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HyperX: A Scalable Hypergraph Framework
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Abstract—Hypergraphs are generalizations of graphs where the (hyper)edges can connect any number of vertices. They are powerful
tools for representing complex and non-pairwise relationships. However, existing graph computation frameworks cannot accommodate
hypergraphs without converting them into graphs, because they do not offer APIs that support (hyper)edges directly. This graph
conversion may create excessive replicas and result in very large graphs, causing difficulties in workload balancing. A few tools have
been developed for hypergraph partitioning, but they are not general-purpose frameworks for hypergraph processing. In this paper, we
propose HyperX, a general-purpose distributed hypergraph processing framework built on top of Spark. HyperX is based on the
computation paradigm “Pregel”, which is user-friendly and has been widely adopted by popular graph computation frameworks. To help
create balanced workloads for distributed hypergraph processing, we further investigate the hypergraph partitioning problem and
propose a novel label propagation partitioning (LPP) algorithm. We conduct extensive experiments using both real and synthetic data.
The result shows that HyperX achieves an order of magnitude improvement for running hypergraph learning algorithms compared with
graph conversion based approaches in terms of running time, network communication costs, and memory consumption. For
hypergraph partitioning, LPP outperforms the baseline algorithms significantly in these measures as well.

Index Terms—Hypergraph, HyperX, graph framework, graph partitioning, label propagation partitioning
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1 INTRODUCTION

U SUAL graphs allow each edge to connect two vertices
representing a certain relationship between them. For

example, in a social network graph, an edges connecting
two vertices may represent a “friendship” between two
users. In a wide range of applications, a relationship may be
formed by more than two objects. For example, a research
paper is likely to be coauthored by multiple researchers; a
tweet may be reposted by many users. In such applications,
modeling objects and their relationships with a usual graph
may incur information loss [1]. A common approach to
address this problem is representing the objects and their
relationships by vertices and hyperedges in a hypergraph. A
hypergraph is a generalized graph where an edge (now
called a hyperedge) can connect more than two vertices.
Hypergraph models have shown great effectiveness in cap-
turing high-order relationships [2]–[8]. Table 1 summarizes
some representative examples of hypergraph applications.

While applications of hypergraphs are emerging, there
has been little work on developing a general-purpose pro-
cessing framework for hypergraphs. Several tools have been
designed for specific hypergraph operations. For example,
Parkway [9] focuses on hypergraph partitioning, but it is
difficult to be used, for example, to find the shortest path
in a hypergraph or to run hypergraph learning algorithms
over the partitions obtained. Popular general-purpose graph
frameworks such as GraphX [10] and PowerGraph [11],
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TABLE 1: Hypergraph Applications

Application Algorithm Vertex Hyperedge
Recommendation [2] Songs and users Listening histories
Text retrieval [3] Documents Semantic similarities
Image retrieval [4] Images Descriptor similarities
Multimedia [5] Videos Hyperlinks
Bioinformatics [6] Proteins Interactions
Social mining [7] Users Communities
Machine Learning [8] Records Labels

on the other hand, support a large variety of traditional
graph analytic tasks, but they do not support hypergraph
representations. These graph frameworks cannot process
hypergraphs without converting hypergraphs into graphs.
Converting a hypergraph into a graph may inflate the size
of the original hypergraph, because every hyperedge needs
to be replaced by a clique which increases the number
of edges and vertices. For example, a hypergraph studied
previously [12] with 2 million vertices and 15 million hy-
peredges is converted to a bipartite with 17 million vertices
and 1 billion edges. Such inflation causes huge difficulty in
processing the hypergraph. With the rapid growth of hyper-
graph applications such as those mentioned before, there
is an increasing need for a general-purpose hypergraph
processing framework that can handle common operations
such as traversal on hypergraph directly and efficiently.

In this paper, we address this need by proposing Hy-
perX, a distributed hypergraph processing framework. Hy-
perX is a thin layer built upon Apache Spark [13]. It provides
flexible and expressive interfaces for the ease of implemen-
tation of hypergraph learning algorithms, operating directly
on the hypergraph representation. To ease the use of the
framework, HyperX provides a hyperedge program and a
vertex program which are consistent with the edge program
and vertex program used in popular graph frameworks such
as GraphX. HyperX uses the Bulk Synchronous Parallel
(BSP) message passing scheme, which is commonly used
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in synchronous graph processing frameworks. This allows
the ideas of HyperX to be adapted to other distributed
frameworks such as Flink [14] instead of being constrained
on Apache Spark.

HyperX builds a foundation that supports processing
hypergraphs at large scale. When hypergraphs are large,
HyperX distributes the computation over across many
workers. This calls for a hypergraph partition algorithm
to create partitions that can be processed in a distributed
manner with a balanced workload and low communication
costs among the workers. The efficiency of a hypergraph
processing algorithm running on HyperX may be signifi-
cantly impacted by the hypergraph partitions.

Partitioning problem over both graphs and hypergraphs
has been studied for many years. Partitioning a hypergraph
is much more challenging than partioning a graph as the
ratio of the cardinality of vertices over hyperedges can be
vastly skewed, where the number of this ratio is basically
constant for a graph. As a result, the computation load
associated with vertex program and hyperedge program is hard
to balance. This is also because the partitioning over vertices
and hyperedges set up constrains on each other. Delicately
design an algorithm to partition hyperedges without con-
sidering vertices allocation may lead to severe network com-
munication cost. A good hypergraph partitioning algorithm
should make a trade off between balancing the workload
and minimizing the communication cost at the same time.

Hypergraph partitioning problem is acknowledged as
a NP-hard problem [15], so exact partitioning algorithms
are applicable only for small hypergraphs, therefore do
not meet our need. All practical methods are heuristics.
Their goal is intuitively to divide a hypergraph into a
number of equal-sized components, while minimizing the
number of components hyperedges span. In this paper, we
investigate this problem and add a strong constraint to
get better results. During the hypergraph partitioning, we
only replicate vertices but not hyperedges. Replicating a
hyperedge requires replicating all the vertices it involves.
Therefore, doing so substantially reduces the number of
replicas. Consequently, the excessive communication cost
during the value synchronization among replicas is waived.
We propose a novel label propagation partitioning (LPP) al-
gorithm to fulfill this purpose. LPP monitors a load balance
factor and network communication costs at the same time.
In each iteration, it has two steps: it assigns hyperedges to
partitions that can reduce the number of replicas in order
to achieve least communication; and it relocates vertices to
partitions less full to make partitions more balance. LPP is
based on label propagation, but differs from the classic label
propagation algorithm [16] in that it labels both vertices and
hyperedges while updating the labels separately.

In summary, we make the following contributions:

– This work systematically investigate scalable hyper-
graph processing. Hypergraphs are extensively used
as a popular model in optimizing distributed systems,
but scaling computation over hypergraphs has not been
thoroughly explored.

– We design a general-purpose framework, HyperX, to
directly process large hypergraphs in a distributed
manner. In HyperX, we provide two primary opera-

tions and tackle several implementation issues such as
the representation of a distributed hypergraph.

– We implement HyperX and evaluate its performance
with extensive experiments on three hypergraph learn-
ing algorithms. Compared with the graph conver-
sion approaches implemented on GraphX [10], HyperX
saves up to 77% memory usage and up to 98% commu-
nication costs, and runs up to 49 times faster.

This article is an extension of our earlier conference pa-
per [17]. In the conference paper, we proposed the HyperX
framework and described its implementation. In this ex-
tension, we focus on the hypergraph partitioning problem,
which is essential to make the framework efficient. We make
the following new contributions.

– We investigate factors that may affect the performance
of hypergraph applications from a general perspective.
We find that the performance can be largely impacted
by the number of replicas and the balance level of the
partitions (Section 5.1).

– We design a new optimization objective aimed to mini-
mize the number of replicas and to achieve the balanced
partitions. We formulate it as a constrained minimiza-
tion problem (Section 5.2). The hardness of the above
minimization problem on distributed environment is
discussed (Section 5.3). We show its inapproximability
under a strict case, and present a solution with a loga-
rithmic approximation factor under a loose case.

– We propose a novel label propagation partitioning (LPP)
algorithm (Section 5.4) to achieve the optimization
goal in an effective way. LPP is an iterative algorithm
that runs in a parallel behaviour. It has linear time
complexity in each iteration. LPP relies on a vertex-
centric computation paradigm, and it may scale to large
hypergraphs with billions of potential relations.

– We explore a number of heuristics to further boost
the efficiency of the LPP algorithm (Section 5.5). We
conduct extensive experiments on LPP and compare it
with the state-of-the-art hMetis, Parkway, and Zoltan
over real data (Section 6.3). The results show that LPP
generates partitions that speed up distributed hyper-
graph applications consistently, while it runs faster than
the baseline algorithms.

The rest of the article is organized as follows: We sum-
marize related work in Section 2. In Section 3, we show
how to process hypergraphs distributively and present the
HyperX framework. We then present its implementation in
Sections 4. In Section 5, we study hypergraph partitioning.
We report the experimental results in Section 6 and conclude
the paper in Section 7.

2 RELATED WORK

Distributed graph processing frameworks. Distributed graph
processing has been extensively studied [10], [11], [18], [19].
A number of issues that HyperX addresses for hypergraphs
have been studied for graphs: replicating data [11], ag-
gregating messages [10], partitioning the data [11], [19],
and providing common APIs for a wide range of appli-
cations [10], [18]. However, as discussed in Section 3.2,
there are major efficiency issues in adopting these graph
techniques to process hypergraphs.
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Graph and hypergraph partitioning. Classic graph partition-
ing studies focus on the minimum bisection paradigm. It is the
most commonly used approach for computing k-way parti-
tioning. A more general approach is called the (k,v)-balanced
partitioning [15] which partition a graph into k sets where
each set has at most v times of the average number of ver-
tices. An important variant of the (k,v)-balanced partitioning is
the balanced edge partitioning where the goal is to partition
the edges into two disjoint sets with an equal number of
edges, while minimizing the number of vertices spanning
over different sets. A recent study [20] shows that such a
formulation suits distributed processing better. Works [21],
[22] show that finding dominating sets and matching sub-
graph before partitioning are also useful. There are also
greedy heuristics to minimize the marginal cost [11], [20].
However, all these techniques are based on graph models
and therefore cannot be applied to hypergraphs without
significant modifications. Furthermore, existing studies on
graph partitioning usually balance either edges or vertices
but not both, which does not satisfy our goal.

Hypergraph partitioning, as a generalization of graph
partitioning, is an even more complex problem. Hyper-
graph partitioning is previously explored in the context of
integrated circuit design (VLSI) with a minimum cut-size
objective on hyperedges in order to minimize bisections on
a printed circuit board. Exact partitioning algorithms are
expensive in both computation and storage space usage.
A well known exact partitioning algorithm is the spectral
clustering which is for partitioning bipartites (note that bi-
partites and hypergraphs are equivalent). It has been shown
that a real-value relaxation under the cut criterion leads to
the eigen-decomposition of a positive semidefinite matrix
[23]. This means that cuts based on the second eigenvector
always gives a guaranteed approximation to the optimal
cut. A series of techniques based on spectural clustering
have been proposed [24]–[26]. However, these techniques
are inefficient as the size of a bipartite converted from a
hypergraph can be very large. Two popular methods to com-
pute eigen-decomposition are Lanczos [27] and SVD [24].
They both have the time complexity of O(k(Nx + Ny)

3/2),
where Nx and Ny are the number of vertices in each group,
respectively. For large hypergraphs where the numbers of
vertices and hyperedges are up to 100 millions, spectral
clustering may not have satisfactory efficiency.

Heuristic based partitioning algorithms such as
hMeTis [28], PaToH [29], Parkway [9], and Zoltan [30] have
been developed for a higher partitioning efficiency. The
algorithms hMetis and PaToH are single-machine based
algorithms, while the rest of the algorithms can run in a
distributed manner. All these algorithms share the same
multi-level coarsen-uncoarsen technique to partition a hy-
pergraph. This technique coarsens the original hypergraph
to a sequence of smaller ones. Then, heuristic partitioning
algorithms are applied to the smallest hypergraph. Finally,
the partitioned hypergraph is uncoarsened back to produce
partitions of the original hypergraph. These algorithms re-
quire random accesses to the hypergraph located either in
the memory or in other nodes. Thus, they do not scale well.
Furthermore, these algorithms use MPI APIs and cannot
be easily reimplemented on parallel frameworks such as
Spark. Another technique called hMulti-phase refinement [31]

considers hypergraph partitioning as a global optimization
problem but it shares the same limitations. There are more
recent tools for hypergraph partitioning. UMPa [32] is a
serial partitioner that aims at minimizing several objective
functions simultaneously; rFM [33] allows relocating ver-
tices in partitioning; HyperSwap [34] partitions hyperedges
rather than vertices. Other heuristic partitioning algorithms
such as Random, Greedy, and Aweto [35] generate relatively
balanced partitions with intuitive optimization strategies.
These algorithms have low time complexities and scale well
as they run iteratively in a distributed environment by mes-
sage passing. However, these algorithms may produce more
replicas which lead to higher space and communication
costs. The difference among them is the optimization func-
tion used in the iterative refinement. They make different
trade-offs between communication and computation costs.

In our experimental study, we compare our LPP par-
titioning algorithm with Random, Greedy, Aweto, hMetis,
Parkway, and Zoltan because they are the most commonly
used baseline algorithms in hypergraph partitioning [9],
[32]–[35].

3 HYPERGRAPH PROCESSING

We first describe hypergraph notations. Then we discuss
two traditional representations based on graph conversion
and their limitations. We then present the HyperX frame-
work.

3.1 Hypergraph

We denote a hypergraph as G = ⟨V,H⟩, where V =
{v1, v2, . . . , vm} is a set of m vertices and H =
{h1, h2, . . . , hn} is a set of n hyperedges. The degree of a
vertex v, denoted by dv , is the number of hyperedges that
are incident to v. The arity of a hyperedge h, denoted by ah,
is the number of vertices in h, i.e., the number of vertices
that are incident to h. Every vertex v and every hyperedge h
is associated with some attributes of interest called a vertex
value (e.g., a label), denoted by v.val and a hyperedge value
(e.g., a weight), denoted by h.val, respectively.

Both undirected and directed hyperedges are consid-
ered. An undirected hyperedge h is a nonempty subset
of V . For example, in Fig. 1a, there are four undirected
edges, h1, h2, h3 and h4, represented by four ellipses. Each
is a subset of V = {v1, v2, . . . , v7}, e.g., h1 = {v1, v2, v3}.
Since there are three vertices in h1, the arity of h1 is 3,
i.e., ah1 = 3. Meanwhile, since v1 is in both h1 and h2,
its degree is 2, i.e., dv1 = 2. A directed hyperedge h is
a mapping on two disjoint nonempty vertex sets of V : a
source set S and a destination set D, i.e., h : S → D.
For example, in Fig. 1a, we can change hyperedge h1 to
a directed hyperedge by assigning {v1, v2} as the source set
and {v3} as the destination set, i.e., h1 : {v1, v2} → {v3}.

3.2 Traditional Representations and limitations

Following the seminal study of Pregel [18], most distributed
graph frameworks choose a vertex-centric approach and
provide a vertex program, which updates a vertex value
based on the values of neighboring vertices. To avoid
extensive communication over the network, vertices are
replicated to the distributed partitions [10], [11], [19], [20].
When a vertex value changes, the new value is sent to its



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, XXX 2018 4

(a) Hypergraph (b) CE (c) SE

Fig. 1: Converting a hypergraph to a graph: CE and SE

replicas; a local aggregation that combines values sent to
the same destination is employed to enable batch update.
To adopt these distributed graph frameworks for hyper-
graph processing, we need to convert a hypergraph to a
graph. Two traditional representations are used for this
conversion [1]: 1) clique-expansion (CE), which replaces each
hyperedge with multiple edges forming a clique among the
incident vertices of the hyperedges, and 2) star-expansion
(SE), which replaces each hyperedge with a new vertex
connected to its incident vertices. Fig. 1 illustrates these two
approaches where the hypergraph in Fig. 1a is converted
to a graph shown in Fig. 1b by CE and a graph shown in
Fig. 1c by SE, respectively. Although these approaches are
simple to implement, they have substantial limitations.

1) CE is inapplicable to algorithms that update hyperedge
values as it no longer has records corresponding to the
original hyperedges in the converted graph.

2) The converted graph may have orders of magnitude
more vertices and edges compared with the original
hypergraph. Fig. 1 shows a substantial growth even in
a tiny hypergraph. The hypergraph with 4 hyperedges
and 7 vertices is converted by CE into a graph with 13
edges and 7 vertices and by SE into a graph with 13
edges and 11 vertices.

3) For SE, there are two types of vertices, those from
the original hypergraph and those converted from the
hyperedges of the original hypergraph. Two vertex pro-
grams are used for updating these two types of vertices.
When executing these two vertex programs, it takes two
iterations to update the vertex values and hyperedge
values, which is a drawback, because the two iterations
double the overhead of updating the vertex replicas.

3.3 HyperX Framework
HyperX has a similar architecture (cf. Fig. 2) to an ex-
isting graph framework, GraphX [10]: 1) it builds on top
of Spark; 2) it runs on the Hadoop platform, i.e., YARN
and HDFS; and 3) it shares all the optimization techniques
with GraphX. HyperX directly stores a hypergraph as two
RDDs [13], vRDD for the vertices and hRDD for the hyper-
edges. It differs from existing graph frameworks in two
design choices.

– We provide two essential operations for implementing
hypergraph learning algorithms, a vertex program de-
noted by vProg and a hyperedge program denoted by
hProg (detailed in Section 3.3.1).

– We simultaneously distribute hyperedges and vertices,
during which we only replicate vertices but not hy-
peredges to avoid excessive replicas (detailed in Sec-
tion 3.3.2). This extends the classic storage strategy

Fig. 2: An overview of HyperX

where both hyperedges and vertices are stored in mul-
tiple copies.

3.3.1 Computation Model
Algorithms running on hypergraphs usually involve ac-
cessing and updating not only v.val but also h.val. For
example, when mining relationships among social media
networks [36], the weight of relations (h.val) between visual
descriptors (v.val) needs to be gradually learned during
the computation. Thus, we provide both a vertex program
vProg and a hyperedge program hProg. The vertex pro-
gram runs on each vertex, and computes v.val of the vertex
based on all the h.vals of the incident hyperedges which
have that vertex inside. The hyperedge program runs on
every hyperedge to update h.val according to all the v.vals
of its incident vertices.

As illustrated in Fig. 3, to update h.val and v.val, Hy-
perX takes only one iteration, while SE takes two iterations.
Meanwhile, having hProg makes it much easier to balance
the workloads in the two steps during each iteration be-
cause in the first step all the vertices participate in vProg,
and in the second step, all the hyperedges participate in
hProg. These two steps are fully decoupled. The hyperedge
program provides another benefit on efficiency: it avoids
extensive communication costs between vertices by adding
a local aggregation step on the hyperedge partitions before
sending messages to other partitions.

3.3.2 Storage Model
To distribute the workload of hypergraph processing is to
separate and assign vertices and hyperedges of a hyper-
graph to the distributed workers (unit of resources in Spark).
This requires a hybrid-cut that disjointedly separates the
vertices and the hyperedges. This differs from either the
vertex-cut that cuts the vertices to disjointedly separate the
edges [20] or the edge-cut that cuts the edges to disjointedly
separate the vertices [37].

Following the convention, in HyperX, the vertices whose
incident hyperedges are assigned to different workers are
replicated to those workers. Hyperedges are not replicated
because replicating hyperedges is prohibitive as each hy-
peredge connects an unrestricted number of vertices, which
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Fig. 3: Comparing HyperX with Graph Conversion, the gray
shapes and bold arrows indicate the running of vProg and
hProg in each step

need to be replicated with the hyperedge. This helps avoid
the excessive replicas observed in CE and SE.

As a result, vProg does not operate locally. Instead,
hyperedge values are sent to the vertex partitions over the
network. The communication cost of vProg is thus attribute
to the number of vertex replicas, as h.val only needs to be
sent to a partition where there are replicas of the vertices
in the partition of h. Another network communication cost
comes from updating h.val according to the changed v.val,
which is also attribute to the number of replicas. Both types
of communications have been optimized by employing local
aggregation, which means that we combine the values des-
tined to the same partition together into one package before
sending it out. Thus, HyperX avoids extensive communica-
tions between the partitions.

4 HYPERX IMPLEMENTATION

We first describe the distributed hypergraph representation
and the APIs supported in HyperX. Then we show the
applicability of HyperX by discussing the implementation
of three popular hypergraph algorithms on HyperX.

4.1 Distributed Hypergraph Representation
HyperX stores a hypergraph as one vRDD and one hRDD.
Conceptually, each vertex and each hyperedge is stored as
one row in its corresponding RDD. Let vid and hid denote
the id of a vertex and a hyperedge, respectively. While
vRDD simply stores (vid, v.val) pairs, hRDD deals with an
arbitrary number of vertices in each hyperedge. Directly
storing a vertex set in one row introduces an overhead of
the object headers and the linking pointers. Instead, we
flatten each hyperedge by storing every vertex of it as a
tuple of three values ⟨vid, hid, isSrc⟩, where vid is
the id of the vertex, hid is the id of the hyperedge, and
isSrc is a boolean denoting whether the vertex is a source
vertex for directed hyperedge. For undirected hyperedge,
isSrc is not used. This enables an efficient (columnar) array
implementation. Now each hyperedge may span multiple
consecutive rows in the hRDD. Given a hid, we cannot
access the corresponding hyperedge directly. To resolve this,

TABLE 2: Comparison of the number of replicas

Representation Number of Replicas (m = |V|, n = |H|)
HyperX R(x,y), x = m, y = n
GraphX-CE R(x,y), x = m, y .

=
∑

h∈H(ah
2 − ah)/2

GraphX-SE R(x,y), x = m+ n, y =
∑

h∈H ah

we create an additional map structure to associate a hid
with the first row where the hyperedge is stored in the hRDD.
Compared with the cost of directly storing hyperedges
which is attribute to O(

∑
h∈H ah), the cost of this additional

structure is only attribute to O(n), where n is the number of
hyperedges. We conducted a set of experiments to evaluate
the space cost of this design on various datasets. The results
show that by flattening the hyperedges, we save up to 88%
memory space for persisting the hRDD in the memory.

We show a comparative analysis on the space required
for hypergraph representation by HyperX and the graph
conversion based approaches in Table 2. Let R(x, y) be a
function that returns the number of replicas required by a
distributed graph (hypergraph) representation. For simplic-
ity, let us assume that R(x, y) has the same form for HyperX
and the graph representations based on CE and SE. This
means that the function value depends only on the number
of vertices x and the number of edges (hyperedges) y of a
graph (hypergraph). For HyperX, x and y are simply the
number of vertices |V| and the number of hyperedges |H|
of a hypergraph. Graph representations based on CE and
SE, on the other hand, inflates the graph size. For CE, y
is approximated by

∑
h∈H(ah

2 − ah)/2 which is the sum
of edges in each clique. It is an approximation because
two cliques may share edges. For SE, x becomes |V| + |H|
as every hyperedge is converted to a new vertex, and y
becomes

∑
h∈H ah as every new vertex is connected with

every original vertex in that hyperedge.

4.2 HyperX APIs
HyperX is built upon Apache Spark’s RDD abstraction and
its corresponding dataflow APIs. Here, an RDD can be seen
as a horizontally distributed table. HyperX provides eight
major APIs: vertices, hyperedges, tuples, mrTuples,
joinV, subV mapV, and mapH, as listed in Table 3. The
first three functions provide tabular views of a hypergraph,
which are used to read data. The last two functions are
setters for v.val and h.val, which are used for hyper-
graph initialization. The middle three functions mrTuples,
joinV, subV are essential for hypergraph processing. We
detail them below.

Function mrTuples corresponds to hProg and includes
the execution of three steps on a hyperedge: 1) aggregating
the incident v.val from the local replicas, 2) computing the
new h.val, and 3) aggregating the h.val destined to the same
vertex partition.

Function joinV corresponds to vProg and includes the
execution of two steps: 1) computing the new v.val based
on the h.val received and 2) updating the replicas for each
updated v.val.

Function subH restricts the computation on a sub-
hypergraph. It is mainly for efficiency considerations.

These core functions enables the implementation of
an iterative computation paradigm similar to Pregel [18].
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TABLE 3: The APIs of Hypergraph[V, H] in HyperX

Functions Return Usage
vertices RDD[(Id, V)] View
hyperedges RDD[(Id, H)] View
tuples RDD[(Map[Id, srcV], Map[Id, dstV], H)] View
mrTuples RDD[(Id, M)] Update
joinV Hypergraph[V2, H] Update
subH Hypergraph[V, H] Update
mapV Hypergraph[V2, H] Set
mapH Hypergraph[V, H2] Set

Algorithm 1: HyperPregel
input : hypergraph G= Hypergraph[V,H], vertex

program vProg to compute vertices values,
hyperedge program hProg to update tuples,
aggregation function combine defines rules
of tuples aggregation, initial vertices values
initial

output: A RDD[(Id, V)] in which all vertices values
are updated

1 /*Generate a set of messages msg using initial*/
2 G ← G.mapV(vProg(initial))
3 msg ← G.mrTuples(hProg, combine)

4 /*When msg is not empty, it is broadcasted*/
5 while |msg| > 0 do
6 G ← G.joinV (vProg(msg))
7 msg ← G.mrTuples(hProg, combine)

8 /*No more msg means values of vertices and
hyperedges are converged*/

9 return G.vertices

The paradigm is provided as an API in HyperX, named
HyperPregel. Its pseudo-code is listed in Algorithm 1.
The motivation for using the “pseudo-scala” code is to
highlight that our algorithms are built on top of the HyperX
framework, which offers scala-style APIs.

4.3 Algorithm Examples on Using HyperX APIs

To showcase the applicability of HyperX, we describe how
three popular hypergraph algorithms are implemented us-
ing the APIs of HyperX.

4.3.1 Random Walks
On a hypergraph, random walks (RW) rank unlabeled data
with regard to their high-order relationships with the la-
beled data. Random walks are carried out on a hypergraph
by iteratively executing the following two steps indepen-
dently: 1) compute the stationary probability on each vertex
by aggregating the incident hyperedge values and 2) aggre-
gate the probabilities from incident vertices to update the
value on each hyperedge.

We show the implementation of directed random walks
with restart on a hypergraph using HyperX APIs in Algo-
rithm 2. Here, joinV is used to set up the value for a vertex
to its corresponding out degree, which can be trivially ob-
tained by G.mrTuples with map generating (u, 1) for every
source vertex in the tuples, and combine summing the mes-
sages to the same vertex. Next, mapV is used to distinguish
the vertices in the starting set (i.e., objects already labeled)
from the other vertices. Then, HyperPregel is used to

Algorithm 2: Random Walks (RW) with Restart
input : hypergraph G, restart probability rp, initial

message initial = 0
output: A RDD[(Id, V)] in which all vertices values

are calculated

1 /*Define vProg, hProg, and combine for later use
as parameters of HyperPregel*/

2 /*vProg updates vertex values through linearly
combining msg and value*/

3 vProg(value, msg)= (1− rp)×msg + rp× value
4 /*hProg updates tuple values according to the

in-degree of hyperedges*/
5 hProg(Src, Dst, SrcDegree)=∑

i≤|Src|
Srci

SrcDegreei×|Dst|
6 /*The aggregation function is simply an addition of

two numbers*/
7 combine(a,b)= a+ b

8 /*Initialize hypergraph G to set the vertex values as
the out-degree of vertices*/

9 G ← G.joinV (G.outDeg)

10 /*Call HyperPregel by passing above parameters to
calculate vertex values*/

11 G.HyperPregel(G, vProg, hProg, combine,
initial)

execute the random walk procedure iteratively with vProg
to compute the new stationary probability and hProg to
aggregate the probabilities from the incident vertices. As
demonstrated in Algorithm 1, vProg and hProg will be
executed in an interleaving manner in each iteration.

Fig. 4 is a running example of the algorithm. Consider
a hypergraph with four directed hyperedges as shown in
Fig. 4. In Step 1, we assign each vertex with their out degree
as the vertex value. Vertices v5 and v7 only appear in the
destination set, hence their out degree is zero. We randomly
choose the starting points, e.g., v1 and v6. Thus, in Step 2,
the first values of v1 and v6 are both 1.0, while those of
the other vertices are all 0. The value of each vertex is now
represented by a tuple (v, d) where v denotes the vertex
label and d denotes the vertex value, e.g., for v1, (v, d) =
(1.0, 1). Step 3 executes line 1 of Algorithm 2 to initialize
vertex values with initial msg = 0 and restart probability
rp = 0.7. Then HyperPregel is run to update values of
vertices and hyperedges. Steps 5 to 7 correspond to two
iterations of HyperPregel. Note: 1) in Step 4, the numbers
1, 2, 3, and 2 correspond to the size of destination vertex set
|D| of the hyperedges. This step updates hyperedge values
following line 2 of Algorithm 2, and 2) in both Steps 4 and
6, msgs need to be aggregated before updating the value of
v7 because v7 receives messages sent from two hyperedges.
In this example, we see unlabeled vertices {v2, v3, v4, v5, v7}
in Step 2 labeled after two iterations as shown in Step 7.

4.3.2 Label Propagation

Label propagation (LP) on a hypergraph finds communities
among the vertices according to the high-order relationships
among them. The procedure is straightforward: each vertex
is assigned a label to start and then iteratively exchange its
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Fig. 4: Running examples of implementing Random Walks on HyperX

label with neighboring vertices through hyperedges. In each
iteration, every vertex updates its label to a new one by a
majority vote from its neighbors.The procedure is similar to
RW, except that now h.val and v.val are the labels instead of
the stationary probabilities, and there is no starting vertices.
We omit the pseudo-code due to space limit.

4.3.3 Spectral Learning

Spectral learning (SP) covers a wide range of hypergraph
Laplacian based clustering and semi-supervised learning
techniques. Given a hypergraph G, let D denote its ver-
tex degree diagonal matrix, H denote its vertex-hyperedge
incident matrix, A denote its hyperedge arity diagonal
matrix, and W denote its hyperedge weight diagonal
matrix. Then the normalized Laplacian is: LG = I −
D−1/2HWA−1HTD−1/2, where I is an m × m identity
matrix. Straightforwardly, LG can be obtained by multi-
plying the matrices. In HyperX, LG can be computed via
HyperX APIs with simpler computation, leveraging the fact
that diagonal matrix multiplication is simply scaling the
corresponding entries. This avoids the expensive matrix
multiplication. The algorithm consists of two subtasks: 1)
computing the Laplacian matrix, and 2) eigen-decomposing
the matrix. We employ the Lanzcos method [27] On Hy-
perX, Laplacian matrix can be implicitly computed during
the matrix-vector multiplication phase. The idea is that a
matrix-vector multiplication is basically a series of multiply-
and-add operations, which can be decomposed and plugged
into the Laplacian computation. The multiplication can be
realized using mrTuples while the addition is simply mapV.
We omit the details of lanzcosSRO since most steps are
identical to that in [38] and are orthogonal to HyperX.

5 HYPERGRAPH PARTITIONING

When processing a large hypergraph that is beyond the
processing capability of a single worker, it is necessary to
distribute the computation across multiple workers, which
requires a hypergraph partitioner to divide a hypergraph
into smaller partitions. This hypergraph partitioner, as an
intermediate layer between the hypergraph storage and pro-
cessing framework, has a significant impact on hypergraph
processing algorithms in terms of workload balance and
communication costs.

We investigate the hypergraph partitioning problem in
this section, both in the context of HyperX and as a fun-
damental problem for hypergraph processing. The aim is
to design a partitioning algorithm to minimize partitioning
costs as well as processing costs on the partitions obtained.

We start with analyzing the limitations of existing hy-
pergraph partitioning algorithms and propose a new op-
timization objective function. Based on this objective, we
present our hypergraph partitioning algorithm – the Label
Propagation Partitioning (LPP) algorithm.

5.1 Objective Analysis

Hypergraph processing costs consist of computation costs
and communication costs. To minimize these costs, we find
the minimization can be carried out solely on the number
of replicas. This is because these costs come from syn-
chronization among partitions that contain replicas of the
same vertex (or hyperedges). Without replicas, processing a
hypergraph in a distributed manner would have the same
costs as processing the hypergraph on a single machine, and
would not incur extra costs.

There are two types of replicas, i.e., hyperedge replicas
and vertex replicas. We only use vertex replicas and aim to
partition a hypergraph with a minimum number of vertex
replicas to minimize the costs. The reasons for doing so are
as follows. Existing partitioning solutions, either for graphs
or for hypergraphs, do not distinguish the costs of these two
types of replicas. This indiscrimination impacts the quality
of the partitions substantially for hypergraph partitioning.
In hypergraphs, a hyperedge may contain multiple vertices.
Replicating a hyperedge would mean replicating more data
(and hence higher costs) than replicating a vertex. In ap-
plications such as analyzing the co-worker relationships in
professional networks (e.g., LinkedIn) or storage sharding
where a hyperedge may relate to a large number of vertices,
the difference in the costs of hyperedge replicas and vertex
replicas are even more significant. To avoid the high over-
head of hyperedge replicas, we only allow vertex replicas.

We propose an iterative partition update algorithm to
compute the optimal partitions efficiently. Each iteration of
our algorithm only takes a time linear to the number of ver-
tices on one worker, which guarantees the high efficiency of
our partitioning algorithm. This is different from traditional
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k-way partitioning algorithms, such as Parkway [9] and
Zoltan [30] which suffer from scalability issues. Parkway
and Zoltan aim to divide the vertices of a hypergraph
into a number of equal-sized components, during which
the total number of subsets that the hyperedges in the
hypergraph intersect is minimized. Their optimization goal
is thus minimizing the cut-size of a hypergraph. Using a
multi-level coarsen-uncoarsen technique, these algorithms
partition the coarsest hypergraph on a single machine be-
fore it gets uncoarsened. This may create a single-machine
bottleneck as the coarsest hypergraph may still be too large
to be processed. The optimization goal of our algorithm
and Parkway is different, thus the performance is not
directly comparable. However, we both agree that jointly
optimizing the partitions of hyperedges and vertices yields
better performance than optimizing the partitions of either
hyperedges or vertices.

Another consideration is to balance the workloads on
the partitions. When running hypergraph applications dis-
tributively, there are two types of computations, i.e., vertex
computation vProg and hyperedge computation hProg.
These computations do not overlap during algorithm ex-
ecution. As a result, we may balance these two types of
workloads separately. These two types of workloads are
not restricted to HyperX. They are common operations
in modern distributed frameworks. Balancing them makes
our partitioning technique extensible to these distributed
frameworks as well.

5.2 Optimization Objective Formulation

Suppose we have k workers. The hypergraph partitioning
problem is to allocate m vertices and n hyperedges to the k
workers. Let binary variables xh,i and yv,i denote whether
a hyperedge h and a vertex v are assigned to the ith worker,
where i ∈ {1, 2, 3, ..., k}. Then we can get Equations (1). A
partition result is denoted as {X,Y }. It is a particular set
of values for all the variables xh,i ∈ X = {0, 1}n×k and
yv,i ∈ Y = {0, 1}m×k.

k∑
i=1

xh,i = 1,
k∑

i=1

yv,i = 1, xh,i = 0, 1; yv,i = 0, 1 (1)

Given a vertex v, let N(v) denote the set of its incident
hyperedges and R(X,Yv) denote the number of replicas of
vertex v given a partition result {X,Y }. Then

R(X,Yv) =
k∑

i=1

max((1− yv,i −
∏

h∈N(v)

(1− xh,i)), 0) (2)

This formulation of R(X,Yv) considers the local ag-
gregation mechanism implemented in popular distributed
framework, i.e., on each partition only one vertex replica is
necessary no matter how many hyperedges in that partition
are incident to the vertex .A vertex will only receive mes-
sages from a partition where it has a replica as the replica
indicates the presence of incident hyperedges. Meanwhile,
when vertex values change, the vertex replicas need to be
updated, the communication cost of which is again attribute
to the number of replicas. Thus, each replica incurs two

units of communication cost. Let C(X,Y ) denote the overall
communication costs:

C(X,Y ) = 2×
∑
v∈V

R(X,Yv) (3)

As the space cost is proportional to R(X,Y ), i.e., the
number of replicas given a partition result {X,Y }, the
minimization of the communication costs minimizes the
space cost as well. Thus, the optimization problem is as
follows.

minimize C(X,Y )

subject to
∑
h∈H

xh,iah ≤ (1 + α)

∑
h∈H ah
k∑

v∈V
yv,iR(X,Yv) ≤ (1 + β)

∑
v∈V R(X,Yv)

k

(4)
Here, α and β are nonnegative relaxation factors. A value

0 for these factors suggests that every worker should have
exactly the same workload. The inequalities are the load
balancing constraints over hyperedges (the input of hProg
is determined by ah) and vertices (the input of vProg is
determined by R(X,Yv)), respectively.

5.3 Hardness and Theoretic Analysis
The constrained optimization problem described above in-
volves a trade-off between the communication and space
costs and the potential overheads for hypergraph learning
algorithms to process the partitions. Setting proper values
for α and β is vital for the optimization. However, the
values of α and β may not be determined easily as the trade-
off involves multiple factors, e.g., the data distribution, the
computation complexity of hProg and vProg, the network
bandwidth, etc. To overcome this limitation, we investigate
a soft-constrained variation of the above problem.

5.3.1 The Strict Case
Consider a case where β = +∞ and the variables in
Y are configured such that every vertex is assigned to a
worker that has its incident hyperedges. We optimize a strict
instance in this case where α = 0, i.e., each worker has ex-
actly the same hyperedge workload. Then the optimization
problem becomes:

minimize
∑
v∈V

k∑
i=1

(1−
∏

h∈N(v)

(1− xh,i))

subject to
∑
h∈H

xh,iah ≤
∑

h∈H ah
k

, i ∈ {1, 2, ..., k}.
(5)

We have the following proposition.

Proposition 1. The above minimization problem has no polyno-
mial time solution that can achieve a finite approximation factor
unless P=NP.

The proof follows a reduction from the strongly NP-
Complete 3-Partition problem where the goal is to
partition the hyperedges set H into k workers with equal
workload. This suggests that in general the strict case is
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inapproximable (e.g., no polynomial-time approximation
scheme (PTAS), no constant approximation factor, or even
Ω(2n) approximation factor).

5.3.2 A Variant with Soft Constraints

If we are able to quantitatively compare the cost of commu-
nication and computations over hyperedges and vertices,
we can convert the hard constraints (Inequalities (4)) to
soft constraints and integrate them into the optimization
objective. This gives an alternative minimization objective
C ′(X,Y ).

C ′(X,Y ) = 2×
∑
v∈V

R(X,Yv)

+ wh(
k∑

i=1

|1
k

∑
h∈H
|h| −

∑
h∈H

xh,i|h||p)
1
p

+ wv(
k∑

i=1

|1
k

∑
v∈V

R(X,Yv)−
∑
v∈V

yv,iR(X,Yv)|p)
1
p

(6)
Here, wh and wv denote the relative cost of a unit of

computation cost on hyperedges and vertices compared
with a unit of communication cost, respectively; p is the
norm to aggregate the workload difference on the partitions.

To minimize this objective, we can reformulate it as a
generalized constraint satisfaction problem (GSCP) [39] with
three payoff functions C0, C1, and C2 as follows.

C0(X,Yv) =
∏

h∈N(v)

(1− xv,i) + yv,i − 1, ∀v ∈ V

C1(X) = −wh

| 1k
∑

h∈H ah −
∑

h∈H xh,iah|∑
h∈H ah

, ∀i ∈ [1, . . . , k]

C2(X,Y ) = −wv

| 1k
∑

v∈V R(X,Yv)−
∑

v∈V yv,iR(X,Yv)|∑
v∈V R(X,Yv)

(7)
The minimization of the objective C ′(X,Y ) is therefore

equivalent to maximize the total sum of all the payoff
functions C0, C1, and C2. This GCSP can be approached
by a general semi-definite programming relaxation [39],
which has been proven to deliver the best approximation
for the GCSP under the unique game conjecture. According
to Krauthgamer et al. [37], this relaxed semi-definite pro-
gramming problem is computable in a polynomial (super-
cubic) time. However, it may not be sufficiently efficient for
very large hypergraphs. We therefore design more efficient
heuristics based algorithms.

5.4 Label Propagation Partitioning

We propose a new hypergraph partitioning algorithm to
achieve the soft optimization goal with a high efficiency.
This algorithm follows a label propagation procedure that
labels the hyperedges and the vertices with the workers
they are assigned to. A hyperedge (vertex) iteratively runs
two steps: 1) propagating its label to its incident vertices
(hyperedges) and 2) updating its labels based on the labels
propagated to it. This algorithm differs from the classic
graph label propagation algorithms in that it labels hyper-
edges in addition to vertices. This is essential because 1)

both the hyperedges and the vertices need to be partitioned
and 2) both vProg and hProg need to be balanced.

Existing techniques that label either (hyper)edges or
vertices are insufficient because labeling only one type of
data may obtain workload balance on that type of data but
suffer from skewed workloads on the other type of data. By
labeling both, we guarantee that both vertex and hyperedge
workloads are balanced.

We name the proposed algorithm Label Propagation Parti-
tioning (LPP). In each iteration of the LPP algorithm, when
updating the label for a hyperedge (vertex), possible labels
are the partitions that its incident vertices (hyperedges)
have been assigned to. To find the optimal one, we first
sort all candidates according to a score computed based
on our objective function, i.e., balancing the workloads and
reducing the replicas, and then choose the one with the
highest score. The optimization problem is then reduced
to designing two scoring functions S(h, i) and S(v, i) for
a hyperedge h and a vertex v, respectively. Specifically,
when updating hyperedge label, we focus on minimizing
the number of replicas, since it is impossible to compute
the arity distribution before all hyperedges are assigned. To
reduce the number of replicas, the scoring function S(h, i)
for hyperedge h and worker number i is defined as the
number of incident vertices of h that choose the worker.
Let N(h) denote the incident vertices of h, L(h) and L(v)
denote the labels of h and v, respectively. The update rule
for a hyperedge is:

L(h) = argmax
i∈[1,...,k]

S(v, i)

= argmax
i∈[1,...,k]

|{v|v ∈ N(h) ∧ L(v) = i}|
(8)

Similarly, when updating the vertex labels, we focus on
balancing the hyperedge arity and minimizing the replicas,
since it is impossible to compute the replica distribution
before all vertices are assigned. To balance the arity, we as-
sign vertices to workers with smaller sum of arity. Formally,
we compute the sum of hyperedge arity for each worker,
denoted as Ai =

∑
L(h)=i ah, and update vertex v as:

L(v) = argmax
i∈[1,...,k]

S(h, i)

= argmax
i∈[1,...,k]

(|{h|h ∈ N(v) ∧ L(h) = i}| × e
Ā2−A2

i
Ā2 )

(9)

Here, Ā =
∑

i∈K Ai

k , the cardinality | · | accounts for
reducing the number of replicas; and the exponent accounts
for weighting workers inversely to their sum of arity. The
pseudo-code of LPP is listed in Algorithm 3.

Note that, while label propagation algorithms have good
practical performance, they do not have a guaranteed ap-
proximation factor. They may not converge on general (hy-
per)graphs [40]. Acknowledging this, we restrict the scope
to the empirical evaluation of LPP. Theoretic analysis on LPP
is reserved for future study.

Discussion. LPP outperforms classic hypergraph parti-
tioning algorithms in the following aspects.

1) LPP is scalable as it overcomes the limitation of single
machine bottleneck. Unlike coarse-uncoarse techniques,
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Algorithm 3: Label Propagation Partitioning

1 foreach v ∈ V do
2 L(v)← Random(k)

3 foreach j ← 1 to Iter do
4 foreach h ∈ H do
5 L(h)← argmaxi S(h, i)
6 AL(h) ← AL(h) + ah

7 foreach v ∈ V do
8 L(v)← argmaxi∈K S(v, i)

9 foreach i← i to k do
10 Ai ← 0

workload on single machine is rather small and bal-
anced in LPP. The updates of labels rely on message
passing.

2) LPP is effective because it considers general constraints
on both hyperedges and vertices. It does not replicate
hyperedges which avoids high computation and com-
munication costs for processing excessive replicas in
hypergraph processing.

3) LPP is efficient because its time complexity of each
iteration is linear. This outperforms the state-of-the-
art technique [31], in which each subproblem has a
super-cubic time complexity and is impractical to large
hypergraphs.

LPP is designed for a general-purpose hypergraph pro-
cessing framework. Its computational paradigm that itera-
tively updates labels of vertices and hyperedges that using
the vertex program and the hyperedge program is commonly
supported by graph frameworks such as GraphX [10] and
PowerGraph [11]. This enables LPP to be implemented over
any platform as long as appropriate data structures can
be used to support the hypergraph representation. This
requires an object that holds the attribute of a hyperedge
along with the attributes of vertices involved in this hy-
peredge so that the label of a hyperedge can be updated
according to the labels of its incident vertices. Particularly,
HyperX provides a tuples object to view hyperedge and
its vertices as a whole. In this sense, LPP fits HyperX very
well. We therefore implement LPP over HyperX to evaluate
its performance in the experimental study.

5.5 Other Partitioning Approaches
We discuss a few other heuristic hypergraph partition-
ing algorithms. They are competitors of LPP as they also
run iteratively with a vertex-centric programming model,
however, they have different optimization goals and label
updating strategies which lead to different partition results.

Random partitioning. Random partitioning is a competent
contender for partitioning hypergraphs that randomly as-
signs vertices and hyperedges to the partitions. If the num-
ber of partitions is small comparing with the data records
to be partitioned, a round-robin style random partition may
produce almost perfectly balanced partitions [41]. However,
it may suffer from arbitrarily high network communication
and replication costs, since no hypergraph topology is re-
tained during the partitioning.

Greedy partitioning. Greedy partitioning is a straightfor-
ward approach to improve random partitioning. It migrates
hyperedges and vertices between the partitions created by
random partitioning so that the marginal cost of the ob-
jective function is minimized. This greedy approach has a
linear time complexity. It will serve as a baseline in the
experimental study.

Scalable bipartite partitioning. Recently, there is a heuris-
tic bipartite partitioning algorithm proposed, named
Aweto [35]. It distinguishes two different types of vertices
and randomly partitions the one type that may incur cost
when the computational workloads are unbalanced. Next,
it partitions the other type of vertices by minimizing the
replication cost. After the initial partitioning procedure, it
again adopts greedy partitioning to refine the partitioning
results.

6 EXPERIMENTS

We evaluate HyperX (denoted by hx in the figures) against
the alternative techniques via extensive experiments. We
measure the memory space consumption of the data RDDs,
i.e., vRDD and hRDD (eRDD with no edge values for GraphX),
the network communication, and the elapsed time of run-
ning the three learning algorithms described in Section 4.3.
The size of the data RDDs is a good indicator of space
cost because although intermediate RDDs may persist in
the memory and together they may be larger than the data
RDDs, their sizes are roughly proportional to the size of the
corresponding data RDDs that they are computed from.

6.1 Experimental Settings

The datasets used are listed in Table 4, where cvd and cva
are the coefficient of variance of the vertex degree and the
hyperedge arity, respectively. Three real datasets are used,
Medline Coauthor (Med)1, Orkut Communities (Ork) and
Friendster Communities (Fri) [12]. Interconnections between
vertices are rather intense in hypergraphs represented by
these datasets, e.g., the CE graph of Ork and Fri datasets
contain 122 billion and 1.8 billion edges, respectively, as
shown in Table 5. This is of similar magnitude to the
size of datasets used in recent studies such as [10]. The
synthetic datasets are generated using Zipfian distribution
with exponent s = 2.

The experiments are carried out on an 8 virtual-node
cluster created from an academic computing cloud2 running
on OpenStack. Each virtual-node has 4 cores running at
2.6GHz and with 16GB memory. Note that each worker
corresponds to one core. A single node running with 4 processes
effectively simulates 4 workers. The network bandwidth is up
to 600Mbps. One node acts as the master and the other
7 nodes act as slaves (i.e., up to w = 28 workers) using
Apache Hadoop 2.4.0 with Yarn as the resource manager.
The execution engine is Apache Spark 1.1.0-SNAPSHOT.
HyperX is implemented in Scala.

6.2 Evaluation of HyperX

We implement the graph conversion approaches CE and
SE described in Section 3.2 on GraphX and compare them

1. SBNS datasets: http://www.autonlab.org/autonweb/17433.html
2. Nectar: https://nectar.org.au/
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TABLE 4: Datasets presented in the empirical study

Dataset |H| |V| dmin dmax d̄ σd cvd amin amax ā σa cva

Medline Coauthor (Med) 3,228,002 8,007,214 1 5913 10 36.91 3.69 2 744 4 2.15 0.54
Orkut Communities (Ork) [12] 2,322,299 15,301,901 1 2958 46 80.23 1.74 2 9,120 71 70.81 1.00
Friendster Communities (Fri) [12] 7,944,949 1,620,991 1 1700 5 5.14 1.03 2 9,299 81 81.39 1.00
Synthetic (Zipfian s = 2) 2,000,000 8,000,000 2 803 32 33.7 1.05 2 48,744 8 178.59 22.32

12,000,000 5 1,173 48 50.27 1.05 2 49,526 8 174.07 21.76
16,000,000 10 1,527 63 66.56 1.06 2 49,006 8 171.36 21.42
20,000,000 15 1,893 79 83.40 1.06 2 49,963 8 175.52 21.94
24,000,000 21 2,305 95 100.00 1.05 2 49,326 8 173.12 21.64

4,000,000 16,000,000 1 1,102 32 36.04 1.13 2 49,843 8 173.12 21.64
5,999,984 1 940 21 25.04 1.19 2 49,728 8 179.55 22.44
7,999,535 1 799 16 19.42 1.21 2 49,526 8 173.84 21.73
9,996,355 1 716 13 15.79 1.21 2 49,932 8 173.84 21.73

TABLE 5: Comparison on the size of datasets

Representation Ork Fri
|H| |V | |H| |V |

HyperX 2,322,299 15,301,901 7,944,949 1,620,991
GraphX-CE 2,322,299 122,956,922,990 7,944,949 1,806,067,135
GraphX-SE 17,624,200 1,086,434,971 9,565,940 643,540,869
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Fig. 5: HyperX vs. graph conversion based approaches

with HyperX. GraphX is a good competitor for evaluating
HyperX because 1) it also runs on Spark, Hadoop, and
JVM, 2) it is also implemented in Scala, and 3) it shares
all the optimization techniques with HyperX such as fil-
tered index scanning and automatic join elimination. We
use Edge2DPartition for graph partition on GraphX as
recommended [10], while for HyperX, we use LPP. For
comparison, we run two hypergraph learning algorithms
random walks (described in Section 4.3.1, denoted by RW)
and label propagation (decribed in Section 4.3.2, denoted
by LP) on HyperX and on GraphX. Figure 5 shows the
result on the three real datasets, where a dataset name
(e.g., Med) and a learning algorithm name (eg., RW) are
combined (e.g., MedRM) to indicate the result of running
the algorithm on the dataset. As Fig. 5a shows, running the
learning algorithms on GraphX with CE graph conversion
(denoted by clique) is impractical. It creates significantly
more edges (in the scale of O(

∑
h∈H a2h)), and consumes up

to two orders of magnitude more memory space than those
of both HyperX and SE (denoted by star). We therefore
omit it in the rest of the figures. When compared with
SE, HyperX (hx) performs better in all measures: its data
RDDs consume 48% to 77% less memory; its communication
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Fig. 6: Comparing partitioning algorithms

transfers 19% to 98% less data and exchanges 27% to 93%
fewer messages; and its elapsed time is up to 49.1 times
shorter.

6.3 Evaluation of Hypergraph Partitioning

To evaluate the performance of the proposed LPP algorithm,
we compare it with the following hypergraph partitioning
algorithms: Random, Greedy, Aweto [35], hMetis [28], Park-
way [9], and Zoltan [30].

Quality of partitioning. We first compare the partition-
ing quality indirectly by evaluating the performance of
hypergraph learning algorithms running on the partitions
obtained. For hMetis, we set the workload balance factor
to 5 and 1. For Zoltan and Parkway, we set the imbalance
factor ϵ = 0.05. For LPP, we execute HyperPregel for
10 iterations because we find 10 iterations are enough to
produce high quality partitions and require a low running
time. For all the algorithms, we set the number of partitions
k to 28, which is determined by worker numbers. We then
run the three hypergraph learning algorithms RW, LP and
SP as described in Section 4.3 on the partitions created
by these algorithms. The results are presented in Fig. 6.
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Fig. 7: Comparing cut size of partitioning algorithms
TABLE 6: Partitioning time of different algorithms

Dataset Algorithm Time t (s) k w.r.t. LPP
Med LPP 356 28 1.0

hMetis5 14,796 1 1.5
Zoltan 4,764 28 13.4

Ork LPP 753 28 1.0
hMetis5 88,936 1 4.2
Zoltan 9,180 28 12.2

Fri LPP 248 28 1.0
hMetis5 6,766 1 1.0
Zoltan 2,875 28 11.6

Among all the algorithms, hMetis, Parkway, Zoltan and LPP
outperform the others in all the measures. But LPP is even
better in achieving balanced workload. The workload on
each partition is defined as the sum of the number of hyper-
edges and the number of vertices (including replicas) on that
partition. In terms of workload balance, which is measured
by the Coefficient of variation (CoV) of the workloads among
different partitions. Random, Aweto, and Greedy all per-
form well in this metric as shown in Fig. 6e. However, their
excessive numbers of replicas offset the advantages and
result in high costs in the space and communication metrics.
When comparing hMetis, Parkway, and Zoltan with LPP, we
observe that they have different preferences on the trade-off
between the workload balance and the number of replicas:
LPP achieves more balanced workloads than the best of
hMetis (Fig. 6e) even though it produces slightly more
replicas (Figs. 6a,6b). As shown in Figs. 6a, 6b, 6c and 6d,
the extra replicas in LPP do not result in significant space or
communication overhead. According to Fig. 6f, LPP always
outperforms hMetis, Parkway, and Zoltan and delivers up
to 2.6 times speed-up for the learning algorithms. Another
drawback of them is that they perform particularly poor in
LP (even much worse than Random). This is because when
all the vertices and hyperedges are active in all iterations, the
unbalanced workloads outweigh the benefit gained from a
slightly smaller number of replicas.

To further quantify the partitioning quality of different
algorithms, we measure the cut-size of the partitions pro-
posed by the algorithms. Note that while hMetis, Parkway,
and Zoltan algorithms minimize the cut-size as their op-
timization goal, our LPP algorithm does not optimize the
cut-size explicitly. However, as shown in Fig. 7, the cut size
of LPP is not much worse than those of hMetis, Parkway,
and Zoltan, while LPP shows a much better performance for
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Fig. 8: Effect of LPP parameters

the other quality measures as discussed above. We also find
that Random, Greedy, and Aweto generally produce higher
cut-size than those of LPP. Parkway and Zoltan produce
very similar results. For simplicity, we only discuss Zoltan
as well as hMetis and the proposed algorithm LPP in Fig. 7.
Zoltan has the minimum cut-size over the three datasets.
LPP has around 10-20% higher cut-size compared with those
of Zoltan as the number of partitions grows larger, while the
cut-size of hMetis lies in between those of LPP and Zoltan.

Partitioning time. The partitioning time of hMetis, Zoltan,
and LPP on all the real datasets are listed in Table 6 (hMetis5
and hMetis1 are similar and hence only hMetis5 is shown),
where k denotes the number of workers in use. Note that
the hMetis and Zoltan implementations are serial, written in
C, and highly optimized, while LPP is written in Scala and
runs on multiple layers: HyperX, Spark, Hadoop, and JVM.
Even assuming that a distributed hMetis implementation
can speed up in a (unlikely) linear manner, i.e., dividing the
time by k = 28, LPP is still faster than both hMetis and
Zoltan as shown in the last column of Table 6.

Effect of LPP parameters. LPP involves two parameters:
the number of iterations and the number of partitions.
We report the effect of these parameters in Fig. 8. The
elapsed time of LPP increases linearly as the number of
iterations grows from 5 to 50. The number of replicas
decreases significantly from iteration 5 to iteration 10 and
from iteration 10, the decreases is less significant on the
Med dataset. The number stays steady on the Ork dataset.
This suggests that LPP only needs 10 iterations to achieve
good minimization on the number of replicas. The workload
balance demonstrates a similar trend, leaving iteration 10
a good termination point. When the number of partitions
increases from 4 to 28, the elapsed time grows slowly,
depicting insensitivity to the number of partitions. The
number of replicas grows sub-linearly, which is reasonable
considering that more vertices are separated when there are
more partitions. The workload balance also degrades slowly,
which verifies that the partitioning effectiveness of LPP is
robust to the growth of the number of partitions.

Effect of number of workers. The results of varying the
number of available workers are shown in Fig. 9. In terms
of the size of data RDDs: in the Med dataset the additional
workers do not significantly increase the cost; while in the
Ork dataset the cost grows moderately. This is because the
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Fig. 9: Effect of number of workers

hyperedge arity in the Med dataset is rather small (average
of 4 and the coefficient of variance is 0.54). The replica
factor, which is defined as |V|+|R(X,Y )|

|V| , is only around
1.8 for LPP even when there are 28 workers as shown in
Fig. 9g. This suggests that the effect of particular place-
ment of hyperedges may overshadow the increasing replica
factor, resulting in a slightly varying space consumption in
different workers. In the Ork dataset, the replica factor is 4.8
when there are 28 workers. More workers lead to a larger
replica factor, which dominates the space consumption and
therefore depicts a small growth. In terms of the communi-
cation efficiency, more workers intuitively result in higher
messages exchange cost. In terms of the time efficiency, all
the algorithms on all the datasets speed-up at a sub-linear
rate to the increasing number of workers. The reason for
this sub-linear speed up is as follows: 1) The communication
and the space costs intuitively increase due to more replicas
when there are more partitions, 2) The overhead caused by
YARN scheduler in each iteration is rather steady and will
not diminish when there are more workers, and 3) The less
significant speed up of RW and SP is because they only
compute on a sub-hypergraph, where the CPU power for
the distributed hProg and vProgmay not be the bottleneck.

Effect of dataset cardinality. The results of varying the
dataset cardinality are illustrated in Fig. 10. We use syn-
thetic datasets described in Table 4. When the number of
hyperedges grows, the size of the data RDDs grows linearly.
On the other hand, when the number of vertices grows,
the size grows marginally. This is because the hyperedges
are the dominant factor in RDDs memory consumption.
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Fig. 10: Effect of datatset cardinality

The communication overhead shows a similar trend. In
terms of the elapsed time, both RW and SP are relatively
insensitive to the dataset cardinality as they are almost
overlapped in Figs. 10c, 10d. This is because while RW
starts with a particular number of vertices irrespective of
the size of the datasets, SP leverages the sparseness in the
matrix multiplication to avoid unnecessary computation. LP
grows approximately linearly to the growth of the number
of hyperedges and sub-linearly to the growth of the number
of vertices.

7 CONCLUSIONS

We studied large scale hypergraph processing in a dis-
tributed environment. Our solution, HyperX, overcomes
the drawbacks of traditional graph conversion based ap-
proaches by preserving the graph size, minimizing the
number of replicas, and balancing the workload. We fur-
ther investigated the hypergraph partitioning problem and
proposed a novel label propagation partitioning (LPP) al-
gorithm to achieve balanced and efficient partitioning. The
results of an extensive empirical study on HyperX show that
LPP not only generates more balanced hypergraph parti-
tions, but also runs faster than the state-of-the-art algorithm.

HyperX offers great scalability and ease of implemen-
tation to the ever growing family of hypergraph learning
algorithms. For future work, we plan to open source HyperX
and use it for other hypergraph processing tasks such as
building similarity based regularization classifier for recom-
mender systems and studying biochemical interactions.
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