub, and hence the more the intersec-
tion test costs. Based on this observation, we first compute
the sum of the absolute values of the speed of all entries in
each dimension. Then the dimension with the smallest sum
is selected as the sorting dimension.

5.4.3 Intersection Check

Only the entries ofNA andNB that intersectNA.mbr ∩
NB .mbr could intersect each other. Therefore, before com-
puting intersections of the entries from two nodes using PSIn-
tersection, we first test whether the entries intersectNA ∩
NB . We only run PSIntersection on entries that pass this
test. This intersection check technique has been used be-
fore on static datasets [8]. Here, intersection is more effec-
tive because of the constrained processing time. Note that
NA∩NB is a rectangle that moves in the constrained time in-
terval [t0, t1]. Suppose they intersect during[ts, te]. Interval
[ts, te] is actually an even stricter time constraint imposed
on the intersection check. As we traverse the tree to a lower
level, [ts, te] here serves as[t0, t1] to the lower level. Be-
cause[ts, te] ⊂ [t0, t1], the time constraint becomes stricter
and stricter. Therefore, the intersection check on moving ob-
jects have a stronger pruning power than that on static ob-
jects.

5.4.4 A Join Algorithm with the Improvement Techniques

All the techniques discussed above are integrated into one
join algorithmImprovedJoin, shown in Fig. 13. Compared

Algorithm ImprovedJoin (NA, NB , t0, t1)

1 for all entries inNA andNB

2 Intersection check,intersect(NA, NB , t0, t1),
and letSa (Sb) be the entries fromNA (NB);

3 Determine sorting dimension;
4 sort(Sa); sort(Sb);
5 Sc ← PSIntersection(Sa, Sb, ts, te);
6 for every entry〈ai, bi, tsi, tei〉 ∈ Sc

7 if NA is a leaf node
8 output〈ai, bi, tsi, tei〉;
9 else
10 ReadPage(ai.ptr); ReadPage(bi.ptr);
11 ImprovedJoin(ai.ptr, bi.ptr, tsi, tei);
End ImprovedJoin

Fig. 13 Algorithm ImprovedJoin

13

with NaiveJoin, ImprovedJoin takes two additional parame-
terst0 andt1, which reflect the constrained processing time.
First, we perform the intersection check. It returns[ts, te] as
the time interval during whichNA intersectsNB . We can
compute the sum of the absolute values of the speed at the
same time as the intersection check. Therefore, we can avoid
accessing the entries again for selecting the sorting dimen-
sion. After the sorting dimension is selected, we sort both
sequences of entries and perform PS to obtain join pairs.

5.5 Computational Cost Comparison between NaiveJoin,
ETP-Join and MTB-Join

Following the discussion and notation in Section 5.1, the
computational cost of MTB-Join is denoted asO(pmum).

The number of answer updates performed by MTB-Join
is the same as that by NaiveJoin because both MTB-Join and
NaiveJoin only have an answer update upon every object
update, soum = un. As discussed in Section 5.1,un ≪ ue.
Therefore,um = un ≪ ue.

The number of nodes processed for an object update
by MTB-Join is similar to that by ETP-Join as explained
below. On one hand, ETP-Join’s processing time interval
([tc, TINF]) is smaller than that of MTB-Join ([tc, tc+TM])
becauseTINF is the time for the next result change, which
is usually earlier than the time for the next object update.
The shorter processing time interval of ETP-Join means ac-
cessing fewer tree nodes. However, on the other hand, an
ETP-Join run needs to join two trees while an MTB-Join
only performs a window query using the updated object as
the query window. Joining two trees obviously requires ac-
cessing much more nodes than window querying one tree.
The above two aspects results in similar numbers of nodes
processed for an object by MTB-Join and by ETP-Join, so
pm ≈ pe. As discussed in Section 5.1,pe ≪ pn. Therefore,
pm ≈ pe ≪ pn.

In summary,um = un andpm ≪ pn, soO(pmum) ≪
O(pnun); pm ≈ pe andum ≪ ue, soO(pmum) ≪ O(peue).
The computational cost of MTB-Join is much smaller than
that of both NaiveJoin and ETP-Join. We will further vali-
date the performance comparison in the experimental study.

5.6 Applicability of TC processing

The core idea of TC processing is that the result of a con-
tinuous query on moving objects determined by an objectO
only needs to be valid untilO’s next update. AfterO up-
dates, the query result has to be updated anyway. We utilize
this forced result updating property and propose that, when
an object updates, we compute the result of a continuous
query only to the object’s next-update timestamp instead of
to the infinite timestamp. Since we can not predict an ob-
ject’s next-update timestamp, we use the maximum update
interval TM , which is the longest time period between an
object’s two consecutive updates. For an object that updates
at timestamptc, we compute whether it satisfies the query

predicate during the period[tc, tc + TM]. Beforetc + TM ,
this object will have to issue an update and we will then up-
date the query result for anotherTM period. By this means,
we can obtain correct answers for the query continuously.

The above query processing procedure can be applied
to a wide range of continuous query types on moving ob-
jects such as continuous window queries and kNN queries.
Take continuous window queries as an example. It is essen-
tially computing the intersection between objects and query
windows. Again, a naive algorithm would compute the in-
tersection for the time interval[tc,∞]. We can apply the TC
processing technique and only compute the intersection for
[tc, tc + TM]. Further, we can index the objects by a MTB-
tree and use even tighter time constraints for each TPR-tree
as we do in MTB-Join. Similarly, we can imagine applying
TC processing to other queries and may enable other algo-
rithmic improvements.

TC processing can also be easily grafted onto many ex-
isting continuous query algorithms on moving objects. This
is because previous studies have focused on how to improve
algorithms in the spatial aspects. Our work is the first at-
tempt to optimize the processing in anorthogonal aspect,
the time dimension. For example, the continuous kNN algo-
rithm proposed by Benetis et al. [5] needs to compute kNN
candidates for a time interval[ts, te] as traversing a TPR-
tree. If te > ts + TM , we can apply TC processing and re-
duce the time interval to[ts, ts +TM]. The continuous kNN
and range join algorithms proposed by Iwerks et al. [17] put
all events in a queue and process them one by one. We can
apply TC processing here and only process events that hap-
pen in[tc, tc + TM].

Generally, TC processing can be applied to any continu-
ous query algorithm as long as the data objects get updated
and we can find an upper bound for the update time.

6 Improvements on Node Access Performance

In previous sections, we have focused on techniques which
improve computational efficiency of the intersection join al-
gorithm. In this section, we present two techniques to im-
prove node access performance. The first one provides better
pruning performance during Intersection Check; the second
one achieves node access reduction by processing updates
in a group fashion.

6.1 Improved Node Accessing Order in Intersection Check

During Intersection Check, even if nodeNA intersectsNB ,
it is still possible that no entry ofNA intersects any entry of
NB . For example, in Fig. 14, entries of nodeN4 do not inter-
sectN2.mbr∩N4.mbr. Thus, we can discard this pair with-
out accessingN2 and hence save one node access. However,
this pruning strategy dose not work if we checkN2 first.

The above pruning strategy motivates us to modify the
node accessing order as follows when joining two intersect-

14

ing nodes(NA, NB). BetweenNA andNB , we always ac-
cess first the one which is most recently accessed. Since this
node is most recently accessed, its probability of still being
in buffer is high (we consider an LRU buffer due to its popu-
larity). Thus, we can perform Intersection Check on it with-
out any additional I/O cost and find out whether it satisfies
the pruning criterion. If it does, we then successfully avoid
accessing the other node and hence save one node access.

To find out the node betweenNA andNB that is most
recently accessed, we consider the process of generating in-
tersecting node pairs by PS. Take Fig. 14 as an example. PS
generates intersecting node pairs in the order of(N1, N4),
(N2, N4) and(N3, N4). Between every two adjacent node
pairs, there is a node in common. We call this node amas-
ter node. For example, nodeN4 is a master node for the
first two node pairs. Finding a master node can be easily
done by comparing two adjacent node pairs. When joining
a pair of nodes, we always access the master node first. We
name such node accessing order theimproved accessing or-
der. This guarantees that the node accessed first within a
pair is in the buffer (the only exception is when joining the
first node pair generated by PS). By using this order in con-
junction with the aforementioned pruning strategy, nodes in
Fig. 14 are accessed in the order ofN1, N4, N4 andN4,
while without using these improvement techniques, the or-
der isN1, N4, N2, N4, N3 andN4.

1N

a1

4
b2

b1

N2

N3

N

a

a

5

3

2a
6a

4a

Fig. 14 Example for IOImprovedJoin

The above described improvement techniques are inte-
grated into ImprovedJoin algorithm and result in the algo-
rithm IOImprovedJoin (cf. Fig. 15), where the improved ac-
cessing order is achieved by putting a master node as the first
parameter of a function call (lines 16 to 19) and performing
Intersection Check on the first function parameter at the first
place (lines 2 to 3).

6.2 Group Processing of Updates

In the phase of maintenance, we need to find new intersec-
tion pairs for updated objects, which is processed as window
queries and requires traversals on the MTB-trees. To reduce
the number of traversals and hence improve node access per-
formance, we process updates in a group fashion as follows.

At every timestamp, we group all updated objects of a
dataset into a setS and join it with the other joining tree.
During this joining process, we recursively construct a sub-

Algorithm IOImprovedJoin (NA, NB , t0, t1)

1 ReadPage(NA);
2 for all entries inNA

3 Intersection check, letSa be the entries fromNA

which intersectsNA.mbr ∩NB .mbr;

4 if Sa = φ return;
5 ReadPage(NB);
6 for all entries inNB

7 Intersection check, letSb be the entries fromNB

which intersectsNA.mbr ∩NB .mbr;
8 if Sb = φ return;
9 Determine sorting dimension;
10 sort(Sa); sort(Sb);
11Sc ← PSIntersection(Sa, Sb, ts, te);
12 for every entry〈ai, bi, tsi, tei〉 ∈ Sc

13 if NA is a leaf node
14 output〈ai, bi, tsi, tei〉;
15 else
16 if ai.ptr is a master node
17 IOImprovedJoin(ai.ptr, bi.ptr, tsi, tei);
18 elseifbi.ptr is a master node
19 IOImprovedJoin(bi.ptr, ai.ptr, tsi, tei);
End IOImprovedJoin

Fig. 15 Algorithm IOImprovedJoin

setSn of S for every nodeN in the other joining tree and
join Sn with N , where the setSn only contains all the ob-
jects inS that intersectN . We describe the detailed process
of constructingSn in the algorithmGroupJoin as shown in
Fig. 16, which is also used for the group processing of ob-
ject updates. This algorithm is a modified version of IOIm-
provedJoin. While IOImprovedJoin is used in the phrase of
initial join, GroupJoin is used in the phrase of maintenance.
GroupJoin resembles IOImprovedJoin in thatSn is viewed
as a tree node and joined withN . The difference is that,
instead of joining an entrybi of N with every one of its in-
tersecting objects inSn separately, GroupJoin constructs a
subsetSi

n of Sn, which contains all the objects inSn inter-
sectingbi, and then usesSi

n as a new subset ofS to join with
the child node pointed to bybi.ptr (lines 8 to 18). When con-
structingSi

n for bi, we also progressively compute an MBR
to bound all the objects inSi

n, denoted asmbri (line 15), and
an interval[min{tsj}, max{tej}], in which bi.mbr inter-
sects at least one object inSi

n (line 16). These are then used
to perform Intersection Check on the child node pointed to
by bi.ptr. We do not perform Intersection Check onSn since
its construction process guarantees that every object in itwill
pass this check.

7 Choosing the Maximum Update Interval

In previous sections, we have assumed that the maximum
update interval,TM , is a given parameter. In practice, a sys-
tem may allow to setTM to any value within a reasonable
range based on the application requirements. In this section,
we examine the problem of finding an optimalTM value
in the sense that it minimizes the average query processing
cost. Towards that end, we first model the cost of our contin-

15

Algorithm GroupJoin (Sn, N , t0, t1, mbr)

1 ReadPage(N);
2 for all entries inN
3 Intersection check, letSb be the entries fromN

which intersectsmbr

4 if Sb = φ return;
5 Determine sorting dimension;
6 sort(Sn); sort(Sb);
7 Sc ← PSIntersection(Sn, Sb, ts, te);
8 for everybi in entries ofSc

8 find a subsetS′

c of Sc, which includes all entries containingbi;
9 Si

n ← ∅, mbri ← (0, 0, 0, 0);
10 for every entry〈aj , bi, tsj , tej〉 ∈ S′

c

11 if N is a leaf node
12 output〈aj , bi, tsj , tej〉;
13 else
14 sin ← Si

n ∪ {aj};
15 Enlargembri with aj .mbr ∩ bi.mbr during[tsj , tej];
16 Updatemin{tsj}, max{tej};
17 if Si

n 6= ∅
18 GroupJoin(Si

n, bj .ptr, min{tsj}, max{tej}, mbri);
End GroupJoin

Fig. 16 Algorithm GroupJoin

uous intersection join algorithm for a given value ofTM , and
then provide methods to find the optimalTM value based on
the cost analysis.

We use the number of node accesses to estimate the cost
of query processing due to two reasons: (i) the node access
cost is a significant part of the total cost; (ii) the CPU cost is
roughly proportional to the number of node accesses, since
the same routine will be executed on similar number of en-
tries for every accessed node. We focus on the maintenance
phase of the continuous join since this part dominates the
total cost. The maintenance phase essentially deals with up-
dates of objects (insertions and deletions can also be viewed
as updates). We aim at minimizing theaverage per times-
tamp cost,C, which is the average cost for processing all the
updates per timestamp. In what follows, we will first show
thatC is a function ofTM . Then we discuss how to find the
optimal value ofTM .

7.1 Average per Timestamp Cost

At each timestamp, an object may need to update itself due
to the change of speed or moving direction. We call this type
of updatesvoluntary updates. It is reasonable to assume that
the probability of performing a voluntary update is constant,
since we are modeling the average behavior of a large num-
ber of objects whose movements are random and indepen-
dent of each other. We denote the probability of a voluntary
update aspv. On the other hand, if an object has not updated
voluntarily in the lastTM timestamps, it is forced to perform
an update to satisfy the requirement of the maximum update
interval. We call this type of updatesforced updates.

Let nA be the number of objects intrA andfA the av-
erage cost of updating one object oftrA. Consider a period
of TM timestamps. The amount of objects not updated vol-

untarily afterTM consecutive timestamps isnA(1− pv)
TM .

In other words, there arenA(1− pv)
TM forced updates dur-

ing TM . Adding the number of voluntary updates inTM ,
nApvTM , we obtain the total amount of objects updated dur-
ingTM ,nApvTM+nA(1−pv)

TM . It is reasonable to assume
that, after a long time, the system will reach a stable state in
which the number of forced updates is distributed uniformly
in each timestamp. Thus, the average cost for processing all
the updated objects intrA per timestamp, denoted byCA, is
given by the following equation.

CA =

(

nApv +
nA(1− pv)

TM

TM

)

fA (1)

The average cost for processing all the updated objects in
trB per timestamp, denoted byCB , follows a similar for-
mula. Then we have the total average per timestamp cost
C = CA + CB . We focus on how to obtain the value ofCA

in the remainder of this section andCB can be obtained in
the same way.

In Equation (1),pv is determined by parameters in real
applications such as the road network and traffic conditions
which do not change dramatically in a short time. Thus, we
can derivepv from the statistics on updates in a recent time
window. We also knownA. Therefore,CA is a function of
TM multiplied by fA. Next, we show how to derivefA,
which is also a function ofTM .

7.2 Average per Update Cost

In order to estimatefA, we make use of the cost model for
window queries on the TPR-tree [40], which is explained in
Section 7.2.1. We use this cost model to estimate the cost
of an individual object update. Based on this, we then show
how to derive the average cost for processing all the object
updates during a span ofTM timestamps in Section 7.2.2.

Mbr(O,0)

Mbr(O,1)

Mbr(WQ,1)

Mbr(WQ,0)

region of O
sweeping

1

2

1

4 6 82
0

10

8

6

4

2
2

2

2

2

y

x

region of WQ

10

sweeping

(a) Moving objectsO, WQ

Mbr(O’,0)

Mbr(O’,1)

y

region of O’
sweeping

3

3

2

2

4 6 82
0

10

8

6

4

2

x10

(b) Transformed rectangleO′

Fig. 17 Sweeping region of moving rectangle

7.2.1 Cost Model

Consider a moving objectO and a moving window query
WQ for the time interval [0,1] as shown in Fig. 17(a). The
sweeping regionsof O andWQ are the regions swept by
O andWQ during the time interval [0,1] (the gray regions
shown in Fig. 17(a)). To determine whether objectO inter-
sectsWQ, we first define thetransformed rectangleO′ with

16

respect toWQ as follows: the MBR ofO′ in theith dimen-
sion is〈ORi− − |WQRi|/2, ORi+ + |WQRi|/2〉; the VBR
of O′ in the ith dimension is〈OV i− − WQV i+, OV i+ −
WQV i−〉. To check whether objectO intersectsWQ dur-
ing the time interval [0,1] is equivalent to check whether
the transformed rectangleO′ intersects the center ofWQ

(which is a point) during the time interval [0,1]. Therefore,
the probability ofO intersectingWQ (which is the proba-
bility of objectO being accessed by the queryWQ) during
the time interval [0,1] is the same as the probability ofO′

intersecting the center ofWQ during the time interval [0,1],
which equals the area of the sweeping region ofO′ in the
time interval [0,1] (the gray region shown in Fig. 17(b)) as-
suming that the MBR ofWQ uniformly distributes in the
data space and the data space has a unit extent in each di-
mension. Adding up this probability for every node of the
tree, we obtain the expected number of node accesses for
the window queryWQ as

∑

every node N in the tree

ASR(N
′, qT) (2)

whereN denotes a node in the TPR-tree;N ′ is the trans-
formed rectangle ofN with respect toWQ; qT is the query
time interval;ASR(N

′, qT) is the area of the sweeping re-
gion ofN ′ duringqT .

In the continuous join, when an objectO is updated, we
first remove from the current answer those join pairs that
containO. Second,O is treated as a window query with the
processing time interval[t0, t1] on the other joining dataset
to find new join pairs containingO (recall that[t0, t1] is the
processing time interval used in the join algorithms). The
first step, finding join pairs containingO, can be done very
efficiently by looking up the object in the hash tableht in the
result presenter (cf. Fig. 2). Moreover, all the join pairs in
the answer are always held in main memory. In comparison,
the second step is much more expensive, which involves ac-
cessing tree nodes and searching for all the new intersected
objects. Therefore, we focus on the cost of the second step.
As discussed above, the second step is essentially a window
query, so we can use Equation (2) to estimate the cost of an
individual update withqT being[t0, t1].

7.2.2 Update Cost for All Objects inTM

We have shown that Equation (2) can be used to estimate the
cost of an individual update. However, there are still several
challenges if we want to estimate the average per update cost
for all object updates.

First, the cost of an object update should be estimated us-
ing different parameters for Equation (2) at different times-
tamps due to the following reasons. Based on our MTB-tree
scheme, the processing time intervalqT for joining the up-
dated object with the other dataset is different at different
timestamps, and the other dataset may change over time due

to its own object updates at different timestamps. Therefore,
we need to treat each timestamp differently. We will show
later in this subsection how to derive the processing time
intervalqT for a given timestamp andTM value. To obtain
the average per timestamp update cost, we compute the total
update cost at each timestamp, sum it up for infinite times-
tamps inqT and then divide it by the number of timestamps
in qT . Since it is infeasible to derive the update cost forall
timestamps, we consider onlyTM timestamps assuming that
when the system reaches a stable state, the average update
behavior will occur periodically everyTM timestamps.

A second challenge lies in how to estimate the total cost
of all the updates occurring at a given timestamp. Note that
to use Equation (2) to estimate the cost of an object update,
we need to check whether the updated object intersects with
each of the tree nodes and this requires a tree traversal. The
cost of performing the check is too high if we do it on all
the updated objects. To reduce this cost, we propose to es-
timate the cost of a set ofequivalent object updates, which
has a small cardinality and approximates the average update
behavior of all the objects in terms of the number of node
accesses. We will explain how to construct the equivalent
object updates later in this subsection.

With the above discussion, now we can give an overview
of our method of deriving the average update cost of all the
objects inTM . At every timestampti in TM , we (i) derive
the qT value giventi andTM , (ii) perform a tree traversal
and compute the number of node accesses through Equa-
tion (2) for every update in the set of equivalent object up-
dates, and (iii) record the average value as the average per
update cost atti, denoted asfi. After TM timestamps, the
average value of these average per update costs (thefi’s)
is used as an approximation offA. The overhead of our
approach is only one tree traversal at each timestamp, re-
gardless how many updates there are. Next, we show how
to deriveqT and how the set of equivalent object updates is
constructed.

Deriving qT as a function ofTM : First, we consider
the case where the MTB-trees for setsA andB are single
TPR-trees. As Theorem 2 shows, at a given timestamptu,
the processing time interval for an update on objectO is [tu,
t(lu(otherset(O)))+TM], i.e.,qT = [tu, t(lu(otherset(O)))
+ TM]. We assume large datasets and there are updates on
every timestamp. Therefore, the latest update timestamp of
otherset(O) is the update timestamp, i.e.,t(lu(otherset(O)))
= tu andqT = [tu, tu + TM].

Next, we deriveqT for the case where there are multi-
ple TPR-trees in the MTB-trees for setsA andB. Follow-
ing the previous notation, suppose the length of each time
bucket isTM

m
and the current time is in the(m + 1)th time

bucket as shown in Fig. 18. Suppose objectO in trA is up-
dated, at timestamptu. Among the firstm TPR-trees of the
MTB-tree, theith one indexes objects updated in the time

17

m m+11tr

m+1
m

m−1
m time0

update insert

insert

TM M M M TT T
update

m
1

trtr

TPR−trees

MTB−tree

Fig. 18 An MTB-tree with n buckets

interval (i−1
m

TM , i
m
TM]. Hencelut for the ith TPR-tree is

i
m
TM , andqT on theith sub-tree is[tu, i

m
TM + TM] ac-

cording to Theorem 2. The(m+ 1)th TPR-tree indexes ob-
jects updated in time interval(TM , tu]. Hence itslut is tu
andqT on it is [tu, tu + TM]. More generally, at timestamp
tu (tu ∈ (kTM + j−1

m
TM , kTM + j

m
TM], k, j = 1, ...m),

we can deriveqT for the ith TPR-tree among the firstm
TPR-trees oftrB as[tu,

i+j−1
m

TM + kTM], andqT for the
(m+1)th TPR-tree as[tu, tu + TM]. For example, theqT ’s
for tr1, tr2 andtr3 in Fig. 10 are[tu,

TM

2 + TM], [tu, 2TM]
and[tu, tu + TM], respectively.

Based on the above derivation, we can see that, given a
timestamptu, qT is a function ofTM .

Equivalent object updates: We construct a set of equiv-
alent object updates to approximate the average behavior of
all the object updates inTM in terms of the number of node
accesses. Assume that the objects (and hence also the up-
dates) are uniformly distributed in the data space and their
velocities are also uniformly distributed within a range. A
straightforward way of constructing the set of equivalent ob-
ject updates is to have just one object update which is posi-
tioned at the average location (i.e., the center of the data
space), has the average MBR size of all the objects, and
has the VBR with the average velocity. Since the velocities
are uniformly distributed, the average is 0, so the VBR of
the above constructed object update is〈0, 0, 0, 0〉. We call
this way of constructing the set of equivalent object updates
the Zero-VBR method. However, this method has a prob-
lem as illustrated by the example in Fig. 19. SupposeO1

andO2 are two object updates with the same MBR size in
trA, and nodeN is in trB . The VBRs ofO1, O2 andN are
〈0, 0,−v,−v〉, 〈0, 0, v, v〉 and〈0, 0, 0, 0〉, respectively. Ac-
cording to the cost model, the transformed rectangles ofN

with respect toO1 (O2) is N ′
1 (N ′

2), which has the VBR of
〈0, 0, v, v〉 (〈0, 0,−v,−v〉). If we use the Zero-VBR method
to construct an equivalent object updateO3, thenO3 has the
same MBR size asO1 andO2, and the zero VBR. The trans-
formed rectangle ofN with respect toO3 is N ′

3, which also
has the zero VBR. Recall that the area of the transformed
rectangle corresponds to the probability of an object update
intersecting a node. We can see that the average area ofN ′

1

O

N3’

1 23

N’3N

’1N

N1’

v

v

v

N

O O

v

’2

sweeping

region of
sweeping

’

region of

2N

region of
sweeping

object update
with the Zero−VBR

An equivalent

Fig. 19 Problem of the Zero-VBR method

andN ′
2 is much larger than the area ofN ′

3. This shows that
the Zero-VBR method is not accurate. The reason is that ve-
locities of opposite directions cancel out each other in the
Zero-VBR method, but actually they both add to the area of
the transformed rectangles.

A lesson we learn here is that velocities in different di-
rections should be reflected (instead of cancelled out) in the
set of equivalent set of object updates. Therefore, we may
consider setting the VBR of the above described equiva-
lent object update to〈−va, va,−va, va〉, whereva denotes
the average speed of the objects in the dataset. We call this
way of constructing the set of equivalent object updates the
Expanding-MBR method. However, this method has the
following problem. The size of the updated object keeps in-
creasing, which is not a truthful reflection of the average
behavior of the object updates: actually some objects’ sizes
increase and some others’ sizes decrease, so the average size
of all the objects should stay almost unchanged.

The reason the two previous methods fail is that they try
to capture the average behavior of a large number of updates
by just one object, which is hard to reflect all characteris-
tics such as size and speed at the same time. To address the
problem, we propose to use eight object updates as the set of
equivalent object updates. Each of these eight updates still
has the average MBR size and are positioned at the cen-
ter of the data space, but has a VBR different from others.
The VBRs of these eight object updates are〈va, va, 0, 0〉,
〈va, va,−va,−va〉, 〈0, 0,−va,−va〉, 〈−va,−va,−va,−va〉,
〈−va,−va, 0, 0〉, 〈−va,−va, va, va〉, 〈0, 0, va, va〉 and〈va,
va, va, va〉. We call this way of constructing the set of equiv-
alent object updates theEight-VBR method. By using this
method, velocities of opposite directions all contribute to the
sum area of the transformed rectangles. At the same time,
their average size remains unchanged. Therefore, the Eight-
VBR method addresses the problems of both of the previ-
ous methods. At every timestamp, one tree traversal is per-
formed to evaluate Equation (2) for these eight object up-
dates concurrently and the average of their numbers of node

18

accesses is used as the estimate of the per update cost for
that timestamp.
7.3 Finding the Optimal Value for TM

Revisiting Equation (1),CA is a function ofTM multiplied
by fA. We then find thatfA is also a function ofTM in Sec-
tion 7.2. Therefore,CA is a function ofTM . However, the
method of obtaining the value offA requires tree traversals
and the result offA depends on the actual updates over a
span of time. Consequently, we do not have a simple closed-
form formula forCA as a function ofTM . Therefore, we
adopt the following empirical approach to find the optimal
value ofTM . We compute the values ofCA (andCB in a
similar way) for a set of candidateTM values at the same
time, and the candidate value with the smallestCA + CB

value is chosen as the optimalTM value. These candidate
values are chosen from a range ofTM values allowable by
the real system. For example, the system may requireTM to
be less than 3 minutes. Then we may have{30, 60, 90, 120,
150, 180} as the set of candidateTM values.
7.4 Overhead

Our scheme of finding the optimalTM value involves esti-
matingCA (andCB) for a set of candidateTM values. At
every timestamp, we need to traversetrB (and trA) once
to compute the value of Equation (2) for the set of (eight)
equivalent object updates and perform this computation for
all the candidateTM values. Please note that evaluating Equa-
tion (2) needs the MBRs and VBRs of all thetree nodes,
which only requires traversing the non-leaf nodes of the tree.
As the number of non-leaf nodes is much smaller than the
total number of the tree nodes and the non-leaf nodes usu-
ally reside in the buffer since they are frequently accessed
in the query processing, the overhead of the tree traversal
is actually not large. The CPU cost involved in the above
process is constant for each visited node and therefore also
quite limited. We have also performed experiments (see re-
sults in Section 8) which show that the cost estimation brings
a negligible overhead compared to the cost of processing the
intersection join query, but it leads to a good choice of the
TM , which significantly reduces the overall query process-
ing cost.

7.5 Impacts of System Parameters

In this subsection we discuss how the system parameters im-
pact the optimal value ofTM .

According to Equation (1), the average per timestamp
costCA is determined by the average number of updates

at a timestampum, um = (nApv + nA(1−pv)
TM

TM
) and the

average per update costfA. With the increase of the value
of TM , um will decrease because a longer maximum up-
date interval leads to fewer forced updates, whilefA will
increase because a longer processing time interval leads to
larger processing cost per update. Thus, aTM value can
not minimizeum and fA at the same time, and the opti-

malTM value is a balance between optimizingum andfA.
The impact of a system parameter on the optimal value of
TM is determined by whether this parameter makesum or
fA the dominating factor in system optimization. For exam-
ple, theobject update probability pv has a more significant
influence onum. If pv is small, then a largerTM value can
reduce the number of forced updates and thus reduceum.
Consider an extreme case where objects never change their
moving directions or speed at all (e.g. all static objects),i.e.,
pv = 0. Then,TM = ∞ is optimal because the join result is
not changing anyway. On the other hand, whenpv becomes
larger, the optimal value ofTM gets smaller. Also consider
an extreme case where objects update voluntarily at every
timestamp, i.e.,pv = 1. In this case,TM = 1 is optimal
because there is no forced update. Any largerTM value can
only increasefA but not reduceum. The influence ofobject
moving pattern is shown by its impact on the object update
probability. In a moving pattern where the objects change
their moving directions or speed very frequently, (e.g. par-
ticles in Brownian motion), there are a lot of voluntary up-
dates and thus the optimalTM value goes smaller. In a mov-
ing pattern where objects have unified moving routes (e.g.
an army marching), objects do not update much, then the
optimalTM goes larger. Unlike the above two factors, the
influence ofthe number of moving objectsis more com-
plex. Increasing the number of moving objects not only in-
creasesum but also increasesfA because the TPR-trees will
have larger number of nodes and node sizes. Therefore, in
cases where changing the number of moving objects affect
um more significantly than it affectsfA, a TM value that
optimizesum more can optimize the system performance
better. On the other hand, if the change affectsfA more sig-
nificantly, then the optimalTM value should optimizefA
more.

8 Experimental Study

In this section, we report the results of our experimental
study. First, in Section 8.2, we evaluate the impact of the
number of time buckets inTM ,m, on MTB-Join, and choose
a best value ofm for system implementation. Then, we eval-
uate the impact of TC processing, computational improve-
ment techniques and node access improvement techniques
on join algorithms in Sections 8.3, 8.4 and 8.5, respectively.
After that, we compare the overall performance of MTB-
Join with NaiveJoin and ETP-Join in Section 8.6. We inves-
tigate the validity of our cost model, the choice of an optimal
TM value and the overhead it may incur in Section 8.7.

8.1 Experimental Setup

All the experiments were conducted on a desktop computer
with 3GB RAM and 2.66GHz CPU. The disk page size is
4KB. We use the TPR*-tree [40] to index moving objects,
and an LRU buffer with 50 pages is used (suggested by

19

Tao and Papadias [39] for TPR-trees). We measure both the
number of node accesses and CPU time.

We conduct experiments on both synthetic datasets and
real datasets. Synthetic datasets are generated with a space
domain of1000 × 1000 using the data generator developed
by Saltenis et al. [35]. We perform joins on two datasets
with the same cardinality ranging from 1K to 100K. Ob-
jects are of square shape. We use the following three types
of datasets: (i)Uniform dataset, where object positions and
moving directions are generated randomly according to a
uniform distribution; the speed of the objects is randomly
distributed between 0 and a maximum object speed. Five
maximum speeds, 1, 2, 3, 4 and 5, are used. (ii)Gaussian
dataset, where object positions follow the Gaussian distri-
bution. The speed of the objects are generated as in (i). (iii)
Battlefield dataset, where objects of two datasets are first
clustered on opposite sides of the space and then move to-
ward the opposing party, simulating the scenario of a battle-
field. By default, we use the uniform dataset.

For each dataset, we build a TPR*-tree at timestamp0,
and then keep updating it as follows. At every timestamp, we
randomly change directions or speed of some objects to gen-
erate updates. Every object is required to be updated at least
once during the maximum update intervalTM . The continu-
ous join processing starts from timestamp 0. The parameters
used in the experiments are summarized in Table 2, where
values in bold denote default values used.

Table 2 Parameters for synthetic datasets and their settings

Parameter Setting
Node capacity 113
Maximum update interval 30,60, 90, 120, 150, 180
Maximum object speed 1, 2, 3, 4, 5
Object size (% of space) 0.5%, 1%, 2%, 4%, 8%
Voluntary update probability 1%, 2%, 4%, 8%, 16%
Dataset size 1K, 10K, 50K, 100K
Dataset Uniform , Gaussian, Battlefield

We adopt two real-world trajectory datasets, a fleet of
trucks and a fleet of school buses [13]. They consist of 276
and 145 trajectories, respectively. Each trajectory consist of
location information for a truck/bus within a day, collected
every 30 seconds. Because the number of trajectories in each
dataset is small, following previous studies [12,14,19], we
generate more objects moving on these trajectories as fol-
lows. Two groups of datasets are generated. One is based
on the truck trajectories (Truck datasets), and the other is
based on the bus trajectories (Bus datasets). Each dataset
generated contains 10K moving objects. To generate a mov-
ing object, we first randomly pick a trajectory from the real
dataset. Then, starting from a randomly picked location in
the trajectory and with a randomly picked direction, a new
object with the size of 0.5% (the default object size) of the
space is generated to move on the trajectory. Every time the
object reaches a location in the trajectory, it issues a volun-

tary update, i.e., the object issues a voluntary update every
30 seconds. When reaching one end of the trajectory, the
object changes its direction and continues moving.

8.2 The Number of Time Buckets inTM , m

The choice of the number of time bucketsm in TM affects
the join performance. A largem can reduce the cost of a
single time-range window query since it reduces the query
time range. However, it also increases the number of time-
range window queries to process an object update because
it increases the number of TPR-trees in an MTB-tree. Also,
more TPR-trees in an MTB-tree means less objects in a tree,
which may lead to worse clustering of objects and hence
worse performance. This experiment is to estimate a best
value ofm for the experimental setting considered. To ob-
serve only the effect ofm values, no proposed improvement
techniques or buffer pages is used in this experiment.

 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000

1 2 3 4 5 6

N
o
d
e
 A

cc
e
ss

e
s

Number of Time Buckets

30
60

90
120

150
180

(a) Number of node accesses

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

1 2 3 4 5 6

R
e
sp

o
n
se

 T
im

e
 (

s)

Number of Time Buckets

30
60

90
120

150
180

(b) Total response time

Fig. 20 Performance for varyingm andTM

Fig. 20 shows the average per timestamp cost for joining
two 10K datasets withm ranging from 1 to 6 andTM rang-
ing from 30 to 180. From the figure, we can observe that
MTB-trees withm = 2 perform the best at most times (only
at some points, the performance of MTB-trees form = 1
andm = 2 is similar). Therefore,m = 2 is used as the
default setting in the following experiments.

8.3 Effect of TC Processing

To evaluate the impact of imposing time constraints on query
processing, we do not use any join improvement techniques
presented in Section 5.4 or Section 6. Fig. 21 shows the per-
formance for the initial join computation with and without
imposing time constraints. The one denoted as “Non-TC”
computes all possible join pairs from timestamp 0 to the
infinite timestamp, which is NaiveJoin. The “TC” version
computes join pairs for only the time interval[0, 60]. MTB-
Join uses a single tree before getting the initial result, soit
corresponds to the “TC” join in this figure.

We observe that both the number of node accesses and
the total response time of NaiveJoin are much higher (up to
10 times) than those of MTB-Join, which clearly shows the
huge benefit we gain from TC processing. NaiveJoin per-
forms worse mainly because it returns join pairs from the
current timestamp to the infinite timestamp. Every node in
one index overlaps with almost all nodes in the other index
in some future time. For maintenance, the join processing is

20

101

102

103

104

105

106

1k 10k 50k 100k

N
o
d
e
 A

cc
e
ss

e
s

Dataset Cardinality

Non-TC
TC

(a) Number of node accesses

10-2

10-1

100

101

102

103

1k 10k 50k 100k
R

e
sp

o
n
se

 T
im

e
 (

s)

Dataset Cardinality

Non-TC
TC

(b) Total response time

Fig. 21 Effect of TC processing

almost the same as the initial join, but on a smaller number
of objects (the updated objects), so the impact of TC pro-
cessing is very similar. The experiments on other settings
(such as different data distributions, the object speed) also
give similar results, and hence we omit them here.

8.4 Effect of Computational Improvements Enabled by
TC Processing

In this section, we examine the impact of the computational
improvement techniques on join algorithms independently
of the effect of TC processing. We use the same time inter-
val [0, 60] for all techniques so that the time constraint does
not have an effect on the relative performance. Fig. 22 shows
the join performance when we use different combinations
of the three techniques: PS(Plane Sweeping), DS(dimension
selection) and IC(Intersection Check). “DP” means the com-
bination of DS and PS, while “IP” means the combination
of IC and PS. “None” means using none of the techniques
and “All” means all techniques are used. The focus of this
section is not in buffer utilization efficiency and thus no
buffer is used in these experiments. From Fig. 22(a), we

 3220
 3230
 3240
 3250
 3260
 3270
 3280
 3290
 3300

None IC PS DP IP All

N
o
d
e
 A

c
c
e
s
s
e
s

Techniques

MTB-Join

(a) Number of node accesses

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

None IC PS DP IP All

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

Techniques

MTB-Join

(b) Total response time

Fig. 22 Effect of computational improvement techniques

observe that no technique reduces the number of node ac-
cesses. From Fig. 22(b), we find that the total response time
decreases as more and more techniques are applied. There-
fore, we can conclude that all these techniques only affect
the total response time. When all techniques are applied,
the total response time is improved by the factor of about
5. Such behavior can be explained as follows. Despite PS
provides a better order for comparing nodes in two trees,
which saves CPU costs, it does not affect the number of in-
tersection node pairs. Likewise, DS and IC can only reduce
the CPU time since both of them aim at reducing the num-
ber of entries to be compared in two nodes. Specifically, DS

chooses the dimension that needs less intersection compar-
isons for entries in two nodes. IC provides both space and
time constraints to prune entries to be compared. This is
also the reason why “IP” improves the performance more
than “DP” does. Again, the impact of these techniques on
maintenance cost follow similar behavior and is omitted.

8.5 Effect of Improvement Techniques on Node Access
Performance

The impact of the improvement techniques on node access
performance is examined in this section. We join two 50K
datasets usingTM = 60 and maintain the join result for
360 timestamps, during which updates are processed. MTB-
join algorithms with and without node access improvement
techniques are used independently to process the join and
their performance in both phase of initial join and mainte-
nance are presented in Fig. 23, where “NA-Imp” and “Non-
Imp” means using and not using node access improvement
techniques, respectively. From this figure, we observe that

101

102

103

104

105

Init Maint

N
o
d
e
 A

cc
e
ss

e
s

Join Phase

Non-Imp
NA-Imp

(a) Number of node accesses

10-2

10-1

100

101

Init Maint

R
e
sp

o
n
se

 T
im

e
 (

s)
Join Phase

Non-Imp
NA-Imp

(b) Total response time

Fig. 23 Effect of node access performance improvement techniques

the number of node accesses and the total response time de-
creases as node access improvement techniques are applied.
In the phase of maintenance, group update processing re-
sults in a significant decrease in both the number of node
accesses and the response time. Compared to that of group
update processing, the effect of improvement on Intersection
Check is relatively small (please note the logarithmic scale;
this technique still saves about 10% of initial join cost). This
is because in a dataset of uniformly distributed objects, the
probability for two intersecting nodes to have no entry inter-
secting the intersection area of these two nodes is small.

8.6 Overall Performance Comparison

We now compare our technique, MTB-join (using all im-
provement techniques) with NaiveJoin (Section 3.3) and ETP-
Join (Section 4) by evaluating two phases of the continuous
join processing: initial join and maintenance.

8.6.1 Initial Join

We compare the initial join computation cost of the three
approaches by varying the dataset size, data distribution,ob-
ject speed and object size, respectively. When we vary one
parameter, the other parameters are set to default values.

Fig. 24 shows the effect of varying the dataset size. We
observe that NaiveJoin has extremely high cost compared

21

101

102

103

104

105

106

1k 10k 50k 100k

N
o
d
e
 A

cc
e
ss

e
s

Dataset Cardinality

Naive
ETP
MTB

(a) Number of node accesses

10-2

10-1

100

101

102

103

1k 10k 50k 100k
R

e
sp

o
n
se

 T
im

e
 (

s)

Dataset Cardinality

Naive
ETP
MTB

(b) Total response time

Fig. 24 Initial join cost when varying dataset size

to MTB-Join and ETP-Join, and the gap between their to-
tal response time increases as dataset size increases. When
the dataset size is 100K, the initial join time of NaiveJoin
is about 6 minutes, which is intolerable. Due to such an un-
competitive fact of NaiveJoin, we do not consider it in the
remaining experiments of the phase of initial join on syn-
thetic datasets. Compared to Fig. 21, here MTB-Join per-
forms far better than NaiveJoin because of the use of all the
improvement techniques in MTB-Join.

It is interesting to see that the total response time of
MTB-Join is still much less (please note the logarithmic
scale) than that of ETP-Join even though MTB-Join may
need to compute join results for a longer time interval in
each tree traversal. In particular, MTB-Join outperforms ETP-
Join by up to 4 times in total response time, which is mainly
due to the improvement techniques on join algorithms.

 0

 20

 40

 60

 80

 100

BF UF GS

%
 o

f
to

ta
l

Data Distribution

MTB
ETP

(a) Number of node accesses

 0

 20

 40

 60

 80

 100

BF UF GS

%
 o

f
to

ta
l

Data Distribution

MTB
ETP

(b) Total response time

Fig. 25 Initial join cost when varying data distribution

Fig. 25 shows the effect of the data distribution. “BF”,
“UF” and “GS” represent using the Battlefield datasets, Uni-
form datasets and Gaussian datasets, respectively. We can
see that MTB-Join is superior to ETP-Join for datasets of all
the three types of distribution in terms of total response time.
The total response time saving is high (up to 90% for the bat-
tlefield dataset). These improvements are again attributedto
the improvement techniques on join algorithms. ETP-Join
shows better performance in the number of node accesses
for battlefield datasets. This is mainly because for battlefield
datasets, experiment starts with objects of the two datasets
clustering on opposite sides of the space, which means the
first condition for ETP-Join’s traversal to continue is not sat-
isfied. Thus, the traversal ends quickly. Even in this extreme
case, MTB-Join’s node access efficiency is close to ETP-
Join and MTB-Join still has a much better total response
time due to the computational improvement techniques.

 0

 1000

 2000

 3000

 4000

 5000

1 2 3 4 5

N
o
d
e
 A

cc
e
ss

e
s

Maximum Speed

ETP
MTB

(a) Number of node accesses

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5

R
e
sp

o
n
se

 T
im

e
 (

s)

Maximum Speed

ETP
MTB

(b) Total response time

Fig. 26 Initial join cost when varying the maximum object speed

 0
 200
 400
 600
 800

 1000
 1200
 1400

0.5 1 2 4 8

N
o
d
e
 A

cc
e
ss

e
s

Object Size (%)

ETP
MTB

(a) Number of node accesses

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

0.5 1 2 4 8

R
e
sp

o
n
se

 T
im

e
 (

s)

Object Size (%)

ETP
MTB

(b) Total response time

Fig. 27 Initial join cost when varying moving object sizes

The results of the experiments where we vary the maxi-
mum object speed and the object size are shown in Fig. 26
and Fig. 27, respectively. MTB-Join outperforms ETP-Join
in all cases for the same reasons as stated above.

We also conduct initial join experiments on real datasets,
and the results shown in Fig. 28 confirm that MTB-Join
shows better performance than NaiveJoin or ETP-Join does
(please note the logarithmic scale).

102

103

104

105

Truck Bus

N
u
m

b
e
r

o
f
I/
O

s

Dataset Group

Naive
ETP
MTB

(a) Number of node accesses

10-2

10-1

100

101

Truck Bus

R
e
sp

o
n
se

 T
im

e
 (

s)

Dataset Group

Naive
ETP
MTB

(b) Total response time

Fig. 28 Initial join cost when using different real datasets

8.6.2 Maintenance

The maintenance cost is amortized by the number of updates
at each timestamp. In all the subsequent experiments, we
start measuring the average maintenance cost from times-
tampTM , assuming that the timestamp for the initial join is
0. The intension is to wait for the TPR-trees for the first few
time buckets to be built up so that we are comparing a fully
functioning MTB-Join with NaiveJoin and ETP-Join.

The first set of experiments evaluates the performance
with respect to dataset size. Fig. 29 shows the average main-
tenance cost per timestamp during [60, 360] (by default,
TM=60). NaiveJoin and ETP-Join have smaller numbers of
node accesses for 1K datasets because their tree nodes are all
buffered while MTB-Join keeps removing and creating tree
nodes so that the nodes can not be entirely buffered. Even so,

22

MTB-Join has a smaller response time. Other than this spe-
cial case, MTB-Join achieves significant improvement over
NaiveJoin and ETP-Join in terms of both the number of node
accesses and the total response time. The gap among them
increases with the increase of dataset size.

Further, we observe that even for very small datasets
(1K objects), the per-timestamp response time of ETP-Join
is not small (0.23 seconds). Considering the capability of
human perception, 0.1 seconds may be a preferable choice
for a timestamp [25]. Then ETP-Join is far inferior and is un-
able to produce the result in time. What’s more, the response
time of ETP-Join grows so dramatically with the increase of
dataset size that it is unable to be measured accurately. Thus,
there is no experimental result presented for ETP-Join using
50K or 100K datasets. For NaiveJoin, though it can produce
the result at each timestamp for 1K datasets within about
0.07 second, its processing time also rises rapidly with the
increase of dataset size. It requires about 5 seconds for 10K
datasets, which is not acceptable. As for MTB-Join, it only
takes about 0.9 milliseconds to produce the join result at
each timestamp for 1K datasets. Even for 100K datasets, the
processing time is only about 0.3 seconds. With some up-
grade in hardware and slightly longerTM , it is still realistic
for MTB-Join to produce the result in real time. Therefore,
we reach the following conclusion. While it is impossible to
obtain the continuous join result in real time using Naive-
Join or ETP-Join, MTB-Join makes this difficult task real-
istic, even for large datasets. The reasons for MTB-Join’s

10-2
10-1
100
101
102
103
104
105
106

1k 10k 50k 100k

N
o
d
e
 A

cc
e
ss

e
s

Dataset Cardinality

ETP
Naive
MTB

(a) Number of node accesses

10-4
10-3
10-2
10-1
100
101
102
103

1k 10k 50k 100k

R
e
sp

o
n
se

 T
im

e
 (

s)

Dataset Cardinality

ETP
Naive
MTB

(b) Total response time

Fig. 29 Maintenance cost with the effect of dataset sizes

huge performance gain are highly constrained processing
time (through grouping objects into different time buckets)
and the improvement techniques. Further, ETP-Join has to
perform a synchronous traversal on the trees whenever there
is a result change or an update, while MTB-Join only needs
to perform constrained joins upon updates.

We varied other parameters in the experiments such as
data distribution, maximum object speed, object size and
voluntary update probability. We also conduct experiments
on real datasets. The results of all these experiments show
very similar behavior, as shown in Fig. 30, 31, 32, 33, and
34.

Recall that maintenance has significantly higher weight
in the total cost of a continuous join. Therefore, how MTB-
Join compares to NaiveJoin and ETP-Join in maintenance

101

102

103

104

105

106

107

BF UF GS

N
o
d
e
 A

cc
e
ss

e
s

Data Distribution

MTB
Naive

ETP

(a) Number of node accesses

10-3
10-2
10-1
100
101
102
103
104
105
106

BF UF GS

R
e
sp

o
n
se

 T
im

e
 (

s)

Data Distribution

MTB
Naive

ETP

(b) Total response time

Fig. 30 Maintenance cost with the effect of data distribution

102

103

104

105

106

107

1 2 3 4 5

N
o
d
e
 A

cc
e
ss

e
s

Maximum Speed

ETP
Naive
MTB

(a) Number of node accesses

10-3
10-2
10-1
100
101
102
103
104
105

1 2 3 4 5

R
e
sp

o
n
se

 T
im

e
 (

s)

Maximum Speed

ETP
Naive
MTB

(b) Total response time

Fig. 31 Maintenance cost with the effect of maximum object speed

102

103

104

105

106

107

0.5 1 2 4 8

N
o
d
e
 A

cc
e
ss

e
s

Object Size (%)

ETP
Naive
MTB

(a) Number of node accesses

10-3
10-2
10-1
100
101
102
103
104
105

0.5 1 2 4 8

R
e
sp

o
n
se

 T
im

e
 (

s)
Object Size (%)

ETP
Naive
MTB

(b) Total response time

Fig. 32 Maintenance cost with the effect of object sizes

102

103

104

105

106

1 2 4 8 16

N
o
d
e
 A

cc
e
ss

e
s

Update Probability (%)

ETP
Naive
MTB

(a) Number of node accesses

10-3
10-2
10-1
100
101
102
103
104

1 2 4 8 16

R
e
sp

o
n
se

 T
im

e
 (

s)

Update Probability (%)

ETP
Naive
MTB

(b) Total response time

Fig. 33 Maintenance cost with the effect of voluntary update probabil-
ity

cost means more than their comparison in initial join. Based
on this rationale and the results above, we say that MTB-
Join outperforms NaiveJoin and ETP-Join by several orders
of magnitude.

102

103

104

105

106

107

Truck Bus

N
u
m

b
e
r

o
f
I/
O

s

Dataset Group

Naive
ETP
MTB

(a) Number of node accesses

10-2
10-1
100
101
102
103
104
105
106

Truck Bus

R
e
sp

o
n
se

 T
im

e
 (

s)

Dataset Group

Naive
ETP
MTB

(b) Total response time

Fig. 34 Maintenance cost with different real datasets

23

8.7 The OptimalTM Value

In this subsection, we empirically verify our cost model for
the join process and evaluate its effectiveness for finding the
optimal value ofTM .

8.7.1 Cost Model Validation

To validate the cost model presented in Section 7.2.1, we
measure the average value of per update cost estimated by
Equation (2). We denote this value asf and compare it with
the average value of actual per update cost, which is denoted
by af . This means, when an update is issued, we compute
a cost value with Equation (2). Meanwhile, we record the
number of actual node accesses for updating the intersection
result set. We sum these cost values up during a maximum
update interval and then compute two average valuesf and
af . The percent error betweenf andaf , which is denoted
by pe, pe = |f−af |

af
, is presented.

To observe the stable state of the system, we collect data
during time interval [TM+1, 2TM]. Fig. 35(a) shows the ex-
perimental results for running the system under differentTM

values. In the figure, “MOD” means the model estimated per
update cost values (f) and “ACT” means the actual per up-
date cost values (af). It shows that, with the same datasets,
f andaf have very close values. They are both rising with
the increase of theTM value. Fig. 35(b) is the values ofpe
when varying the value ofTM . We can see thatpe is less
than 8%, which demonstrates the validity of the cost model.

 5

 10

 15

 20

 25

30 60 90 120 150 180

N
o
d
e
 A

cc
e
ss

e
s

Maximum Update Interval

MOD
ACT

(a) Model accuracy vs.TM

 0
 1
 2
 3
 4
 5
 6
 7
 8

30 60 90 120 150 180

R
e
la

tiv
e
 D

e
vi

a
tio

n
 (

%
)

Maximum Update Interval

ERR

(b) Percent error vs.TM

Fig. 35 Verification of the cost model

8.7.2 Finding the OptimalTM Value

We implement the approach proposed in Section 7 to find an
optimalTM value among a set of candidate values{30, 60,
90, 120, 150, 180}. For each candidate valuetM , we run our
test system once as follows. We initiate the test system by
setting the currentTM value to betM . While the system is
running, at every timestampti, we compute the estimated
per update cost,fi, for each of the candidate values. To ob-
serve the stable state of the system, we start collecting these
cost data at timestampTM and continue forTM timestamps.
After that, we will have an average value of estimated per
update cost for each candidate value. Since we also know
the average number of updates per timestamp, we then can
compute an average value of estimated per timestamp cost,
C, for every candidate value. The candidate value yielding

the minimum estimated per timestamp cost will be chosen
as the optimalTM value.

Experimental results for our test system running on dif-
ferentTM values are similar. Therefore, we only present two
typical ones here. Fig. 36(a) is the experimental result of
running the system withTM value being 60, and Fig. 36(b)
is that of settingTM value to be 90. In these figures, “ZRV”,
“EXM” and “ETV” stand for computing the estimated per
timestamp cost with equivalent object updates defined by
the Zero-VBR method, the Expanding-MBR method and the
Eight-VBR method, respectively. “ACT” means the average
values of actual per timestamp cost. These values are de-
rived directly from the average values of actual per update
cost recorded in the experiments of the last subsection.

Both figures show that the equivalent object updates de-
fined by the Eight-VBR method provide a best estimation
accuracy. They also show that under our experimental set-
tings, theTM optimization approach will suggestTM to be
90, which is the actual optimalTM value, as shown by the
“ACT” curve.

 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500

30 60 90 120 150 180

N
o
d
e
 A

cc
e
ss

e
s

Maximum Update Interval

ZRV
EXM
ETV
ACT

(a) C whenTM = 60

 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500

30 60 90 120 150 180
N

o
d
e
 A

cc
e
ss

e
s

Maximum Update Interval

ZRV
EXM
ETV
ACT

(b) C whenTM = 90

Fig. 36 The optimalTM value for uniformly distributed datasets

We have further performed experiments on non-uniformly
distributed datasets. Fig. 37, 38, 39 and 40 show the com-
parison between the actual numbers of node accesses and the
estimated numbers of node accesses using the Eight-VBR
method, for the battlefield datasets, Gaussian datasets, Tuck
datasets and Bus datasets, respectively.

 500

 1000

 1500

 2000

 2500

 3000

30 60 90 120 150 180

N
o
d
e
 A

cc
e
ss

e
s

Maximum Update Interval

ETV
ACT

(a) C whenTM = 150

 500

 1000

 1500

 2000

 2500

 3000

30 60 90 120 150 180

N
o
d
e
 A

cc
e
ss

e
s

Maximum Update Interval

ETV
ACT

(b) C whenTM = 180

Fig. 37 The optimalTM value for battlefield datasets

We notice that in these results, the gaps between the ac-
tual values and the estimated values are larger than those
of experiments on uniform datasets. This is because the
distribution and the moving pattern of the objects in these
datasets do not follow the assumption of the cost model.
However, we also observe that the trends of the curves as-
cending/descending are the same, and the optimalTM value

24

 0

 2000

 4000

 6000

 8000

 10000

 12000

30 60 90 120 150 180

N
o
d
e
 A

cc
e
ss

e
s

Maximum Update Interval

ETV
ACT

(a) C whenTM = 30

 0

 2000

 4000

 6000

 8000

 10000

 12000

30 60 90 120 150 180
N

o
d
e
 A

cc
e
ss

e
s

Maximum Update Interval

ETV
ACT

(b) C whenTM = 120

Fig. 38 The optimalTM value for Gaussian datasets

chosen using our cost model still matches the actual optimal
TM values for these datasets of different distributions due to
the same trend.

Note that in the real dataset experiments, we useTM

values ranging from 10 to 60. This is because the real dataset
objects are issuing voluntary updates every 30 timestamps.
If we only useTM values that are larger than 30, then there
will be no forced updates and thus a largerTM value will
always result in larger per timestamp update cost. Therefore,
we need to test our system performance withTM values that
are smaller than 30 to see whether we can find a value that
has better performance than 30 has.

 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

10 20 30 40 50 60

N
o
d
e
 A

cc
e
ss

e
s

Maximum Update Interval

ETV
ACT

(a) C whenTM = 20

 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

10 20 30 40 50 60

N
o
d
e
 A

cc
e
ss

e
s

Maximum Update Interval

ETV
ACT

(b) C whenTM = 30

Fig. 39 The optimalTM value for the Truck datasets

 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

10 20 30 40 50 60

N
o
d
e
 A

cc
e
ss

e
s

Maximum Update Interval

ETV
ACT

(a) C whenTM = 10

 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

10 20 30 40 50 60

N
o
d
e
 A

cc
e
ss

e
s

Maximum Update Interval

ETV
ACT

(b) C whenTM = 20

Fig. 40 The optimalTM value for Bus datasets

8.7.3 Overhead of Finding the Optimal Value forTM

We measure the response time overhead of our approach for
finding the optimalTM value. In the following experiments,
we record and compare the average per timestamp response
time of the test system with and without theTM optimiza-
tion process. The comparison results are shown in Fig. 41,
where “OPT” and “MTB” denote the response time of the
test system with and without theTM optimization process,
respectively.

Fig. 41(a) presents the overhead of theTM optimization
process performed on datasets of different cardinalities;we

observe that this overhead is almost negligible compare to
the cost of processing the join query. For example, the over-

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

1k 10k 50k 100k

R
e
sp

o
n
se

 T
im

e
 (

s)

Dataset Cardinality

MTB
OPT

(a) Varying dataset cardinality

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

30 60 90 120 150 180

R
e
sp

o
n
se

 T
im

e
 (

s)

Maximum Update Interval

MTB
OPT

(b) VaryingTM value

Fig. 41 Total response time overhead

head for the 100K datasets is 0.016 seconds, which is about
5% of the time for processing the join query. Fig. 41(b)
presents the overhead for the 10K datasets while varying the
TM value that the test system is running with. For all theTM

values used, the overhead is less than 0.004 seconds, which
is less than 6% of the time for processing the join query. We
compare this overhead with the performance gain that a well
chosenTM value can bring. From the experimental results
of the last subsection, we can see that for the 10K datasets
(cf. Fig. 36(a), the “ACT”curve), if the test system runs with
a randomly chosenTM value, say, 30, the average number of
node accesses per timestamp is about 54% larger than that of
running the system with the optimalTM value, 90. In terms
of response time, theTM value optimization process brings
a much larger performance gain compared to the overhead.
Therefore, optimizing theTM value is worthwhile.

9 Conclusions

In this article, we addressed the problem of processing con-
tinuous intersection joins over moving objects by introduc-
ing the time-constrained (TC) query processing technique.
Instead of processing the query for an overlong time, we
only process it to a time point necessary to guarantee the
correctness of the result. TC processing can be further opti-
mized by grouping objects into time buckets. We also showed
a set of techniques enabled by TC processing to reduce the
CPU cost of traditional intersection join algorithms and a
few techniques to reduce the I/O cost of the algorithms. All
these techniques are integrated together. Moreover, we de-
rived a cost model for the continuous intersection join query,
and showed that it can accurately predict the cost of pro-
cessing the query and suggest optimalTM values for mov-
ing object monitoring systems. We also performed an exten-
sive experimental study. The results show the effectiveness
of TC processing and the various improvement techniques
enabled by it. Our algorithm outperforms the best adapted
existing solution by several orders of magnitude, making it
realistic to process continuous intersection join queriesin
real time. The experiments also validates the accuracy of
our cost model and its usefulness in choosing the optimal
TM value for our algorithm, which may provide significant

25

performance gain compared to using a badly chosen value.

Acknowledgments
This work is supported by the Australian Research Council’s
Discovery funding scheme (project numbers DP0880250 and
DP0880215).

References
1. P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points.

In PODS, pages 175–186, 2000.
2. M. E. Ali, R. Zhang, E. Tanin, and L. Kulik. A motion-aware

approach to continuous retrieval of 3d objects. InICDE, pages
843–852, 2008.

3. S. Arumugam and C. Jermaine. Closest-point-of-approach join for
moving object histories. InICDE, page 86, 2006.

4. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R*-tree: An efficient and robust access method for points and rect-
angles. InSIGMOD, 1990.

5. R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest
and reverse nearest neighbor queries for moving objects.VLDB
Journal, 15(3):229–249, 2006.

6. T. Bially. Space-filling curves: Their generation and their appli-
cation to bandwidth reduction.IEEE Transactions on Information
Theory, 15:658–664, 1969.

7. V. Botea, D. Mallett, M. Nascimento, and J. Sander. Pist: An
efficient and practical indexing technique for historical spatio-
temporal point data.GeoInformatica, 12:143–168, 2008.

8. T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of
spatial joins using r-trees. InSIGMOD, pages 237–246, 1993.

9. A. Civilis, C. S. Jensen, J. Nenortaite, and S. Pakalnis. Efficient
tracking of moving objects with precision guarantees. InMobiQ-
uitous, pages 164–173, 2004.

10. J. S. Dahmann, R. Fujimoto, and R. M. Weatherly. The department
of defense high level architecture. InWinter Simulation Confer-
ence, pages 142–149, 1997.

11. A. J. Demers, J. Gehrke, C. Koch, B. Sowell, and W. M. White.
Database research in computer games. InSIGMOD, pages 1011–
1014, 2009.

12. H. Ding, G. Trajcevski, and P. Scheuermann. Omcat: optimal
maintenance of continuous queries’ answers for trajectories. In
SIGMOD, pages 748–750, 2006.

13. E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis. Nearest
neighbor search on moving object trajectories. InSSTD, pages
328–345, 2005.

14. R. H. G̈uting, T. Behr, and J. Xu. Efficient k-nearest neighbor
search on moving object trajectories.VLDB Journal, 19(5):687–
714, 2010.

15. G. S. Iwerks, H. Samet, and K. P. Smith. Continuous k-nearest
neighbor queries for continuously moving points with updates.In
VLDB, pages 512–523, 2003.

16. G. S. Iwerks, H. Samet, and K. P. Smith. Maintenance of spatial
semijoin queries on moving points. InVLDB, pages 828–839,
2004.

17. G. S. Iwerks, H. Samet, and K. P. Smith. Maintenance of k-nn
and spatial join queries on continuously moving points.TODS,
31(2):485–536, 2006.

18. C. Jensen, D. Lin, and B.C.Ooi. Query and update efficient B+-
tree based indexing of moving objects. InVLDB, pages 768–779,
2004.

19. H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Dis-
covery of convoys in trajectory databases.Proc. VLDB Endow.,
1(1):1068–1080, 2008.

20. G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile
objects. InPODS, pages 261–272, 1999.

21. G. Kollios, V. J. Tsotras, D. G., A. Delis, and M. Hadjieleftheriou.
Indexing animated objects using spatiotemporal access methods.
TKDE, 13(5):758–777, 2001.

22. N. Koudas and K. C. Sevcik. Size separation spatial join. InSIG-
MOD, pages 324–335, 1997.

23. M.-L. Lo and C. V. Ravishankar. Spatial joins using seeded trees.
In SIGMOD, pages 209–220, 1994.

24. M. F. Mokbel, X. Xiong, and W. G. Aref. Sina: Scalable incremen-
tal processing of continuous queries in spatio-temporal databases.
In SIGMOD, pages 623–634, 2004.

25. K. L. Morse. Interest management in large-scale distributed sim-
ulations. Technical Report ICS-TR-96-27, 1996.

26. K. Mouratidis, M. Hadjieleftheriou, and D. Papadias. Conceptual
partitioning: An efficient method for continuous nearest neighbor
monitoring. InSIGMOD, pages 634–645, 2005.

27. M. A. Nascimento and J. R. O. Silva. Towards historical R-trees.
In SAC, pages 235–240, 1998.

28. S. Nutanong, E. Tanin, J. Shao, R. Zhang, and K. Ramamoha-
narao. Continuous detour queries in spatial networks.To appear
in TKDE.

29. S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The V*-diagram:
a query-dependent approach to moving knn queries.Proc. VLDB
Endow., 1(1):1095–1106, 2008.

30. S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. Analysis andeval-
uation of V*-kNN: an efficient algorithm for moving knn queries.
The VLDB Journal, 19:307–332, June 2010.

31. J. Orenstein. Spatial query processing in an object-oriented
database system. InSIGMOD, pages 326–336, 1986.

32. J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: An efficientin-
dex for predicted trajectories. InSIGMOD, pages 637–646, 2004.

33. J. M. Patel and D. J. DeWitt. Partition based spatial-merge join.
In SIGMOD, pages 259–270, 1996.

34. D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approachesin
query processing for moving object trajectories. InVLDB, 2000.

35. S. Saltenis, C. S.Jensen, S. T. Leutenegger, and M. A. Lopez.In-
dexing the positions of continuously moving objects. InSIGMOD,
pages 331–342, 2000.

36. K. C. Sevcik and N. Koudas. Filter trees for managing spatialdata
over a range of size granularities. InVLDB, pages 16–27, 1996.

37. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling
and querying moving objects. InICDE, pages 422–432, 1997.

38. Y. Tao and D. Papadias. Mv3r-tree: A spatio-temporal access
method for timestamp and interval queries. InVLDB, pages 431–
440, 2001.

39. Y. Tao and D. Papadias. Time-parameterized queries in spatio-
temporal databases. InSIGMOD, pages 334–345, 2002.

40. Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An optimized
spatio-temporal access method for predictive queries. InVLDB,
pages 790–801, 2003.

41. L. H. U, N. Mamoulis, and M. L. Yiu. Computation and moni-
toring of exclusive closest pairs.TKDE, 20(12):1641 –1654, dec.
2008.

42. W. M. White, C. Koch, N. G. 0003, J. Gehrke, and A. J. Demers.
Database research opportunities in computer games.SIGMOD
Record, 36(3):7–13, 2007.

43. M. Yiu, Y. Tao, and N. Mamoulis. The Bdual-tree: indexing mov-
ing objects by space filling curves in the dual space.The VLDB
Journal, 17:379–400, 2008.

44. R. Zhang, H. V. Jagadish, B. T. Dai, and K. Ramamohanarao. Op-
timized algorithms for predictive range and knn queries on moving
objects.Inf. Syst., 35(8):911–932, 2010.

45. R. Zhang, D. Lin, R. Kotagiri, and E. Bertino. Continuousinter-
section joins over moving objects. InICDE, pages 863–872, 2008.

