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Conventional spatial indexes, represented by the R-tree, employ multi-dimensional tree structures,

which are complicated and require enormous efforts to implement in a full-fledged database man-

agement system (DBMS). An alternative approach for supporting spatial queries is mapping based
indexing, which maps both data and queries into a one-dimensional space such that data can be

indexed and queries can be processed through a one-dimensional indexing structure such as the

B+-tree. Mapping based indexing requires implementing only a few mapping functions, incurring
much less efforts in implementation compared to conventional spatial index structures. Yet, a

major concern about using mapping based indexes is their lower efficiency than the conventional

tree structures.
In this paper, we propose a mapping based spatial indexing scheme called Size Separation In-

dexing (SSI). SSI is equipped with a suite of techniques including size separation, data distribution

transformation, and more efficient mapping algorithms. These techniques overcome the drawbacks
of existing mapping based indexes and improve the efficiency of query processing significantly. We

show through extensive experiments that for window queries on spatial objects with non-zero ex-
tents, SSI has two orders of magnitude better performance than existing mapping based indexes

and has competitive performance to the R-tree as a standalone implementation. We have also

implemented SSI on top of two off-the-shelf DBMSs, PostgreSQL and a commercial platform, both
of which have R-tree implementation. In this case, SSI is up to two orders of magnitude faster

than their provided spatial indexes. Therefore, we achieve a spatial index which is more efficient

than the R-tree in a DBMS implementation and at the same time easy to implement. This result
may upset a common perception that has existed for a long time in this area that the R-tree is

the best choice for indexing spatial objects.
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(a) spatial objects within a (browser) window (b) molecular compounds within hyper-rectangles

Fig. 1. Window queries on spatial objects in real applications

1. INTRODUCTION

Spatial databases are becoming ubiquitous. They play an important role in applica-
tions such as geographic information systems (GIS), computer-aided-design (CAD),
medical imaging [Arya et al. 1994], and drug design [Zauhar et al. 2003]. The re-
cent proliferation of digital map applications, e.g., Google Maps, and location based
social network services, e.g., FourSquare, is further evidence of the significance of
spatial databases. A digital map may have tens of millions of objects (shops, build-
ings, restaurants, etc), and map service providers may need to answer millions of
queries per day [Google 2012]. In these applications, one of the most basic and
common operations is retrieving all objects in a rectangle. For example, Google
Maps needs to display all objects in the range of a browser window (Fig. 1a). In
drug design, we need to find molecular compounds that fall in certain 3D rectan-
gular ranges (Fig. 1b). Fast object retrieval is essential to user experience in these
applications. While large enterprises like Google can deploy an enormous number
of computers to achieve high retrieval efficiency, it is economically prohibitive for
smaller companies to do the same and they generally show less favorable perfor-
mance (e.g., Whereis1, a smaller online map service provider, needs several seconds
to retrieve the restaurants in a city downtown). To ensure fast response for retriev-
ing a large number of spatial objects with constrained computing resources, spatial
index is an important approach.

One of the main reasons that stops many real applications from employing a
spatial index is that spatial indexes are often too complicated to be implemented.
One of the most popular spatial indexes, the R-tree, was originally proposed in
1984 [Guttman 1984], but it was not until 1994 did Oracle start to work on
Oracle Spatial, and not until at least five years later that Oracle had built an
enterprise-level implementation of the R-tree [Oracle 2007]. For another major
DBMS provider, Microsoft, its main DBMS Microsoft SQL server only starts to
have spatial support in the 2008 version [Microsoft 2008]. Practices of these major
companies suggest that implementing a spatial index in a full-fledged commercial
DBMS incurs significant efforts (and “pains”).

The “pain” of implementing a spatial index in a DBMS motivates us to find a
“painless” way to support spatial queries. Mapping based indexing is a promising
direction towards this goal [Zhang et al. 2005]. It first maps spatial data objects

1http://www.whereis.com
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into one-dimensional values and then indexes those values using a one-dimensional
indexing technique, typically the B+-tree. The B+-tree has been implemented in
most existing DBMSs. Thus, implementing a mapping based indexing requires only
implementing some mapping functions (detailed in Section 2).

The major concern about using mapping based indexing is its relatively low
query efficiency compared to tree based indexing. This has been the general per-
ception among the database community. Moreover, existing studies of mapping
based indexing has been focusing on point data with high dimensionality rather
than general spatial objects with non-zero extents (e.g., [Berchtold et al. 1998;
Jagadish et al. 2005; Zhang et al. 2004]). Very little existing work reports the ef-
fectiveness of mapping based indexing on spatial objects with non-zero extents
and low-dimensionality.

In this paper, we reexamine the mapping based approach for indexing spatial
objects with non-zero extents and focus on processing the most basic and common
query, the window query. We propose key techniques to overcome the drawbacks
of the mapping based indexing, namely, size separation, data distribution transfor-
mation, fast mapping functions, and a cost model for skewed data handling and
parameter tuning. We call the resultant indexing scheme Size Separation Indexing
(SSI). From an extensive experimental study we observe that SSI has similar query
efficiency to the R-tree as a standalone implementation and outperforms the R-
tree significantly when implemented on top of an existing DBMS — this is because
complex tree structures incur more overhead in concurrency control and transac-
tion management in a DBMS. As a result, we achieve an efficient spatial index that
is very easy to implement either through integrating into an existing DBMS or on
top of it. This result may upset a common perception that has existed for a long
time that the R-tree is the best choice for indexing spatial objects and processing
queries upon them. The contributions of this paper are summarized as follows:

(1) We propose a new mapping based indexing scheme named Size Separation In-
dexing (SSI), which supports efficient window queries on spatial objects with
non-zero extents. SSI consists of the following novel techniques:
a) a size separation technique to separate objects into partitions based on their
size and index each partition with a space-filling curve;
b) a cumulative mapping method to map objects with skewed position distri-
bution into a space where they are uniformly distributed;
c) two efficient algorithms to map a window query to space-filling curve ranges;
d) a cost model to optimize the parameters used in the previous steps.

(2) We show how SSI can be implemented on top of an existing DBMS easily and
describe the key implementation steps.

(3) We conduct extensive experiments. The results show that:
a) SSI outperforms the best existing mapping based technique by at least five
times in terms of both response time and number of page accesses.
b) when implemented as a standalone software, SSI achieves similar perfor-
mance to the R-tree in most cases and better performance when the data set
cardinality or the selectivity of the window query get large;
c) when implemented upon two full-fledged DBMSs, SSI significantly outper-
forms the R-tree implementation in these DBMSs by up to three orders of
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magnitude.

The rest of the paper is organized as follows: Section 2 discusses related work.
Section 3 describes the preliminaries. Section 4 presents SSI, detailing how the ob-
jects are indexed and queried under SSI. Section 5 gives a cost model for optimizing
SSI. Section 6 shows how SSI can be implemented on top of a DBMS. Section 7
analyzes the empirical performance of SSI and Section 8 concludes the paper.

2. RELATED WORK

In this section we provide backgrounds on querying spatial databases and review
studies on indexing schemes to support spatial queries. We focus on the spatial
window query (the range query) for that it is arguably the most basic and common
spatial query and it can be used as a building block for other types of spatial queries
such as the spatial join query and the (k) nearest neighbor query [Zhang et al. 2005].

A window query returns all objects that satisfy certain predicates (containment,
intersection, etc.) with regard to a (hyper-)rectangular region called the query
window. A naive algorithm to process the window query is the scan algorithm,
which checks every object in the data set against the window query and predicate.
Despite its simple idea, the algorithm can be competitive in certain cases [Weber
et al. 1998] because it only accesses the data sequentially, while more complex
methods may need random access on the data.

Spatial indexes are commonly used to accelerate the process of spatial queries like
the window query. There are three major categories of spatial indexing schemes,
namely, balanced hierarchical indexing, unbalanced hierarchical indexing, and map-
ping based indexing. In what follows, we discuss the three categories in more detail.

2.1 Balanced Hierarchical Indexing

A balanced hierarchical spatial index first performs data based partitioning, which
partitions spatial objects based on their clustering relationship, and then indexes
the partitions hierarchically. One of the most commonly used hierarchical spatial
index is the R-tree [Guttman 1984]. From this many variants have been proposed.
Among them, the R*-tree [Beckmann et al. 1990] is probably the most popular one.
We use it in our experiments for performance comparison.

The R-tree is a multi-dimensional extension to the B+-tree. It consists of a
hierarchy of nested multi-dimensional intervals. Objects are represented by their
minimum bounding rectangles (MBR) that are the smallest (hype-)rectangles fully
containing the objects. Each R-tree node usually corresponds to a single disk page,
which makes the R-tree fit nicely in a disk. To perform a window query on an R-tree,
we start from the root and check which MBRs in the root satisfy the window query,
and continue to search child nodes corresponding to these MBRs. It is common
that multiple branches of an R-tree need to be explored during the query process
due to overlaps between R-tree nodes. This is a major drawback of the R-tree.

The R*-tree improves the insertion procedure of the R-tree to reduce the overlaps
between tree branches. It considers more factors like the overlaps between nodes
and region perimeters. It also introduces the forced reinsertion when a node is
overfull to redistribute the objects more evenly.

GiST [Hellerstein et al. 1995] is an index template implemented in PostgreSQL

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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which allows users to implement balanced tree indexes of domain specific data types.
It can be used to implement the R-tree relatively easily. However, implementing
GiST itself requires modifying the DBMS kernel, which is difficult. This means
that using GiST to implement the R-tree is limited to PostgreSQL and cannot be
easily applied to other widely used DBMSs such as Oracle Database, Microsoft SQL
Server and IBM DB2. Also, the complex tree structure of GiST will still incur more
overhead in concurrency control and transaction management.

2.2 Unbalanced Hierarchical Index Structures

An unbalanced hierarchical spatial index structure first performs space based par-
titioning, which recursively partitions the data space. Objects in the same space
partition are grouped together and then indexed hierarchically. Examples of this
type of index structures include the quadtree [Finkel and Bentley 1974] and the
k-d tree [Bentley 1975]. The space partition based grouping leads to unbalanced
trees, which makes this type of indexes difficult to fit in disks. Thus, this type of
indexes is more suitable for main memory databases, and is seldom implemented
in full-fledged DBMSs. Since we consider a more general case where the data sets
cannot be fully held in the main memory, this type of indexes will not be discussed
further in our study.

Note that SP-GiST [Aref and Ilyas 2001] provides a template for implementing
unbalanced tree indexes on PostgreSQL. It manages the mapping of the nodes of
an unbalanced tree to disk pages. However, SP-GiST still shares the drawbacks of
GiST, while the tree node mapping makes it even more complicated.

2.3 Mapping Based Indexing

A mapping based indexing first maps multi-dimensional data into one-dimensional
values and then indexes the values in a one-dimensional index structure. Three
components are usually involved in a mapping based indexing.

(1) Every data object is mapped to a (or multiple) one-dimensional value(s). A one-
dimensional indexing structure (e.g., the B+-tree) is used to index the mapped
values of all data objects.

(2) A (window) query in the original data space is mapped to a set of one-dimensional
range queries. Objects whose mapped one-dimensional values lie in those ranges
are retrieved using the one-dimensional indexing structure.

(3) The retrieved objects are checked against the query and false positives are
removed. Then the final query result is returned.

Zhang et al. [2005] proposed a generalized framework named GiMP for multi-
dimensional data mapping and query processing. GiMP abstracts the design of
a mapping based indexing technique to the definition of several basic functions:
(i) a function for data mapping, (ii) insertion and deletion functions for index
maintenance, and (iii) a function for query mapping. How a mapping based index-
ing works is largely determined by the mapping functions. For spatial data with
low dimensionality, popular mapping schemes include space-filling curves, dual-
transformation [Gaede and Günther 1998] and double transformation (DOT) [Falout-
sos and Rong 1991]. More recently, an index called Bdual-tree [Yiu et al. 2008] pro-
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vides a mapping scheme for moving spatial objects. Next we discuss these mapping
schemes in detail.

Note that there are also mapping schemes for data with higher dimensionality
like Pyramid [Berchtold et al. 1998] and iDistance [Jagadish et al. 2005], but they
are not the focus of this study and hence will not be discussed further.

2.3.1 Space-filling curves. Space-filling curves are based on a conceptual grid
partitioning of the data space. A curve goes through every cell of the grid in a
certain order. When the curve reaches a cell, it associates the cell with an integer,
i.e., the number of cells reached so far, as the curve value of the cell (the association
starts from cell 0). Then a multi-dimensional object can be mapped to the curve
vales of the cells this object intersects.
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(a) Z-curves with order λ = 1, 2, 3
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(b) Hilbert-curves with order λ = 1, 2, 3

Fig. 2. Space-filling curves of different orders

Fig. 2 shows two types of popular space-filling curves, the Z-curve [Orenstein and
Merrett 1984] and the Hilbert-curve [Faloutsos and Roseman 1989] with different
orders. Here, the order of a space-filling curve is the number of times the space
has been subdivided to form the conceptual grid. For example, in Fig. 2a, the left
most is an order 1 Z-curve, which only divides the space once into four partitions.
Then the middle one, an order 2 Z-curve, further divides each of the partitions into
four sub-partitions. This process repeats and results in an order 3 Z-curve, which
is shown in the right most figure.

To implement a mapping based indexing with a space-filling curve, two mapping
functions [Butz 1971; Faloutsos and Roseman 1989; Ramsak et al. 2000] are needed.
One is a mapping function C(x) that maps a point x in the space to its curve value
m. The other is an inverse mapping function C−1(m) that takes a curve value m
and returns the position x.
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To process a window query with a space-filling curve, a mapping function is
needed to map the window query into intervals of curve values that represent the
segments of the curve bounded by the window query. For example, in Fig. 2a, the
mapping function should map the window query to four Z-curve value (Z-value
for short) intervals I1, I2, I3, and I4. Similarly, in Fig. 2b, the mapping function
should map the window query to three Hilbert-curve value (Hilbert-value for short)
intervals I1, I2, and I3. A well known mapping function for the Z-curve [Ramsak
et al. 2000] uses two functions getNextZvalue and getNextZvalueExit to compute
the intervals. Given a Z-value of a cell outside the window query, getNextZvalue
computes the closest (next) Z-value that corresponds to a cell inside the window
query. For example, in Fig. 2a, if 0 is fed to getNextZvalue, then the function will
return 12. Given a Z-value of a cell inside the window query, getNextZvalueExit
computes the closet (next) Z-value that corresponds to a cell outside the window
query. In Fig. 2a, if 12 is fed to getNextZvalueExit, then the function will return
16. Calling these two functions repeatedly until getNextZvalue meets the end of
the Z-curve will give us all Z-value intervals corresponding to the window query.

Lawder and King [2001] present an algorithm similar to the above one for win-
dow query mapping on Hilbert-curves. This algorithm uses the calculate next match
function, which is the counterpart of getNextZvalue for Hilbert-curves, i.e., it com-
putes the next Hilbert-value inside the window query. However, this algorithm does
not have a function similar to getNextZvalueExit to compute the next Hilbert-value
outside the window query. It has to access the nodes (i.e., disk pages) of a B+-tree
index on the data objects to determine the next Hilbert-value outside the window
query. Specifically, the algorithm starts with feeding the smallest key indexed in
the B+-tree into calculate next match to find the first Hilbert-value within the win-
dow query. Then the B+-tree node N whose key range covers this Hilbert-value is
accesses to identify the objects intersecting the window query. After node N has
been accessed, the largest key value in N is fed into calculate next match to identify
the next B+-tree node to be accessed. This process is repeated until there is no
more B+-tree nodes to be accessed.

We may adapt Lawder and King’s algorithm as follows so that it can map the
window query without accessing the B+-tree index and hence without accessing any
disk pages. Let q be the window query and Z be the entire data space. We use Z\q
to denote the region in Z that is not covered by q. We start the mapping with feed-
ing 0 into calculate next match to find the first Hilbert-value within q, denoted by
h0. Then we treat Z \q as the window query, and feed h0 into calculate next match
to find the first Hilbert-value within Z\q that is larger than h0, denoted by h1. The
value h1 is also the next Hilbert-value that exists q. Now we have a Hilbert-value
interval [h0, h1− 1] that is covered by q. We then feed h1 into calculate next match
and repeat the procedure above to identify the next Hilbert-value interval covered
by q. This process continues until calculate next match meets the end of the curve,
which will give us all Hilbert-value intervals enclosed by q.

We call this adapted algorithm GetNextH and use it as one of the baseline
algorithms in Section 7.1.3.

2.3.2 Dual-transformation. Dual-transformation is based on the idea that a
hyper-rectangle in an n-dimensional space can be viewed as a point in a 2n-
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dimensional space, which is then mapped to a one-dimensional space through space-
filling curves and indexed with a one-dimensional index structure [Comer 1979;
Faloutsos and Rong 1991; Gaede and Günther 1998]. The aim of this technique is
to avoid indexing rectangles, which have non-zero extents and may be mapped to
multiple curve values, while a point will only be mapped to one curve value.

Fig. 3 gives an example. Two 1-dimensional objects represented by two one-
dimensional ranges [0.31, 0.44] and [0.78, 0.9] are transformed to two points (0.31,
0.44) and (0.78, 0.9) in a 2-dimensional space where the range bounds are used
as the coordinates. The coordinates are then mapped by a Z-curve and the re-
sultant Z-values are 36 and 20, respectively. When performing a window query
[0.38, 0.68], we know that an object can only intersect this window when its right
bound is larger than 0.38 and its left bound is smaller than 0.68. Hence, when
transformed into a 2-dimensional space, the window query should bound all cells
whose bottom side is larger than 0.38 and right side is smaller than 0.68, as repre-
sented by the gray area in Fig. 3. Note that the bottom-right corner cell is not in-
cluded because a one-dimensional object’s left bound cannot exceed its right bound.
We map this area into a set of Z-value intervals, which is {[0, 16], [18, 18], [24, 24]
[26, 26], [32, 33], [36, 37]}. We can see that 36 is contained by one of the intervals
while 20 is not. Therefore, this window query will retrieve object [0.31, 0.44] but
not object [0.78, 0.9].

The main issue of dual-transformation is that it doubles the dimensionality of
the data space, and data in high-dimensional space tend to have bad clustering
properties and hence query performance is impaired.

2.3.3 Bdual-tree. The Bdual-tree [Yiu et al. 2008] also uses space-filling curves
together with B+-tree but has a different window query algorithm. Instead of first
mapping the window query into one-dimensional space and then checking inter-
section in the mapped space, the Bdual-tree algorithm traverses the tree top-down
and directly determines those nodes that intersect the window query. Specifically,
the algorithm traverses the B+-tree starting from the root and decomposes the
key range corresponding to each accessed tree node into “perfect blocks”. Here, a
“perfect block” is a hyper-square in the data space containing cells whose space-
filling curve values are contiguous. Then, the perfect blocks are checked against the
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Fig. 5. SSSJ technique

window query, and the ones that interest the query window will have their corre-
sponding child nodes in the tree accessed in the traversal. This process repeats and
the objects intersecting the window query will be found when the traversal reaches
the leaf nodes of the tree.

Fig. 4 shows an example where a B+-tree node contains keys in the range of
[24, 49]. The space corresponding to this key range [24, 49] is divided into 5 perfect
blocks whose curve values ranges are [24, 27], [28, 31], [32, 47], [48, 48], and [49, 49],
respectively. Since only blocks [28, 31] and [32, 47] intersect the window query, the
query processing procedure only needs to further traverse the child nodes corre-
sponding to these two blocks.

The intuition of the Bdual-tree query processing procedure is to avoid the ex-
pensive query window mapping operation by performing key range decomposition
during B+-tree traversal. However, the key range decomposition operation is still
expensive, which has a time complexity of O(2Dλ), where D denotes the data di-
mensionality [Yiu et al. 2008]. Meanwhile, the number of times this decomposition
operation is performed is proportional to the cardinality of the data set, which
could be very large in real applications.

2.3.4 Size Separation Spatial Join. Size separation spatial join (SSSJ) [Koudas
and Sevcik 1997] is an algorithm for computing the join between two spatial data
sets. It can be applied to compute a window query by letting one of the data sets
be of only one object, the window query. The key idea of SSSJ is to partition the
objects roughly based on their size using grids of different granularity, and then
index the objects on different grids with space-filling curves of different orders.

We use Fig. 5 to illustrate how SSSJ indexes objects using Z-curves. SSSJ has
a predefined max Z-curve order, which is 2 in the example. Then SSSJ assumes
Z-curves of orders 0, 1, ..., up to the predefined max Z-curve order 2, respectively,
i.e., three conceptual grids are used to partition the data space into into 1, 4 and
16 cells respectively. Every data object is assigned to the grid with the smallest
cell that can fully contain the object. As shown in the figure, the three grids are
assigned with 2, 1, and 1 object denoted by the gray rectangles, respectively. SSSJ
then maps the objects in different grids with the corresponding Z-curves, starting
from the grid of order 0. The grid of order 0 has only 1 cell whose Z-value is 0.
Thus, all objects in this grid are mapped to 0. The grid of order 1 has 4 cells.
These 4 cells are numbered from 1 to 4 because Z-value 0 has been occupied by
the previous grid. The object in this grid is in cell 2 and hence it is mapped to 2.
Similarly the grid of order 2 has 16 cells whose Z-values are in the range of 5 to 20.
The object in this grid is mapped to 6.

A window query is processed in SSSJ by mapping the window query to Z-value

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



10 ·

intervals for each of the Z-curves used in the indexing and then continuing with the
normal window query processing procedure of the Z-curve based indexing scheme.

SSSJ differs from our proposed indexing scheme SSI in several ways. First, a
major drawback of SSSJ is that actually, its separation strategy may not group
objects strictly based on size. As shown in Fig. 5a, two objects with quite different
sizes are assigned to the same partition because they will both intersect more than
one cells if assigned to any other partition. This violates the aim of size separation
and may result in bad performance. In comparison, SSI strictly separates objects
based on their size and thus avoids this problem. In SSI, we use the window query
expansion approach [Stefanakis et al. 1997], which converts the problem of indexing
objects with non-zero extents to indexing point objects. This allows us to index the
centroid of each object, which lies in exactly one cell in any partition. Therefore, we
avoid the above drawback of SSSJ and our separation is purely based on size. The
query expansion paper [Stefanakis et al. 1997] also considered separating objects
into multiple groups. However, their aim is to investigate how the window query
should be expanded when the data objects have different sizes. In comparison, we
use window query expansion and size separation to achieve appropriate orders of
space-filling curves for indexing.

Second, the space-filling curves used in SSSJ may not handle skewed data well,
which may cause many objects to be mapped to the same curve value. SSI employs
a cost model to adaptively determine the best separation configuration, i.e., the
number of separations and the size range allowed in each separation. Moreover,
SSI maps skewed data to a space where data objects are distributed approximately
evenly. This successfully addresses the problem of skewed data distribution.

2.3.5 XZ-ordering. XZ-ordering [Böhm et al. 1999] is another technique that
puts objects of different sizes into grids of different granularity, and then indexes
the objects on different grids with space-filling curves of different orders. To avoid
assigning small objects intersecting the boundaries of small grid cells to grids with
large cells, this technique extends the Z-curve by expanding every grid cell of the
Z-curve by a factor of two in each dimension. As a result, adjacent cells of the same
grid overlap with each other, and an object intersecting the boundary of one cell
may be contained by one of the adjacent cells.

Compared with SSSJ, XZ-ordering groups objects based on size better. However,
it may still have objects with quite different sizes to be assigned to the same par-
tition. This is because an expanded grid cell may contain not only objects smaller
than the original grid cells but also objects larger than the original grid cells. Thus,
XZ-ordering is still not a strict separation based on object size. Also, XZ-ordering
does not consider skewed data.

3. PRELIMINARIES

3.1 Problem Settings

We target managing spatial objects for real applications as described in Section 1,
where objects have low dimensionality (typically two or three) and their extents
cannot be ignored. Therefore, we focus on achieving high query performance for
2D and 3D objects with non-zero extents, although our techniques work correctly
in higher-dimensional spaces. We consider spatial objects that are relatively static,
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i.e., we are not dealing with moving object databases, where frequent updates are
the main issue [Koudas et al. 2004; Jensen et al. 2006; Nutanong et al. 2008].
Spatial objects with non-zero extents may have irregular shapes. We follow the
common approach [Gaede and Günther 1998] to represent them by their Minimum
Bounding Rectangles (MBRs).

We focus on processing the spatial window query (the range query) since it is
arguably the most basic and common spatial query and it could be used as a building
block for other types of spatial queries such as the spatial join query and the (k)
nearest neighbor query [Zhang et al. 2005]. We use the intersection predicate for the
window query, i.e., we find all objects that intersect the window query. Applying
our techniques to other types of predicates is straightforward.

Since we aim at a solution for full-fledged database systems, where databases are
disk resident, our analysis and experimental study assumes disk-based algorithms.
Nevertheless, our proposed algorithms are also applicable even if the data is fully
held in main memory.

3.2 Drawbacks of Existing Space-filling Curve based Mapping Indexes

Our proposed Size Separation Indexing (SSI) scheme uses a space-filling curve to
achieve a mapping index. We first analyze the drawbacks of existing space-filling
curve based mapping indexes as follows.

(1) Difficulty in choosing an order for the space-filling curve. Space-filling curves
with different orders have different granularity of object representation in the
mapped space. A higher order may provide more accurate representation, but
the computational cost of the mapping function is also higher. A lower order
has lower mapping cost, but produces more false positives in a window query
as objects with quite different positions may have the same mapped value.
Achieving a balance between mapping efficiency and false positives, i.e., choos-
ing the appropriate space-filling curve order, is tricky and requires enormous
engineering effort in real applications.

(2) Inefficiency on skewed data. A space-filling curve uses a conceptual grid to
partition the data space and then assigns each cell in the grid with a same
value. If the spatial objects are skewed, either in the size or distribution,
a space-filling curve alone may fail to map them to distinct one-dimensional
values. Considering that the dense portion of a data set is more likely to be
queried, failing to map objects in the dense portion properly will lead to low
query processing efficiency.

(3) Expensive query mapping. A window query needs to be mapped to intervals of
one-dimensional values to be processed upon the B+-tree. A high cost method
for this mapping may dominate the cost of query processing. Naively this
mapping can be done by repeated calls to a mapping function that maps a
grid cell to its curve value for all grid cells intersecting the window query.
However, the high cost of repetitive mapping function calls makes the naive
method prohibitive for online query processing. Several methods have been
proposed [Ramsak et al. 2000; Lawder and King 2001] to improve the mapping
efficiency, but their computational cost still grows rapidly with the order of
space-filling curve used and are very expensive for a large data set consisting
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Table I. Symbols used in SSI and their descriptions

Symbol Description

D Data dimensionality

i A partition number

j A dimension number

O A spatial data set

|O| The cardinality of O
o A spatial object

|o| The size of o

o.c The centroid of o

o.lj , o.uj (j = 1, · · ·,D) The lower and upper bounds of o on dimension j

S1, |S1| The sample set of O and its cardinality for determining

the best separation configuration

f A size separation configuration

f.n The number of partitions of f

f.
−→
d The vector of separation size values of f

f̂ The best separation configuration

S2, |S2| The sample set and its cardinality for cumulative mapping

function construction

cdfi,j() The CDF of partition i on dimension j

|Z| The size of the data space

vi The total number of grid cells for the first i partitions

C() (C−1()) A space-filling curve mapping (inverse mapping) function

ssi(o) The index key of o

λ The order of a space-filling curve

q A window query

q.lj , q.uj (j = 1, · · ·,D) The lower and upper bounds of q on dimension j

nq The number of objects intersected by the window query

q̃ A typical window query

|q̃| The size of q̃

||q̃|| The area/volume of q̃

pcur The scale of page access increase of a space-filling curve

of spatial objects in a large space.

In the next section, we will see how SSI addresses the above drawbacks.

4. SIZE SEPARATION INDEXING

We first provide an overview of SSI and then detail how SSI indexes objects and
processes window queries in Sections 4.1 and 4.2, respectively. To avoid confusion
we use i to denote a partition number and j to denote a dimension number. Other
symbols frequently used in the elaboration are summarized in Table I.

The SSI indexing has three steps.

(1) Size separation. SSI separates the spatial objects into multiple partitions. It

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



· 13

first determines how many partitions the objects should be separated into and
what are the size values that the objects should be separated at. A cost model is
developed to help determining the size separation. Different from SSSJ, our ob-
ject separation scheme guarantees that the objects are grouped strictly based
on their sizes. Strictly grouping similar sized objects into one partition enables
us to use a space-filling curve of a suitable order to index this partition. Then
we can use space-filling curves of different orders to suit different partitions and
hence address Drawback (1): difficulty in choosing one suitable order for the
space-filling curve to index all the objects.

(2) Cumulative mapping. We transform the spatial objects in each partition into
a space where they are uniformly positioned. A technique called cumulative
mapping is used for this transformation. This avoids indexing skewed data and
hence addresses Drawback (2): inefficiency on skewed data.

(3) Space-filling curve mapping and object indexing. After cumulative mapping,
we further map objects of each partition to one-dimensional values using a
space-filling curve of an appropriate order, and then index the resultant one-
dimensional values from all partitions with a B+-tree.

The SSI query processing has two steps.

(1) Window query mapping. We first map the window query to a set of key ranges
in the B+-tree constructed by SSI. The mapping should generate key ranges
that cover the keys whose corresponding grid cells intersect the window query.
We propose two novel mapping algorithms that reduce the number of grid cells
that need to be checked for generating the key ranges. This addresses Drawback
(3): expensive query mapping.

(2) Range searches on the B+-tree and filtering. We perform range searches on the
B+-tree using the key ranges generated in window query mapping to find the
candidate objects intersecting the window query. These candidate objects are
checked against the window query directly to filter out false positives.

4.1 Indexing the Objects

In this subsection we detail the three steps of SSI indexing.

4.1.1 Size separation. Let O be a set of D-dimensional objects. Given an object
o ∈ O, we define the size of o as the largest extent of o in all dimensions, denoted
by |o|. Formally,

|o| = max {o.u1 − o.l1, o.u2 − o.l2, ... o.uD − o.lD}.

Here, o.uj and o.lj denote the upper and lower bounds of o in the jth dimension.
A separation configuration of O, denoted by f , consists of the number of parti-

tions f.n and a vector of separation size values f.
−→
d = 〈f.d1, ..., f.dn〉. A separation

size value f.di means that any object with a size smaller or equal to f.di belongs to
partition i. Let pn(o) be a function that returns the partition number of o. Then,

pn(o) = i, f.di−1 < |o| ≤ f.di.

For example, in Fig. 6, the objects are separated into 3 partitions, i.e., f.n = 3.
The maximum object sizes in these 3 partitions are 13, 28 and 55, respectively.
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Fig. 6. A separation configuration (f.n = 3)

Therefore, the size values that the objects are separated at are 13, 28 and 55, i.e.,

f.
−→
d = 〈13, 28, 55〉.
Different separation configurations may result in different query performance.

To find the best separation configuration, SSI first uses sampling to obtain the size
distribution of the objects in O. Let S1 be a random sample set on O. Then we
can estimate the size distribution of the objects in O. If there are nd objects in

S1 whose sizes are less than or equal to d, then there are approximately nd × |O|
|S1|

objects in O whose sizes are less than or equal to d, where |O| and |S1| denote the
cardinality of O and |S1|, respectively.

Then we use a two layer loop to exhaustively search for the best separation config-
uration. The outer loop iterates through different numbers of partitions (from 1 to
nmax) while the inner for-loop iterates through different combinations of separation
size values for each choice of number of separations. Here, nmax is a predefined
system parameter indicating the largest possible number of partitions, while the
separation size values are the sizes of the objects in S1 obtained from the sampling
step. In each iteration, a cost model (detailed in Section 5) is used to return the cost
of the configuration given the number of partitions and the separation size values
as input. After the two layer loop, the best separation configuration is found. As
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the number of separation is usually small, typically 3 or 4 for many data sets and
settings we have tested, and the number of separation size values is not too large ei-
ther, typically below 500, this separation configuration selection process takes only
tens of seconds to complete. Since it is done only once at indexing building time,
the cost is acceptable.

Let f̂ denote the best separation configuration found by the above algorithm.
Then SSI separates O into f̂ .n partitions, where the ith partition contains the ob-
jects whose sizes are less than or equal to f̂ .di. At query time, a window expansion
will be performed on each partition (detailed in Section 4.2). As a result of the
expansion, we only need to check whether the centroids of the objects are in the
expanded window query (as illustrated by the dash line rectangles in Fig. 6). This
converts the problem of querying objects with non-zero extents to the problem of
querying point objects. Therefore, the rest of our techniques only need to deal with
points (the centroids of the original objects).

4.1.2 Cumulative mapping. The aim of this mapping is to achieve an approxi-
mately uniform distribution for the objects in a partition. SSI uses the Cumulative
Distribution Function (CDF) for the mapping and thus the mapping is named
cumulative mapping.

The cumulative distribution function cdf(x) returns the percentage of data that
are smaller than or equal to x. As discussed in Section 4.1.1, now we only deal
with the centroids of objects. In each dimension j, we define a mapping cdfj(o),
which returns the percentage of objects whose centroid coordinates are smaller than
or equal to that of o in dimension j. Let 〈o1, o2, ..., o|O|〉 be a permutation of the
objects in O in ascending order of their centroid coordinates in dimension j. Then,

cdfj(ok) =
k

|O| , k = 1, 2, ..., |O|.

The CDF values of the objects are uniformly distributed in [0, 1] in 1-dimensional
space. Thus, we achieve a mapping that generates a uniform distribution. Note
that after the mapping, the whole data space is mapped into a unit hyper-cube space.

Determining the CDF. Obtaining an exact CDF for cumulative mapping re-
quires sorting all objects, which is expensive. Alternative, we only compute the
CDF values at a small number of coordinate values, which can be obtained by a
scan on the data set and hence avoids the sorting. Then, we use these CDF val-
ues to construct a piecewise mapping function (PMF) that approximates the exact
CDF for the mapping.

We use an example as shown in Fig. 7a to illustrate how to construct the PMF. We
evenly partition the data domain in dimension j into nb buckets. Then the boundary
coordinates of the buckets are the coordinates used to compute the PMF. In the
figure, the data domain [0, 10] in dimension X is divided into 5 buckets, and the
boundary coordinates are 0, 2, 4, 6, 8 and 10. To compute their CDF values, we first
compute the cumulative count, which is the number of objects whose coordinates
are smaller than or equal to a boundary coordinate. In the figure, the white dots
denote the objects’ centroid coordinates in dimension j. The cumulative counts of
the boundary coordinates are 0, 3, 6, 8, 9 and 10, respectively, which can be obtained
by scanning the coordinates once. Dividing the total number of objects, 10, we get
the CDF values of the boundary coordinates: 0, 3

10 ,
6
10 ,

8
10 ,

9
10 , 1. Then we plot the
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Fig. 7. Cumulative mapping

CDF values of the boundary coordinates in dimension Y (denoted by the dashed
dots), and connect the plotted points by line segments, which results in a polyline
shown as the dark black polyline starting from the origin. This polyline corresponds
to the PMF used to approximate the CDF for the mapping. As shown by the black
dots on the Y axis, after mapping by this function, the objects are distributed
approximately uniformly within the data domain [0, 1].

Formally, the PMF to approximate the exact CDF is defined as follows. Let
j be the current dimension for mapping, |Z|j be the data domain size on the jth

dimension, b0, b1, ..., bnb
be the nb+1 boundary coordinates of the buckets, and bk.c

be the cumulative counts of bk (k = 0, ..., nb). Then given an object o, its centroid

o.c is at o.cj in the jth dimension, where o.cj =
o.uj + o.lj

2
. Let o.c be in bucket

k.

k = b o.cj|Z|j
× nbc. (1)

The PMF used on the jth dimension to map o.c of an object o in partition i,
denoted by cdfi,j(o.c), is formally defined as follows.

cdfi,j(o.c) =

bk+1.c− bk.c
bk+1 − bk

(o.cj − bk) + bk.c

|Oi|

=
(bk+1.c− bk.c)(o.cj − bk) + bk.c(bk+1 − bk)

|Oi|(bk+1 − bk)
.

(2)

Here, Oi denotes the set of objects of partition i. Note that if o.cj = |Z|j , then
k = nb and hence bk+1 will be undefined. In this case, we do not use Equation (2)
to compute cdfi,j(o.c) but directly define it to be 1.

To further reduce the cost of computing the PMF, we only computes the PMF
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on a small sample set S2. Then cdfi,j(o.c) becomes:

cdfi,j(o.c) =
(bk+1.c− bk.c)(o.cj − bk) + bk.c(bk+1 − bk)

|S2|(bk+1 − bk)
. (3)

As shown in Fig. 7b and Fig. 7c, after the cumulative mapping, a skewed 2-
dimensional data set becomes an approximately uniform data set.
The approximation ratio of the PMF. We derive the approximation ratio

of the PMF values over the CDF values, denoted by ρ, as follows. At the bucket
boundaries, the PMF and the CDF have the same values. The approximation ratio
ρ is 1. For a point between two bucket boundaries, ρ is derived as follows. Assume
that the objects between two adjacent bucket boundary coordinates bk and bk+1

are sorted in ascending order of their centroid coordinates. Let o be the mth object

and l be its distance to bk. The CDF value of the centroid of o is
bk.c+m

|Oi|
. We

can also compute the PMF value of the centroid of o by Equation (2). Then,

ρ =
cdfi,j(o.c)
bk.c+m

|Oi|

=

(bk+1.c− bk.c)(o.cj − bk) + bk.c(bk+1 − bk)

|Oi|(bk+1 − bk)
bk.c+m

|Oi|

=
(bk+1.c− bk.c)l + bk.c(bk+1 − bk)

(bk.c+m)(bk+1 − bk)

From the equation above we can see that the exact value of ρ depends on the
values of l and m of a specific object. We further derive upper and lower bounds
of ρ that are irrelevant to any specific object. Since 1 ≤ m ≤ bk+1.c − bk.c and
0 < l < bk+1 − bk, we have:

(bk+1.c− bk.c)0 + bk.c(bk+1 − bk)

(bk.c+ bk+1.c− bk.c)(bk+1 − bk)
< ρ <

(bk+1.c− bk.c)(bk+1 − bk) + bk.c(bk+1 − bk)

(bk.c+ 1)(bk+1 − bk)

⇒ bk.c

bk+1.c
< ρ <

bk+1.c

bk.c+ 1
.

Therefore, the number of buckets and the number of objects within a bucket define
two bounds of ρ, and we can use these bounds to help determine the parameter
values when construing the PMF to achieve a certain value of ρ.

4.1.3 Space-filling curve based mapping and object indexing. After cumulative
mapping, we further map the objects of each partition with a space-filling curve to
obtain the index keys. The input of this mapping is the coordinates of an object o
after cumulative mapping, and the output is the space-filling curve value of o. The
curve values from different partitions are separated by adding the total number of
grid cells in the first (i−1)th partitions to the curve values of partition i. This way,
we only need one B+-tree to index the objects from all partitions.

The challenge of this part is determining the order of the space-filling curve for
each partition. Our query processing algorithm involves two conceptual phases:

(i) identifying the cells intersected by the window query and from these cells,
(ii) identifying the objects intersected by the window query.
As discussed in Section 3, a space-filling curve with larger cells (smaller order)

has fewer cells and will make phase (i) less expensive, but it also has more objects
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Fig. 8. Indexing three objects with different sizes using SSI (f̂ .n = 3)

in each cell and hence higher cost for phase (ii). A space-filling curve with smaller
cells (higher order) has lower cost in phase (ii) but higher cost in phase (i).

To achieve a balance of the cost of the two steps, we propose to use the separation
size value f̂ .di as the cell size. The intuition is that we let a cell be large enough
to enclose an object but not too large so as to avoid too many false positives in
query processing. This way, every object will have only one index key. The size
of the B+-tree to store these keys is reduced and the query possessing efficiency
is improved. Note that our indexing is on object centroids. Every object centroid
is in one cell and every object has only one index key already. It seems that the
cell size can be even below f̂ .di to constrain false positives in query processing as
much as possible. However, our query processing requires window query expansion.
This effectively gives back the objects their extents. If the cells are too small, the
expansion part of the window query will cover a lot of extra cells, which will result
in high extra cost to map the window query (detailed in Section 4.2.1).

Next, we determine the order of the space-filling curve for partition i, denoted
by λi. The conceptual grid corresponding to the space-filling curve should cover
the whole data space. A space-filling curve of order λi has 2λi cells on each side,

and each cell has a side length of f̂ .di. Let |Z| be the data domain size. Then λi
should satisfy 2λi f̂ .di ≥ |Z|, which means

λi = dlog2

|Z|
f̂ .di
e.

As shown in Fig. 8b, a partition has a separation size value of 0.28 so the cell
size is 0.28. To cover the data space, which has a side length of 1, the order of the

space-filling curve should be dlog2

|Z|
f̂ .di
e = dlog2

1

0.28
e = 2.

Note that the resultant conceptual grid of the space-filling curve may be a bit
larger than the data space, which means a cell on the right or bottom side may only
overlap with the data space with a smaller region. As a result, the cell may contain
a smaller number of objects and hence cause an uneven index key distribution.
However, the smaller overlapping region of the cell also means a smaller probability
that this cell is intersected by the query window. Therefore, the impact of the extra
space of the grid on query processing performance is limited.

We now have a space-filling curve with (2λi)D cells. This is also the number
of grid cells for partition i. Then, the total number of grid cells of the first ith
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partitions, denoted by vi, is computed as:

vi =

i∑
k=1

(2λi)D =

i∑
k=1

(2
dlog2

|Z|
f̂ .di
e
)D (4)

We add vi−1 to the curve values of the objects in partition i to avoid the overlap
between the index key ranges of different partitions. As a result, after the space-
filling curve mapping and the curve value adding, we have the index key of an
object o of partition i, denoted by ssi(o), computed as follows.

ssi(o) = Ci
(−→
cdf i(o.c)

)
+ vi−1. (5)

Here,
−→
cdf i(o.c) = 〈cdfi,1(o.c), cdfi,2(o.c), ..., cdfi,D(o.c)〉 returns the centroid coor-

dinates of an object o after cumulative mapping, and Ci(·) returns the space-filling
curve value of a given point in the data space. Function Ci(·) depends on the type
and order of the space-filling curve used for partition i. Once we have the index
keys of all objects, we can put them into a B+-tree to index the objects.

Fig. 8 shows an example where the number of partitions f̂ .n is 3 and the orders
of the space-filling curves (Z-curves in particular) used for the three partitions
are 3, 2 and 1, respectively. After cumulative mapping, the centroid of object

o1 in partition 1 is at cell 35, i.e., C1(
−→
cdf1(o1.c)) = 35, in Fig. 8a. Since there

is no previous partition, i.e., v0 = 0, object o1 is assigned the key 35 directly.
Thus, ssi(o1) = 35. The centroid of object o2 in partition 2 is located in cell 4

in Fig. 8b, i.e., C2(
−→
cdf2(o2.c)) = 4, but partition 1 has occupied curve values 0 to

63, i.e., v1 = 64. Therefore, we assign ssi(o2) = 4 + 64 = 68. Similarly, we have
ssi(o3) = 0 + 80 = 80.

4.1.4 The SSI Indexing Algorithm. Algorithm 1 summarizes the size separation
indexing process.

(1) Size separation. The algorithm starts with sampling a set S1 from O, which
takes O(|S1|) time and space (lines 1 to 3). The size distribution of the objects in
S1 serves as an approximation of the size distribution of O. Based on the approx-
imated size distribution, a cost model is used to search for a best size separation
configuration f̂ by computing and comparing the expected cost of processing a
window query under different configurations (lines 4 to 23). Here, for each pos-
sible number of partitions n, the different combinations of separation size values
are generated using an algorithm that generates all size n combinations out of |S1|
objects in the lexicographical order. The time complexity is O(nC(|S1|, n)), where
the O(C(|S1|, n)) part denotes complexity of generating the combinations and the
O(n) part denotes the complexity of cost model computation for a combination.
The space complexity is O(nmax), which is for the auxiliary array chosen[] used
for combination generation. To further reduce the computational cost of generat-
ing the combinations, we may first build a histogram on the object sizes and then
generate the separation size combinations on the histogram, so that the number
of combinations is reduced. After the best separation configuration f̂ has been

identified, the data set O is separated into f̂ .n partitions according to f̂ .
−→
d , which

takes O(|O|) time and space (line 24).
(2) Cumulative mapping. Objects of each partition are mapped first by cu-
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Algorithm 1: Size Separation Indexing

Data: D-dimensional object set O,
Result: A B+-tree indexing all object in O
for k ← 0 to |S1| − 1 do /* Sample object sizes */1

randomly choose an object o from O2

d[k]← |o|3

E∗ ←∞ /* Estimated optimal cost */4

for n← 1 to nmax do /* Search for optimal configuration */5

for i← 0 to n− 1 do /* Generate the first combination */6

chosen[i]← i+ 17

flag ← 18

while flag = 1 do9

compute a window query cost estimation E for the combination of d[] marked10

by chosen[]
if E < E∗ then11

E∗ ← E, update f̂ /* Save optimal */12

chosen[n− 1] + + /* Generate the next combination */13

if chosen[n− 1] ≤ |S1| then14

continue15

i← n− 116

while chosen[i] ≥ |S1| − (n− 1− i) do17

if −− i < 0 then18

flag ← 0, break19

chosen[i] + +20

while i < n− 1 do21

chosen[i+ 1] = chosen[i] + 122

i+ +23

separate O into f̂ .n partitions according to f̂ .
−→
d24

for i← 1 to f̂ .n do /* Map each partition */25

for j ← 1 to D do /* Map each dimension */26

compute a CDF for cumulative mapping of partition i, dimension j27

forall o ∈ partition i do /* Cumulative mapping */28

perform cumulative mapping on dimension j29

forall o ∈ partition i do /* Space-filling curve based mapping */30

o.key ← ssi(o)31

insert ssi(o) into a B+-tree /* Index object */32

mulative mapping to achieve an approximately uniform distribution (lines 25 to
29). Here, sampling a set S2 and computing an approximated CDF function takes
O(|S2|) time and space. We do this for D dimensions, which takes a total of
O(D|S2|) time and space. The cumulative mapping of an object takes O(D) time
and O(D+nb) space, where O(nb) denotes the space used for storing the boundary
coordinates. We do the mapping for all objects, which takes O(D|O|) time and
O(D|O|+ nb) space.
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Fig. 9. Window query processing (f̂ .n = 3)

(3) Space-filling curve mapping and object indexing. The objects are then mapped
by space-filling curve mapping (lines 30 and 31) to generate the index keys. The
time and space complexities of this mapping is O(|O|time(C)) and O(|O|space(C)),
where O(time(C)) and O(space(C)) denotes the time and space complexities of
computing the curve value mapping function C(·), respectively. The generated keys
are fed into a B+-tree to index the objects in O (line 32), which takes O(|O| log |O|)
time and O(|O|) space.

4.2 Processing Window Queries

A window query is first mapped to a set of key ranges in one-dimensional space.
We then perform range search on the B+-tree constructed by SSI to find all the
objects intersecting the window query. Our focus here is how to map the window
query to key ranges. The mapping should generate key ranges that cover all the
grid cells intersecting the window query. As the grid cells for different partitions
have different sizes, we map the window query for each partition based on its grid
cell size. In the following discussion, we describe the mapping algorithm for one
partition and apply the algorithm on every partition to generate all key ranges
corresponding to the query.

First, we perform window query expansion to guarantee that we do not miss out
objects whose centroids lie outside the window query q but actually intersecting q

due to their extents. Specifically, given the separation size value f̂ .di of partition i,

we expand the lower and upper bounds of q on each dimension by 1
2 f̂ .di as follows.

q.lj ← q.lj −
1

2
f̂ .di, q.uj ← q.uj +

1

2
f̂ .di, j = 1, 2, ...,D.

Here, q.lj and q.uj denote the lower and upper bounds of q on dimension j,
respectively. This achieves our goal as the distance between the centroid of an
object and any of its bounds is less than or equal to half of the separation size
value 1

2 f̂ .di.
Second, we perform the cumulative mapping on the sides of the window query

using the CDFs constructed in the indexing stage. The monotonically increasing
property of the constructed CDFs guarantees that no false negatives will be incurred
by the cumulative mapping.

Third, the cumulatively mapped window query needs to be further mapped to
key ranges on the B+-tree based on the space-filling curve of partition i using a
MapRange function. Section 4.2.1 presents our proposed MapRange algorithms.
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Algorithm 2: SSI Window Query Processing

Data: A window query q, best separation configuration f̂
Result: A Set R′ of objects intersecting the window query

K ← ∅1

for i← 1 to f̂ .n do2

for j ← 1 to D do /* Cumulative mapping on query q */3

qm.l← q.lj − 1
2
f̂ .di4

qm.u← q.uj + 1
2
f̂ .di5

perform cumulative mapping on qm.l and qm.u6

K ← K ∪MapRange(qm,Ci()) /* Get the index key ranges */7

R ← perform range searches on B+-tree with K8

forall o ∈ R do /* Filter false positives */9

if o ∩ q 6= ∅ then10

R′ ←R′ ∪ {o}11

return R′12

Fig. 9 gives an example for window query processing in a 2-dimensional space
where there are three partitions on the data set. In each partition, every side of
the window query is first expanded by 1

2 f̂ .di to ensure no false negatives. Each
side of the expanded window query is then mapped using the CDFs as defined by
Equation (3). The mapped expanded window query (the dashed rectangle in Fig. 9)
is then used to identify the cells in the space that intersect the window and generate
the corresponding curve values. Note that the curve values are generated in the
form of key ranges rather than a set of individual key values to reduce the number
of searches performed on the B+-tree. For example, the key ranges for partition 2
in the figure are [64, 67] [72, 73].

The key ranges obtained from window query mapping are then used to query
the B+-tree. The returned objects are compared with the window query in the
original space, during which false positives are filtered and the final query result is
found. Algorithm 2 summarizes the window query processing procedure, where qm
denotes the mapped expanded window query.

Complexity. Expanding and cumulative mapping the window query takesO(f̂ .nD)
time and O(D + nb) space, where the O(D) part denotes the space used for the
mapped expanded window query and the O(nb) part denotes the space used for the
bucket boundary coordinates and their cumulative counts. LetO(time(MapRange))
be the time complexity and O(space(MapRange)) be the space complexity of the
MapRange function. Then mapping the mapped expanded window query to a set
of 1-dimensional intervals K in the f̂ .n partitions takes O(f̂ .n · time(MapRange))
time and O(space(MapRange)) space. Querying the |K| intervals on the B+-tree
takes O(|K| log |O|+ |R|) time and O(|O|) space, where R denotes the set of objects
to be returned from the B+-tree queries. Checking the objects in R against the
original window query takes O(|R|D) time and O(|R|D) space.

4.2.1 MapRange Algorithms. A straightforward method for window query map-
ping is as follows. Given a window query, we can identify all the intersected cells
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Fig. 10. Example of the proposed MapRange algorithms

since we can easily compute the coordinates of the cell boundaries. For every in-
tersected cell, we call the curve value mapping function C() to obtain the curve
value. All these curve values are then put together with contiguous ones combined
into intervals. We call this method ScanMapRange. The curve value mapping
function C() usually comes with an inverse mapping function C−1() that maps a
curve value back to its corresponding cell in the curve. Examples of C() and C−1()
can be found in [Butz 1971; Faloutsos and Roseman 1989; Ramsak et al. 2000].

In what follows we propose two new MapRange algorithms. Since a desidera-
tum of our index scheme is easy implementation on top of an existing DBMS, an
important requirement for the MapRange algorithm is that the algorithm can map
a window query to a set of curve value intervals without accessing the data pages.

1) EdgeMapRange. We propose a MapRange algorithm called EdgeMapRange
to improve the window query mapping efficiency for the Hilbert-curve. To the best
of our knowledge, this is the first MapRange algorithm using the Hilbert-curve
without accessing data pages.

This algorithm is based on the observation that, in a space-filling curve like the
Hilbert-curve, the cells of consecutive curve values must be adjacent in space. We
may infer the key ranges of the window query based on the cells on the edge (surface
if in a data space of more than 2 dimensions) of the window query. An example
is shown in Fig. 10a. Any two cells of consecutive curve values (e.g., cells 8 and 9,
54 and 55, etc.) are adjacent to each other. The window query contains six key
ranges: [8, 11], [24, 24], [27, 36], [39, 40], [45, 46], and [50, 55]. The boundary values of
these ranges are all on the edge of the window query. To derive the key ranges, we
first get the curve value for each cell on the window query edge using C(). For each
cell c on the edge, we check whether it starts or ends a key range as follows. By
calling C−1(C(c)−1) and C−1(C(c)+1) respectively we get the two cells preceding
and following c in the curve. If the cell preceding c is not inside the window query,
then the curve value of c starts a key range. If the cell following c is not inside the
window query, then the curve value of c ends a key range. After checking every cell
on the edge of the window query with the above procedure, we will have all key
ranges. For example, in Fig. 10a, we can find that 8, 24, 27, 39, 45, and 50 are the
key range starting values, while 11, 24, 36, 40, 46, and 55 are the key range ending
values. Matching them up will give the key ranges of the window query.

Complexity. For a simple complexity analysis, assume that the window query is
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a hyper-square and let nc be the number of cells on a side of the window query.
Then there are nDc cells in the window query, and the number of calls of C() in
ScanMapRange is O(nDc ). The number of calls of C()/C−1() in EdgeMapRange
is O(nD−1

c ). The improvement is most obvious when D = 2, where the number of
calls in ScanMapRange is O(n2

c) while that in EdgeMapRange is O(nc).
A limitation of EdgeMapRange is that it only works for curves where the cells of

consecutive curve values must be adjacent in space. For curves that do not satisfy
this condition, the key range bounds may not be on the edge of the window query.
For example, in the Z-curve in Fig. 10b, the window query represented by the
dashed rectangle has a key range [13, 16], but 16 is not on the edge of the window
query. In this case, we seek for another MapRange algorithm.

2) RoughMapRange. We propose another MapRange algorithm which is called
RoughMapRange. This algorithm also does not require accessing the data pages,
and it works for Z-curves.

The idea is that we map the window query to “rough” key ranges, which contains
all the intersected cells but does not exactly cover them. Requiring only “rough”
key ranges avoids computing lots of detailed key ranges while not introducing many
false positives.

RoughMapRange recursively divides the data space into 2D sub-regions (e.g., for
a 2-dimensional space, RoughMapRange divides a region into 4 sub-regions each
time). Since this dividing strategy is the same as how a space-filling curve divides
the data space, the key range corresponding to each sub-region is very simple to
compute. For example, let a 2-dimensional data space be indexed by a space-filling
curve of an order λ = 3. Then the key range of the data space is [0, 2λD−1] = [0, 63],
while the key ranges of its four sub-regions are:

[0,
2λD

2D
− 1], [

2λD

2D
, 2

2λD

2D
− 1], [2

2λD

2D
, 3

2λD

2D
− 1], [3

2λD

2D
, 4

2λD

2D
− 1],

which equal to [0, 15], [16, 31], [32, 47], and [48, 63], respectively.
For every region generated from the division, (i) if this region is fully covered by

the window query, then the key range of this region is added to the output; (ii) if
this region is not intersected by the window query, then this region is discarded; (iii)
otherwise, the region is partly intersected by the window query. For case (iii), we
use a cost model (details are in Section 5) to determine whether we should further
divide the region or we should stop and simply add its key range to the output. This
cost model estimates the cost of querying this region. If the cost estimated is not
larger than one page access then we add the key range to the output. Otherwise,
we divide the region further and check its sub-regions recursively using the previous
steps. The above process ends when reaching the cell level of the data space.

Fig. 10b shows an example. The data space is divided because the window query
does not fully cover the data space and the cost model estimates more than one
page access on querying the whole data space. Next, we check the four sub-regions
of the whole data space. Among them, the two on the left half of the data space
are discarded because they do not intersect the window query. The other two sub-
regions intersect the window query. They are subdivided again. The bottom-right
sub-region contains (i) two sub-regions (on the bottom half) that do not intersect
the window query and are discarded, (ii) one sub-region (on the top-left) that is fully
covered by the window query and its key range is output, and (iii) one sub-region
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Fig. 11. Accessing objects intersected by the window query indexed contiguously in the B+-tree

that is partly covered by the window query where the access cost is estimated to be
less than one page and its key range is also output. The same procedure is applied
to the rest of the data space and eventually, {[24, 27], [30, 30], [48, 51], [52, 55]} is
obtained as the RoughMapRange output.
RoughMapRange reduces the computational cost of mapping the window query

by relaxing the key ranges corresponding to the window query. This might incur ex-
tra page accesses and introduce additional false positives. For example, in Fig. 10b,
keys 24, 25, 53, and 55 are false positives. We will show in our experimental study
that the performance gain of RoughMapRange outweighs the overhead of accessing
the extra pages and filtering the additional false positives.

5. COST MODEL

In this section we present a cost model to estimate the number of index page accesses
for processing a window query using SSI. This cost model is used for choosing the
best parameters for SSI. It can also be used in the query plan evaluation if it is
integrated in a DBMS. The cost model assumes that (i) the centroids of objects
indexed in SSI follow an approximately uniform distribution, and (ii) given the
same window query, the comparative performance of SSI in different separation
configurations is mainly determine by the different space-filling curves used in those
configurations. Assumption (i) is valid because we use cumulative mapping to
transform the centroids of the objects to a space where they are approximately
uniformly distributed. Assumption (ii) is valid because the query performance of
a space-filling curve is fundamentally determined by an intrinsic property of the
curve called the clustering property [Moon et al. 2001; Xu and Tirthapura 2012].

5.1 Overview of the Cost Model

The total number of page accesses of processing a window query, denoted by α, is
the sum of the numbers of page accesses of processing the query on all partitions.
We denote the number of page accesses of partition i by αi.

Let nq be the number of objects intersected by the window query q. Then αi
increases with nq.

5.1.1 Contiguous Cases. Suppose that the nq objects intersected by q are in-
dexed contiguously in the B+-tree and the capacity of a node (a page) in the tree
is Cmax. We derive the expectation of αi, denoted by E(αi), as follows.

As Fig. 11 shows, q may cover b nq
Cmax

c, b nq
Cmax

c + 1, or b nq
Cmax

c + 2 nodes,

depending on nq and the starting position of the nq objects in the nodes, denoted
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by s, s = 0, 1, ...,m, ...Cmax−1, Here, s = m means that the object with the smallest
key among the nq objects is placed at the mth entry of a node. We rewrite nq to

be nq = b nq
Cmax

cCmax + k, k = 0, 1, ..., l, ...Cmax − 1. Then,

E(αi) =

Cmax−1∑
l=0

Cmax−1∑
m=0

p(k = l, s = m)αi,l,m,

where p(k = l, s = m) denotes the probability of k = l and s = m, and αi,l,m
denotes the number of leaf nodes accessed for the query on partition i when k = l
and s = m.

For a random window query, p(k, s) should be the same for any combination of
k and s in the Cartesian space of [0, Cmax − 1] × [0, Cmax − 1], i.e., p(k = 0, s =

0) = p(k = 0, s = 1) = ... = p(k = Cmax − 1, s = Cmax − 1) =
1

C2
max

. Thus,

E(αi) =
1

C2
max

Cmax−1∑
l=0

Cmax−1∑
m=0

αi,l,m.

Next, we derive

Cmax−1∑
m=0

αi,l,m for each value of l, and sum the resultant values

up to obtain the value of E(αi).

(i) When l = 0, if m = 0, then αi,l,m = b nq
Cmax

c; otherwise, αi,l,m = b nq
Cmax

c+1.

Cmax−1∑
m=0

αi,l,m = b nq
Cmax

c+ (Cmax − 1)(b nq
Cmax

c+ 1).

(ii) When l = 1, αi,l,m = b nq
Cmax

c+ 1, regardless of the value of m.

Cmax−1∑
m=0

αi,l,m = 0(b nq
Cmax

c+ 2) + Cmax(b nq
Cmax

c+ 1).

(iii) When l = 2, if m = Cmax − 1, then αi,l,m = b nq
Cmax

c+ 2 (i.e., the first and

the last two objects each resides in one node, while the rest of the objects reside in

b nq
Cmax

c nodes); otherwise, αi,l,m = b nq
Cmax

c+ 1.

Cmax−1∑
m=0

αi,l,m = (b nq
Cmax

c+ 2) + (Cmax − 1)(b nq
Cmax

c+ 1).

(iv) Similarly, when l > 2, if m ≥ Cmax − l + 1, then αi,l,m = b nq
Cmax

c + 2;

otherwise, αi,l,m = b nq
Cmax

c+ 1.

Cmax−1∑
m=0

αi,l,m = (l − 1)(b nq
Cmax

c+ 2) + (Cmax − l + 1)(b nq
Cmax

c+ 1).
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We sum up the values of αi,l,m and obtain:

Cmax−1∑
l=0

Cmax−1∑
m=0

αi,l,m = b nq
Cmax

c+ (Cmax − 1)(b nq
Cmax

c+ 1)

+
Cmax−1∑
l=1

[(l − 1)(b nq
Cmax

c+ 2) + (Cmax − l + 1)(b nq
Cmax

c+ 1)]

= C2
maxb

nq
Cmax

c+
3C2

max

2
(1− 1

Cmax
).

Thus,

E(αi) = b nq
Cmax

c+
3

2
(1− 1

Cmax
).

Therefore, on average, the number of the leaf nodes accessed is b nq
Cmax

c+
3

2
(1−

1

Cmax
). Since in a B+-tree the number of the leaf nodes is much larger than that

of the non-leaf nodes, and Cmax is usually quite large, we have

αi ≈ b
nq

Cmax
c+

3

2
. (6)

5.1.2 General Cases. More generally, the objects intersected by q are not in-
dexed contiguously in the B+-tree because objects in the window query do not have
strictly contiguous curve values. For example, in Fig. 10, a window query contains
objects whose curve values are in multiple ranges. In this case the number of nodes
to index these objects is larger than the number estimated by Equation (6). Thus,
αi increases. The scale of this increase, denoted by pcur, is determined by how
many of the objects intersected by the window query have contiguous curve values
and how many do not, which in turn is determined by the clustering property of the
space-filling curve cur used for object mapping. Studies on the clustering proper-
ties of different types of space-filling curves [Moon et al. 2001; Xu and Tirthapura
2012] have shown that different types of curves have different degree of contiguity
on the curve values of the objects in a window query. Deriving a close form formula
to compute the degree of contiguity of each space-filling curve and to accurately
predict its impact on the scale of page access increase will be very difficult if possi-
ble at all. However, since the scale of page access increase is an inherent property
of a particular space-filling curve which is a constant. We obtain the value of pcur
empirically.

Next we analyze how αi changes with nq and Cmax in order to formulate αi
as a function of nq, Cmax and pcur. Assume that the data objects are uniformly
distributed in the data space, and that these objects are uniformly distributed in
the leaf nodes of a B+-tree. Then given a window query q, the number of leaf
nodes that contain objects intersecting q, denoted by A, is proportional to the
volume of q in a D-dimensional space (area if D = 2), denoted by v(q). Thus, we
have A ∝ v(q). Meanwhile, the number of objects intersecting the window query,
nq, is also proportional to v(q), i.e., nq ∝ v(q). Therefore, we have A ∝ nq.

As the objects are uniformly distributed in the tree nodes, A is inversely propor-

tional to the capacity of tree nodes, i.e., A ∝ 1

Cmax
. Together with A ∝ nq, we
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have A ∝ n

Cmax
.

Processing window query q requires accessing the leaf nodes that contain the
objects intersecting q and some non-leaf nodes. Since in a B+-tree the number
of the leaf nodes is much larger than that of the non-leaf nodes, the number of
tree nodes accessed for processing q, αi, is approximately the number of leaf nodes

accessed for processing q, i.e., αi ≈ A. Thus, we have αi ∝
nq

Cmax
. From the

analysis above we have also established that the scale of page access increase in the

general case, pcur, is a constant. Therefore, we have αi ∝ pcur
nq

Cmax
.

As a result, we can generalize Equation (6) and obtain

αi ≈ pcur(b
nq

Cmax
c+

3

2
). (7)

5.2 Determining the Parameters in the Cost Model

We first derive the number of objects intersected by q, nq, and then derive the scale
of page access increase in the general case pcur.

5.2.1 The Number of Objects Intersected by the Window Query (nq). We derive
nq based on the ratio of the data space that is overlapped by the window query q.
The idea is that, in a space where the data objects are uniformly distributed, the
ratio of the objects contained in a window is approximately the ratio of the data
space that is overlapped by the window [Tao et al. 2003]. In SSI, after cumulative

mapping, the objects are approximately uniformly distributed. Therefore,
nq
ni
≈

||q||
||Z||

, where ni, ||q||, and ||Z|| denote the number of objects in partition i, the

area (or volume) of the window query, and the area (or volume) of the data space,
respectively. Since after cumulative mapping the area (or volume) of the data space
||Z|| becomes 1, we have:

nq ≈ ni||q||. (8)

1) Deriving ||q||. Based on the position of the lower bound q.lj and upper bound
q.uj of q at every dimension j, we can perform window query expansion and cumu-
lative mapping on q as described in Section 4.2 to get ||q||. Formally,

||q|| =
D∏
j=1

(cdfi,j(q.uj +
1

2
di)− cdfi,j(q.lj −

1

2
di)). (9)

Here, cdfi, · denotes the set of CDFs used for cumulative mapping in partition i,
while di denotes the separation size value of partition i.

When we use the cost model for determining the separation configuration, we do
not have a particular window query q yet and hence do not have any particular
position of q.lj or q.uj . We need an integration on all positions of q.lj and q.uj .
Formally,

||q|| =

D∏
j=1

∫ zj

0

∫ zj

q.lj

cdfi,j(q.uj + 1
2
di)− cdfi,j(q.lj − 1

2
di)

|Z|j
d(q.lj)d(q.uj). (10)
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Fig. 12. Estimation of pcur for a 2D Hilbert-curve

Here, |Z|j denotes the data space extent on dimension j.
2) Simplifying ||q||. Equation (10) gives an accurate size of q for separation con-

figuration selection. However, it is an expensive equation to compute. Since we
need to use the cost model frequently in configuration selection, we simplify the
computation of ||q|| as follows. Our cost model assumes that data objects are uni-
formly distributed. The different positions of q should have similar selectivity effect
on different partitions of the data set; the integration and cumulative mapping on
the position of q do not affect the comparative result of the costs between different
partitions much. Therefore, we drop the integration and CDFs from Equation (10),
and replace q.lj and q.uj with |q|j to denote the extent of q on dimension j. This
results in

||q|| =
D∏
j=1

(|q|j + di). (11)

We do not have a particular window query at separation configuration selection
and hence do not have a value for |q|. We use the size of a “typical window query”
q̃ of a hyper-square shape, denoted by |q̃|. The intuition is that, we just need a
cost comparison on different separation configurations of SSI to help determine the
best configuration. The same “typical window query” should have the same effect
on computing the cost of different configurations, and thus does not change the
comparative cost of different configurations. Therefore, ||q|| is further simplified.

||q|| = (|q̃|+ di)
D. (12)

This equation has low computation overhead. In our experimental study, the
results show that the value of |q̃| has very little impact on the configuration selection
results (Section 7.1.1).

5.2.2 The Scale of Page Access Increase in General Cases (pcur). To learn the
value of pcur of a certain type of space-filling curve we implement SSI with the
curve and then perform window queries using the implemented SSI. We record the
actual number of page accesses and compare it with the number estimated by the

cost model of the contiguous case (Equation (6), αi ≈ b
nq

Cmax
c+

3

2
, in particular).

We observe how large is the scale of page access increase in the general case when
compared with the contiguous case.

Fig. 12 shows the result where we vary the data set cardinality, object size
and window query selectivity to learn the value of pcur for the Hilbert-curve in
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Table II. Values of pcur for different space-filling curves

Curve Dimensionality pcur Maximum Error

Hilbert 2 1.5722 5.45%

Z 2 1.8817 8.24%

Hilbert 3 3.2014 6.65%

Z 3 3.5883 7.15%

2-dimensional space2. In the figure, the actual and the estimated numbers of page
accesses are denoted by “Actual” and “Estimated”, respectively. We observe that
the actual number is always about 0.6 times larger than the estimated number. We
compute the scale of increase at every data point and take the average as the value
of pcur, which results in pcur = 1.5722. We use this value in the cost model for the

general cases (Equation (7), αi ≈ pcur(b
nq

Cmax
c+ 3

2
)) and re-estimate the number of

page accesses for different settings. We compare the re-estimated numbers with the
actual numbers, and the result shows that the maximum error rate is only 5.45%.

Similarly we obtain the values of pcur for the Z-curve and the Hilbert-curve in
2-dimensional space and 3-dimensional space, respectively. The values and their
corresponding maximum cost model estimation errors are listed in Table II. The
achieved small estimation error rates (i.e., within 8.24%) validate the use of pcur
and the cost model.

5.3 Summary

Now we can integrate nq and pcur into Equation (7) to obtain the final forms of
the cost model.

For separation configuration selection we use the simplified version of the cost
model, where nq is computed by Equations (8) and (12):

αi ≈ pcur(b
ni(|q̃|+ di)

D

Cmax
c+

3

2
). (13)

For window query cost estimation we use the full version of the cost model, where
nq is computed by Equations (8) and (9):

αi ≈ pcur(b
ni(
∏D
j=1(cdfi,j(q.uj + 1

2
di)− cdfi,j(q.lj − 1

2
di)))

Cmax
c+

3

2
). (14)

6. DBMS IMPLEMENTATION

In this section we describe how SSI can be implemented in a full-fledged DBMS
without modifying the DBMS kernel.

We first create a table to store the MBRs of the spatial objects, where the lower
bounds and upper bounds of the MBRs on each dimension are stored in separate
columns. Another column is needed to store unique ids for associating the MBRs

2In Fig. 12b, |õ| denotes the average object size obtained from some real data sets, which will be

detailed in Section 7.
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with their corresponding spatial objects. These are all columns needed for enabling
spatial queries on a full-fledged DBMS with no spatial support. In addition, SSI
requires a column ssi_key in the table to store the SSI keys of the MBRs. Below
we give an example SQL statement to create a table that stores 2D objects for SSI.

CREATE TABLE table_name (id INTEGER UNIQUE,

ssi_key INTEGER,

lower_1 DOUBLE,

upper_1 DOUBLE,

lower_2 DOUBLE,

upper_2 DOUBLE);

We then create a B+-tree index on ssi_key.

CREATE INDEX index_name ON table_name(ssi_key);

We may create tables to store the parameters for the SSI key computation. As

shown in Equation (5), the parameters include the number of partitions f̂ .n, the
data dimensionality D, the number of samples used for building the CDFs, |S2|,
the number of buckets used for building the CDFs, nb, the data space size in
each dimension |Z|j , the order of the space filling curve used for each partition λi,
the total number of grid cells used in the first i partitions vi, and the cumulative
counts for each bucket boundary coordinate bk.c. We give example SQL statements
of creating tables to store these parameters as follows.

CREATE TABLE ssi_overall_parameter (f_n INTEGER, D INTEGER,

S_2 INTEGER, n_b INTEGER);

CREATE TABLE ssi_data_space_size (Z_j DOUBLE);

CREATE TABLE ssi_curve_parameter (lambda_i INTEGER, v_i INTEGER);

CREATE TABLE ssi_cdf_parameter (b_k_c INTEGER);

Given a data set, we have a C program to (i) generate the parameters for SSI
key computation, (ii) compute the SSI key for each record, and (iii) insert the
parameters as well as the SSI keys into the database tables in a DBMS through the
DBMS’ programming interface such as ODBC.

The above program is also used for data maintenance. When a new data record
arrives, the program computes the SSI key for the record and generates an INSERT
statement to insert it into the database table; when a record is to be deleted, the
record id is passed to the program and the program generates a DELETE statement
to delete the record from the database table; when a record’s MBR is updated, the
program first computes a new SSI key for the record based on the new MBR, and
then generates an UPDATE statement to update the record in the database table.
We give example SQL statements for data maintenance as follows:

INSERT INTO table_name VALUES (o_id, o_ssi_key,

o_lower_1, o_upper_1, o_lower_2, o_upper_2);

DELETE FROM table_name WHERE id = o_id;

UPDATE table_name SET ssi_key = n_ssi_key,

lower_1 = n_lower_1, upper_1 = n_upper_1,
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lower_2 = n_lower_2, upper_2 = n_upper_2

WHERE id = o_id;

Here, o_id, o_ssi_key, o_lower_1, o_upper_1, o_lower_2 and o_upper_2 de-
note the object id, ssi_key and MBR boundaries, while n_ssi_key, n_lower_1,
n_upper_1, n_lower_2 and n_upper_2 denote the new ssi_key and MBR bound-
aries of an object.

At query time, we have another C program to process the window queries. Given
a window query [w_lower_1, w_upper_1; w_lower_2, w_upper_2], this C pro-
gram uses either EdgeMapRange or RoughMapRange to generate the corresponding
SSI key ranges, and then constructs a SQL query statement that contains all gen-
erated key ranges to perform a window query on the database table through the
DBMS’ programming interface as follows:

SELECT id

FROM table_name

WHERE (ssi_key BETWEEN i_lower_1 AND i_upper_1 OR

ssi_key BETWEEN i_lower_2 AND i_upper_2 OR

...

ssi_key BETWEEN i_lower_k AND i_upper_k)

AND (lower_1 <= w_upper_1 AND

upper_1 >= w_lower_1 AND

lower_2 <= w_upper_2 AND

upper_2 >= w_lower_2);

Here, <i_lower_1, i_upper_1>, ..., <i_lower_k, i_upper_k> represent the
ranges of space-filling curve values that the window query is mapped to. The fi-
nal AND clause is needed because the comparisons on ssi_key may return false
positives, which need to be filtered by the window query directly.

Note that the above implementation of SSI is on top of an existing DMBS, which
does not change the kernel of the DBMS. We discuss the transaction management
issue as follows. With the above SSI implementation, a spatial database operation
(i.e., insert, update, delete, and window query) is carried out in two steps: (i)
our C program computes the SSI key for an object, or a set of key ranges in the
case of a window query, and generates the corresponding SQL statements; (ii) the
DBMS executes the generated SQL statements to update the index. The full ACID
property of a transaction containing the above spatial operations can be achieved by
applying transaction models such as 2PL and failure recovery mechanisms outside
the DBMS, e.g., in the application layer where the DBMS is queried, or a service
layer which wraps the access to the DBMS. If applied in the application layer,
many platforms such as Spring for JavaEE can be used, which takes care of the
transaction management in the business logic, and therefore little additional effort
is needed. If applied in an independent service layer, tremendous effort can be
avoided since the B+-tree implementation in the DBMS is leveraged to provide the
ACID property in the second step. Overall, for the above SSI implementation, the
transaction management can be achieved with a small amount of effort outside the
DBMS. Alternatively, the SSI index technique can be integrated into the DBMS
kernel (instead of on top of the DBMS) and let the DBMS handle the transaction
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management and failure recovery issues. This may offer even better efficiency of
the SSI index technique.

Beyond supporting the ACID properties, SSI brings little negative impact to the
transaction throughput to an RDBMS. Specifically, we discuss the logging and the
locking issues as follows. As for locking when processing the window queries, both
SSI and the mapping-based competitive methods, e.g., XZ-ordering, map the query
window to a set of key values for searching on the B+-tree, which may incur shared
locks on the corresponding values when performing transactions. The cost of such
locks depends on the number of key values generated by the different methods.
Given the same query, a method that generates more key values may have larger
overhead of locking, and hence smaller degree of concurrency. Given the same data
distribution and query, different mapping based methods should generate the same
number of key ranges as the number of continuous space-filling curve intervals inside
a window query remains the same irrespective of the mapping methods. Note that
SSI has a distribution transformation step which makes the data more uniform, so
SSI tends to generate a smaller number of continuous space-filling curve intervals
compared to other mapping methods. This is confirmed by the experimental results
in Section 7.2. When processing the same query SSI typically involves less page
accesses, i.e., less false positives. Hence, SSI is expected to perform no worse than
the other mapping based methods in terms of the degree of concurrency and the
overhead of locking. R-Tree based methods are not competitive to SSI in terms of
the concurrency control because the R-Tree is inherently much more complicated
than the B+-tree. The overlaps between MBRs in an R-Tree may cause many nodes
to be accessed concurrently and therefore locked during the query time.

7. EXPERIMENTAL STUDY

In this section we present the results of an experimental study on SSI. We first study
the effect of the different components on the performance of SSI in Section 7.1.
Then we compare the query processing efficiency of SSI with that of some existing
spatial indexes when implemented as a standalone spatial index in Section 7.2.
Finally, we integrate SSI into two off-the-shelf DBMSs and compare the query
processing efficiency with that of the spatial component of the two DBMSs. For
each experiment we run 200 window quires and report the average number of page
accesses and response time.

Our experimental system has an Intel CoreTM 2 Duo E600 processor, 2GB RAM,
and a 7200RPM SATA hard drive with a page of 4096 bytes. All the algorithms are
implemented in C and compiled using GCC 4.2.3 under Linux 2.6.24. Each float
typed variable occupies 4 bytes in main memory. By default the indexes do not
use buffers (I/O buffering of the operating system is allowed). In the experiments
where we study the effect of buffer size, we vary the buffer size from 0 to 1200 pages
and use Direct I/O to bypass the I/O buffering of the operating system, i.e., we
use system function open() to open data files and set the O_DIRECT flag.

We use three real data sets obtained from the R-tree Portal3: Germany hypsog-
raphy data set, Tiger/Line LA rivers and railways data set, and Tiger streams data
set. These data sets contain 76,999, 128,971 and 194,971 2-dimensional MBRs, and

3http://www.chorochronos.org/
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Table III. Data sets and parameters used in experiments

Cardinality 25000, 50000, 100000, 200000, 400000, 1000000, 10000000

Dimensionality 2, 3

Distribution uniform, Zipfian, real

Real data sets Hypsography, Railway, Stream

Selectivity 0.01%, 0.1%, 1%, 10%

Space-filling curves Z-curve, Hilbert-curve

θd 0.2, 0.4, 0.6, 0.8

θa 0.2, 0.4, 0.6, 0.8

nmax 4

nb min {|O|, 5 log2 |O|}
|S1| min {|O|, 50 log2 |O|}
|S2| min {|O|, 25 log2 |O|}

are denoted by “Hypsography”, “Railway” and “Stream” data sets, respectively.
We generate 3-dimensional real data sets from the 2-dimensional real data sets as
follows. For each object o in a real data set, we use the size of an object randomly
chosen from the same data set as the extent of o in the 3rd dimension. We then
randomly place the object in the 3rd dimension within the range of [0, |Z|], where
|Z| denotes the data space size of the corresponding 2-dimensional real data set.

We also generate 2- and 3-dimensional synthetic data sets with uniform and
Zipfian distributions, respectively. In the uniform data sets, the object coordinates
and extents in each dimension follow the uniform distribution in the range of [0, 1].
In the Zipfian data sets, the object coordinates and extents in each dimension follow
the Zipfian distribution in the range of [0, 1]. We vary the data set cardinality
from 25,000 to 10,000,000 and the skewness parameter of the Zipfian data sets,
denoted by θd, from 0.2 to 0.8. Further, to evaluate the effect of object aspect
ratio distribution, we generate Zipfian data sets where the object aspect ratio also
follows the Zipfian distribution and the skewness parameter θa varies from 0.2 to
0.8.

For window query performance study we generate window queries of selectivity
varying from 0.01% to 10%.

We test both the Z-curve and the Hilbert-curve as the space-filling curve used in
SSI. To constrain the index building and SSI key computation time, in the size sepa-
ration stage, we set the maximum number of partitions nmax to be 4 and the sample
set cardinality for size distribution estimation |S1| to be min {|O|, 50 log2 |O|}; in the
cumulative mapping stage, we set the number of buckets to be min {|O|, 5 log2 |O|}
and the sample set cardinality |S2| to be min {|O|, 25 log2 |O|} for cumulative map-
ping function construction; in the cost model we set the typical window query size
|q̃| to be 1

64 of the data space size.
Table III summarizes the parameters used in the experiments, where the default

values are in bold.

7.1 Effect of the Components of SSI

In this subsection we present the effect of three SSI components on query processing
performance: cost model, cumulative mapping, and MapRange algorithms.
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Table IV. Relative standard deviations when varying typical window size (|q̃|)
Test Case Number of Page Accesses Response Time

uniform 2D data set 0.00% 2.10%
Zipfian 2D data set 0.24% 1.72%
Railway 2D data set 1.06% 2.68%
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Fig. 13. Cost model accuracy

7.1.1 Effect of the Cost Model. 1) Typical window size. In separation con-
figuration selection, we used a typical window query size |q̃| in the cost model. In
this set of experiments we verify that the choice of a particular value of |q̃| does not
affect much on the result of the configuration selection. We vary the value of |q̃|
from 0.1

64 to 10
64 and observe the separation configuration selected by the cost model.

We repeat the experiment on different data sets and find that, on each data set,
the separation configuration selected is almost always the same. This is because
although the estimated cost of a separation configuration varies when |q̃| is varied,
the comparative cost of different separation configurations stays the same and hence
the selection result does not change.

For the cases where the selection result changes, we setup SSI with the differ-
ent configuration selected and measure their query processing performance. Ta-
ble IV shows the relative standard deviation of the number of page accesses and
the response time of SSI of different configurations on 2-dimensional data sets (3-
dimensional data sets give similar results and thus are omitted).

We can see that the different configurations selected result in little performance
difference of SSI. The number of page accesses only varies less than 1.1%, while
the response time only varies less than 3%. Therefore, even in rare cases where the
choice of a particular value of |q̃| may result in a sub-optimal separation configura-
tion, it has very little impact on the performance of SSI.
2) Cost model accuracy. Next we evaluate the accuracy of our cost model

on different data sets with different parameter settings. We record the numbers
of actual page accesses incurred (denoted by “Actual”), and then compare them
with the numbers of page accesses estimated by the cost model (denoted by “Esti-
mated”). As Fig. 13 shows, the numbers of observed page accesses are very similar
to their cost model estimated counterparts. The relative error on 2-dimensional
data sets is within 30%. In particular, on uniform data sets, the error is the small-
est, while on Zipfian and real data sets, the error is slightly larger. This is expected
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(b) Zipfian 2D data set
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Fig. 14. Effect of cumulative mapping on window query performance of SSI

because the cost model is based on uniform data distribution. For non-uniform data
sets, cumulative mapping can help obtain an approximately uniform distribution
but it is not a strict uniform distribution. Thus, the accuracy of the cost model is
slightly lowered. However, as the experiments in the following section will show,
the achieved cost model accuracy is good enough to produce an index structure
that significantly outperforms other spatial indexes. Experiments on 3-dimensional
data sets show similar patterns and thus the result is omitted.

7.1.2 Effect of Cumulative Mapping. We evaluate the query processing perfor-
mance of SSI with and without cumulative mapping to justify the use of cumulative
mapping. As shown in Fig. 14, SSI with cumulative mapping outperforms SSI with-
out cumulative mapping in most cases in terms of both the number of page accesses
and the response time. For the data sets with Zipfian distribution and large cardi-
nality, the effect of cumulative mapping is most obvious (up to 60% improvement
in response time on the Zipfian data set with 400,000 objects, cf. Fig. 14b). This
is because mapping based indexes do not perform very well on highly skewed data,
but with cumulative mapping, we achieve an efficient mapping based index.

There is also considerable improvement on the real data set (37% improvement in
response time when the query selectivity is 10%, cf. Fig. 14c) as real data are usually
skew. For uniform data sets the effect of cumulative mapping is minimum. SSI with
cumulative mapping is slightly slower because it needs cumulative mapping on the
window query (computing Equation (3)), but the difference is barely observable (cf.
Fig. 14a and Fig. 14d).

7.1.3 Effect of MapRange Algorithms. To evaluate the performance of differ-
ent MapRange algorithms, we vary the query selectivity from 0.01% to 10%. We
measure the response time and the number of page accesses of five MapRange al-
gorithms in SSI to process window queries, i.e., ScanMapRange, EdgeMapRange,
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Fig. 15. Effect of RoughMapRange on window query performance of SSI - response time

RoughMapRange, GetNextH and GetNextZ. In the results we use “S”, “E”,
“R”, “H” and “Z” to denote the five algorithms, respectively. We show the time
for window query mapping as well as B+-tree searching, as denoted by “Map” and
“Query”, respectively. Here, GetNextH is a MapRange algorithm adapted from
the calculate next match algorithm [Lawder and King 2001] for the Hilbert-curve
and GetNextZ [Ramsak et al. 2000] is an existing MapRange algorithm for the
Z-curve (cf. Section 2.3.1). Note that our study focuses on MapRange algorithms
that do not require accessing the data pages. Therefore, existing algorithms that
access the data pages during mapping are not considered.

1) First we compare RoughMapRange with ScanMapRange and GetNextZ.
We report both the response time and the number of page accesses to evaluate how

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



38 ·

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.01 0.1 1 10

 

 

 

#
p
a
g
e

a
c
c
e
ss

e
se

s

Selectivity (%)

R
S
Z

(a) uniform 2D data set

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.01 0.1 1 10

 

 

 

#
p
a
g
e

a
c
c
e
ss

e
se

s

Selectivity (%)

R
S
Z

(b) Zipfian 2D data set

 0

 20

 40

 60

 80

 100

 120

0.01 0.1 1 10

 

 

 

#
p
a
g
e

a
c
c
e
ss

e
se

s

Selectivity (%)

R
S
Z

(c) Railway 2D data set

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.01 0.1 1 10

 

 

 

#
p
a
g
e

a
c
c
e
ss

e
se

s

Selectivity (%)

R
S
Z

(d) uniform 3D data set

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.01 0.1 1 10

 

 

 

#
p
a
g
e

a
c
c
e
ss

e
se

s

Selectivity (%)

R
S
Z

(e) Zipfian 3D data set

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.01 0.1 1 10

 

 

 

#
p
a
g
e

a
c
c
e
ss

e
se

s

Selectivity (%)

R
S
Z

(f) Railway 3D data set

Fig. 16. Effect of RoughMapRange on window query performance of SSI - page access

much performance gain in response time can be achieved by RoughMapRange and
how much page access overhead it has.

Fig. 15 shows the response time. On 2-dimensional data, all three methods have
similarly small response time when the query selectivity is less than 1%. When the
query selectivity gets larger, the response time of ScanMapRange increases the
fastest while that of RoughMapRange increases the slowest. That of GetNextZ
lies in between the two. On 3-dimensional data, RoughMapRange shows clearer ad-
vantage. It outperforms ScanMapRange by an order of magnitude and GetNextZ
by more than 3 times. This is because ScanMapRange calls the C() function for
too many times on 3-dimensional data while RoughMapRange does not call the
C() function at all. GetNextZ does not call the C() function explicitly, but it
requires some computation that is similar to the C() function.

Fig. 16 shows the page access performance. RoughMapRange has slightly larger
numbers of page accesses because it relaxes the process of generating the key ranges.
However, we have seen that RoughMapRange has a much less overall query re-
sponse time, this is because its low computation cost outweighs the overhead in-
curred by a smaller number of extra page accesses. GetNextZ generates the same
index key ranges as ScanMapRange does and hence the numbers of page accesses
for these two algorithms are the same.

2) Next we compare EdgeMapRange with ScanMapRange and GetNextH on
the Hilbert curve. In this set of experiments we only record the response time since
the three methods have the same numbers of page accesses because they differ in
the process of generating the key ranges for the B+-tree search but generate the
same key ranges.

On 2-dimensional data the three MapRange algorithms show very similar perfor-
mance; when the query selectivity increases, EdgeMapRange gradually shows its
advantage. On 3-dimensional data, EdgeMapRange outperforms ScanMapRange
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Fig. 17. Window query performance of the standalone index implementations, uniform 2D data

by 2 times on average. The advantage of EdgeMapRange is due to the fact that
it computes fewer curve values. GetNextH also computes fewer curve values, but
it takes more time for each computation. We omit the detail figures due to the
journal page limit.

7.2 Performance of SSI as a Standalone Implementation

In this subsection we evaluate the performance of various indexing methods as
standalone implementations. The experiments consider 10 methods: SSI with Z-
curve (denoted by “SSI-Z”), SSI with Hilbert-curve (denoted by “SSI-H”), Bdual-
tree (denoted by “B-dual”), Sequential Scan (denoted by “Scan”), the R*-tree
(denoted by “R*-tree”), Dual-transform with space-filling curves of orders from 2
to 5, (denoted by “DT-2” to “DT-5”, respectively) and Size Separation Spatial Join
(denoted by “SSSJ”).

7.2.1 Experiments on 2-dimensional Data Sets. Fig. 17 shows the query perfor-
mance on 2-dimensional uniform data where we vary the data set cardinality. The
response time of SSSJ, B-dual and other methods are presented in three figures,
Fig. 17a, Fig. 17b and Fig. 17c, respectively, rather than in the same figure because
they are in very different ranges. From these figures we can see that SSSJ performs
the worst. Its response time is in tens of milliseconds for a data set with only
25,000 objects. Considering that in real systems there are commonly tens of thou-
sands of users performing queries at the same time, this response time is too slow
to provide satisfactory user experience. B-dual, Scan, DT-3 and DT-5 are slightly
faster (response time of DT-2 and DT-4 are between DT-3 and DT-5 and hence are
omitted). SSI-Z and SSI-H outperform all the above methods significantly. Their
response time are around 1 millisecond for the data set of 1 million objects. R*-tree
is the closest to the SSI methods. Its response time is around 10 millisecond for
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Fig. 18. Setup time of the standalone index implementations, uniform 2D data

the data set of 1 million objects.
We show the corresponding numbers of page accesses of these methods in Fig. 17d,

Fig. 17e, and Fig. 17f, respectively. The SSI methods also show good performance in
page access, although the scale of performance difference in page access is different
from that in response time. The R*-tree shows the smallest number of page accesses,
while the SSI methods’ page access numbers are very close to that of the R*-tree.

We show the index setup time in Fig. 18, where no bulk loading is used for any
index. As expected the methods with high query processing time have relatively
low index setup time. Specifically, Scan does not require any setup time at all;
SSSJ, B-dual and the DT methods can all index 1 million objects in around 80
seconds. SSI-Z and SSI-H are slightly slower, with 90 and 144 seconds to build an
index on 1 million objects; R*-tree is the slowest, which requires 229 seconds to
do the same. Considering the high performance gain in the query processing time,
and that the index setup is only performed once for a long time, the slightly higher
setup cost of the SSI methods is worth while.

Since we focus on getting low query response time, in the following experiments,
we omit presenting the page access and index setup time results to keep the paper
concise, as they have similar behavior to those of the above experiments. Also,
since the other methods are highly uncompetitive, we will only show the results of
R*-tree, SSI-H and SSI-Z for the following set of experiments.

Fig. 19 shows the query processing time on other 2-dimensional data sets and
parameter settings. Specifically, in Fig. 19a we vary the number of buffer pages
from 0 to 1024. In this set of experiments the number of index pages of R*-tree,
SSI-Z and SSI-H are 682, 869 and 838, respectively, and the percentage of the index
buffered ranges from 0% to 100% for each method. In Fig. 19b we vary the window
query selectivity on the uniform data set. From Fig. 19c to Fig. 19f we vary the
cardinality, the skewness of the object size distribution, the skewness of the object
aspect ratio distribution and the window query selectivity on the Zipfian data sets.
From Fig. 19g to Fig. 19i we vary the window query selectivity on real data sets.

We see from these figures that the SSI methods outperform the R*-tree in most
cases. Only when the query selectivity is very small (i.e., less than 0.1%) or the ob-
ject size is very skew that the R*-tree shows a smaller response time (cf. Fig. 19b,
Fig. 19d and Fig. 19e). Meanwhile, the SSI methods show relatively steady perfor-
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Fig. 19. Window query performance of the standalone index implementations, other 2D data

mance when the experimental parameter values are varied. This demonstrates the
robustness of the SSI methods.

7.2.2 Experiments on 3-dimensional Data Sets. Fig. 20 shows the query pro-
cessing time on 3-dimensional data sets. Among the various methods, SSSJ and
B-dual perform as bad as they did in the experiments on the 2-dimensional data
sets and hence are omitted. DT-5 cannot finish after hours. DT-5 is so slow because
it involves curve value mapping of a space-filling curve of order 5 in a 6-dimensional
data space. Therefore, it is not included in the results.

Fig. 20a shows the result where the data set cardinality is varied. We can see
that, like the experiments above, SSI-Z and R*-tree have the smallest response time
and they both significantly outperform other methods. DT-2 is close while DT-4
is the worst. The response time of DT-3 is between DT-2 and DT-4 and hence
is omitted. We observe that SSI-H shows less competitive performance. This is
because of the relatively high complexity of curve value mapping on the Hilbert-
curve in 3-dimensional space, which dominates the query processing cost. We also
see that the response time of SSI-H is quite stable when the data set cardinality
increases. As a result, it becomes closer to the response time of the other methods
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Fig. 20. Window query performance of the standalone index implementations, 3D data

as the data set cardinality increases.
In Fig. 20b we vary the number of buffer pages from 0 to 1200. Since in this

figure the number of index pages of R*-tree, SSI-Z and SSI-H are 977, 1131 and
1128, respectively, the percentage of the index buffered ranges from 0% to 100%
for each method. We observe that the response time decreases for all methods as
more buffer pages are used. SSI-Z and R*-tree show similar performance constantly,
while SSI-H also shows similar performance to R*-tree when fewer buffer pages are
used, where the I/O time becomes dominating in the query processing cost.

From Fig. 20c to Fig. 20e we vary the cardinality, the skewness of the object size
distribution and the skewness of the object aspect ratio distribution on the Zipfian
data sets. The comparative performance of SSI-Z, SSI-H and R*-tree is similar to
that on uniform data sets.

In Fig. 20f we vary the query selectivity on real data. Again, R*-tree and SSI-Z
show close performance and SSI-Z performs better when the query selectivity gets
large (i.e., larger than 1%). This is because when the query selectivity increases,
the tree-based pruning of R*-tree degrades quickly.

7.2.3 Summary. We summarize the above experimental results as follows.

—The SSI methods outperform other mapping based indexing methods by orders
of magnitude in various data sets and experimental settings in terms of both
response time and page access.

—The SSI methods show competitive performance when compared with R*-tree.
They outperform R*-tree for most cases (i.e., when the data set cardinality is
larger than 50,000 or the query selectivity is larger than 0.1%) on 2-dimensional
data. For 3-dimensional data, SSI-Z has very similar performance to R*-tree for
most cases and outperforms R*-tree when the data set cardinality is large; SSI-H
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Fig. 21. Window query performance of indexes in the PostgreSQL implementation

shows less competitive performance but is still close to SSI-Z where the data set
cardinality or window query selectivity is large.

7.3 Performance of SSI as Integrated in a DBMS

To evaluate the performance of SSI on full-fledged DBMSs, we implement SSI on
two DBMSs. One is from the research community, PostgreSQL, and the other is a
commercial DBMS.

On each DBMS we evaluate the performance of three indexing methods:

—SSI. DBMS implementation of SSI as explained in Section 6.

—Standard. The DBMS’ standard data indexing component, where the objects are
stored in a database table as described in Section 6. But instead of creating a
B+-tree index on the SSI keys, this method creates one B+-tree index on each
bound of the object MBRs (i.e., one B+-tree for each MBR bound column of
the database table). When a window query arrives (in the form of a SQL query
like the one shown in Section 6, but without the predicates on the SSI keys), the
DMBS automatically chooses the proper B+-tree to evaluate the query.

—R-tree. The DBMS’ built-in spatial component (specifically, the R-tree).

7.3.1 PostgreSQL. As shown in Fig. 21, when implemented on PostgreSQL,
SSI outperforms the R-tree and PostgreSQL’s standard data indexing component
constantly. Compared with PostgreSQL’s standard data indexing component, SSI
is more than twice as fast on average (please note the logarithmic scale). The
response time of SSI grows much slower as the increase of data set cardinality.
We observe that the R-tree in PostgreSQL shows even worse performance than
the standard data indexing component does. We look into the query processing
procedure of PostgreSQL when the R-tree is used for indexing and find that the
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query optimizer is more likely to use a sequential scan to process window queries
rather than using the R-tree index. A possible reason is that PostgreSQL’s query
optimizer has not got accurate estimation on the cost of using the R-tree index and
thus, it is being conservative in most cases and uses sequential scans instead. We
find that this is actually a common phenomenon observed by many users in the
PostgreSQL community.

7.3.2 A commercial DBMS. We create an R-tree in the commercial DBMS to
index the spatial objects following the official documentation. SSI again outper-
forms the R-tree index as well as the standard index used in the commercial DBMS
when the data set cardinality and the query selectivity are varied. We observe
that when the data are more skewed, the advantage of SSI is more significant (by
an order of magnitude; we omit the figures due to the journal page limit). This
is because of the cumulative mapping used to generate an approximately uniform
distribution to reduce the false positives in the filtering stage of query processing.

8. CONCLUSION

In this paper we presented SSI, a mapping based index scheme for window queries
on spatial objects with non-zero extents. It uses size separation, cumulative map-
ping, window query expansion and novel MapRange algorithms to overcome the
drawbacks of existing mapping based indexes with extensive experiments using both
real and synthetic data sets. We show that:

—SSI outperforms other mapping based indexing methods by orders of magnitude.
As a standalone implementation, SSI is competitive with the R*-tree.

—SSI can be easily implemented on a DBMS and it outperforms the DBMS in-
tegrated R-tree implementation from two off-the-shelf DBMSs by up to three
orders of magnitude in processing window queries.

—Our cost model to optimize the performance of SSI is highly accurate under
various settings.
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