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ABSTRACT
Large language models (LLMs) are advancing rapidly. Such models
have demonstrated strong capabilities in learning from large-scale
(unstructured) text data and answering user queries. Users do not
need to be experts in structured query languages to interact with
systems built upon such models. This provides great opportunities
to reduce the barrier of information retrieval for the general public.
By introducing LLMs into spatial data management, we envisage an
LLM-based spatial database system to learn from both structured
and unstructured spatial data. Such a system will offer seamless ac-
cess to spatial knowledge for the users, thus benefiting individuals,
business, and government policy makers alike.
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1 INTRODUCTION
Modernmachine learning (ML) techniques havemade breakthroughs
in computer vision, natural language processing, and many other
applications domains, resulting in significant performance improve-
ments. While ML studies focus on model accuracy, and database
research centers on query and transaction management efficiency,
ML techniques have made their way into the database community.
Many database problems, such as as data indexing, query optimiza-
tion, and knob tuning, are being solved with a new generation of
approaches that have been summarized with the term “AI4DB” [6].

Spatial databases make no exception. Studies have proposed
ML-based spatial indices [4, 13], spatial query optimizers [1], and
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spatial data representations [2, 24]. These studies have focused on
using ML to optimize the effectiveness or efficiency of modules
of spatial database systems. The ML models developed help retrieve
query results but do not change the general query processing para-
digm: (1) Users submit queries in a special query language (e.g.,
SQL)1, which are parsed and translated into relational algebra ex-
pressions. (2) A query optimizer module analyzes the expressions
and determines the order of execution (i.e., computes a query plan).
(3) The expressions are executed by a query execution engine, with
the help of spatial indices to streamline the execution. (4) Relevant
results are retrieved from the data tables and are returned to the
users. This process may be repeated with altered queries until the
intended results are found for the users.

The latest development of ML techniques, i.e., large language
models (LLMs) such as ChatGPT, offer great opportunities to de-
velop the next-generation spatial databases where, instead of using
ML models for spatial database optimization, we envisage to use
machine learning models as a spatial database (MaaSDB).

LLMs are neural network models with billions of parameters
trained on a large text corpus. While such models are trained on
simple tasks of predicting the next word in a sentence, they can
capture the syntax and semantics of human language with a high
accuracy. They can generate text and engage with human users in
dialogues, to answer user questions and to perform text processing
tasks. Most importantly, such models have been shown to be able to
“memorize” the facts from the training data [7], effectively making
themselves large data repositories with rich information.

In this paper, we present the vision of the next-generation spatial
database systems exploiting the capability of LLMs to memorize
facts from training data. We shift ML-based spatial database opti-
mization from ML models for spatial databases to ML models as
spatial databases. Such systems consist of ML models trained on
structured and unstructured spatial data, which can generate query
answers directly instead of retrieving data from tables.

There are important advantages that come with such systems:
(1) The ML models in such systems can learn from both struc-

tured and unstructured spatial data (e.g., tables and free text) and
generate query results based on both types of data, unlike traditional
systems where typically only either type of data are available, and
it is difficult to link both types of data to answer complex queries.

(2) Since the ML models have full knowledge about the spatial
data in the database, their inbuilt natural language-based user in-
terface will be able to understand user intent better than existing
text-to-SQL systems do, which have limited information about the
underlying data. This leads to more relevant results returned from

1There are studies on usingMLmodels to translate queries in natural language into SQL
queries (text-to-SQL) [5], but not yet for spatial queries to the best of our knowledge.
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such systems and hence higher system usability. Such systems will
significantly enhance the accessibility of spatial knowledge entailed
in data stored in spatial databases. For example, a tourist may re-
quest such systems to generate a half-day trip in Hamburg within
walking distance from the conference venue of SIGSPATIAL’23; an ur-
ban planner may request such systems to return the top-10 suburbs
with the highest electric vehicle ownership-charging station ratios.
Search engines like Google may retrieve partial answers to such
queries through keyword matching, which however are limited by
the availability of directly matched web documents, again due to
the retrieval nature of the query processing procedure.

We make the following contributions: (1) We envisage a unified
spatial database system that uses ML models as its core query exe-
cution engine to optimize user accessibility and system usability.
(2) We conduct a pilot experimental study to verify the feasibil-
ity of such a system. (3) We identify key research challenges and
opportunities in realizing such a system.

2 RELATEDWORK
We review studies on ML-based (spatial) database optimization.

Existing works focus on using ML techniques to optimize the
effectiveness and efficiency of different modules of spatial database
systems, e.g., using ML models to replace (e.g., RSMI [13]) or to
optimize (e.g., RLR-tree [4]) the structure of traditional spatial in-
dices [26]. A study [1] trains autoencoder models to compute spatial
embeddings, i.e., vectors encoding dataset characteristics such as
distribution to help predict range query selectivity for spatial query
optimization. Other studies compute embeddings for spatial objects
(e.g., road segments [2] or trajectories [24]) to encode their spatial
features for spatial query processing. In these studies, the ML mod-
els are second-class citizens – they help retrieve query results but
do not change the classic retrieval-based query paradigm.

A few other studies use ML models to answer spatial queries
directly. For example, Qi et al. [14] train a feedforward neural net-
work (FFN) to predict the shortest-path distance given two points
on a road network. Zeighami et al. [25] train FFNs to predict the
answer for range count queries. While these studies show that
ML models can memorize facts from spatial data, they focus on
aggregate queries. Their models output scalar values and not data
records. They do not have a natural language-based user interface.

In a broader context of database research, there are text-to-SQL
studies [5] that train ML models to translate textual queries into
SQL queries, thus providing a natural language-based user interface.
These models may exploit meta data such as column names of the
data tables. However, they do not generate query results directly
and typically do not access the actual data records at training.

Motivated by the strong performance of LLMs, several vision
papers [15, 17, 18] use pre-trained LLMs or transformer (the build-
ing block of LLMs)-based models trained on unstructured data to
answer database queries. These papers share similar visions with
ours in that they also envisage ML models to become first-class cit-
izens in a database system. They differ from our vision in that they
do not consider structured spatial data and the challenges. Tan [16]
presents several challenges on query processing over structured
data with LLMs without envisaging a solution. A couple of other
studies apply LLMs with structured data. Urban and Binnig [19]

extract tables from a document using LLMs, while Nobari and
Rafiei [10] transform tables into a desired representation for better
joinability. They do not use the learned models to generate query
answers directly. Overall, none of these studies consider the specific
challenges and opportunities brought by LLMs to spatial databases.
Our paper fills this gap. Musleh et al. [9] envisage a BERT-based
system for trajectory analysis, while Xue et al. [22, 23] use language
models for time series forecasting, exploiting the analogy between
trajectories/time series and sentences. Our study complements the
studies by considering spatial data and queries beyond trajectories.

3 PILOT STUDY
3.1 The Vision of the Future System
We envisage a next-generation spatial database system as shown
in Fig. 1. This system consists of a query analyzer and query plan
generator, a set of query result generators, and a result synthesizer,
which are all formed by ML models and are connected together to
generate answers for user queries. The system provides a natural
language-based interface for users to query the spatial knowledge
learned by the ML models from spatial data stored in the system.

Query
analyser and
query planner

Unstructured
spatial data Spatial data

tables

Result
synthesizer

MaaSDB

User

submit
queries

return
results

Query result
generators

model training

Figure 1: Overview of the future spatial database system

Users can interact with the system (e.g., via a computer or a
smartphone) to submit queries in natural language. Upon receiving
a query (e.g., generate a half-day trip in Hamburg within walking
distance from the conference venue of SIGSPATIAL’23), the query
analyzer and query plan generator (which may be an LLM) will
analyze the query intent, generate sub-queries, and assign the sub-
queries to the relevant subset of the query result generators (e.g., a
sub-query to find the conference venue of SIGSPATIAL’23 and a
sub-query to find POIs within walking distance from the conference
venue). The invoked query result generators will generate an an-
swer for each sub-query. Different types of query result generators
will be built by training on different types of data. For example,
a (transformer-based) query result generator trained on unstruc-
tured conference web pages will be able to answer the sub-query on
the conference venue, while a (GAN-based, detailed in Section 3.2)
query result generator trained on a table of POIs in Hamburg will
be able to answer the sub-query about the POIs. When the results of
all sub-queries have been generated, the result synthesizer (which
may be another LLM) will combine them based on the user query
and generate the final query answer to be returned to the user.

Multiple challenges and research opportunities arise from the
envisaged system, which will be discussed in Section 4.

3.2 Preliminary Experimental Study
We verify the feasibility of the envisaged spatial database system
through a preliminary experimental study.
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Table 1: Q-Error of RC-GAN

Query set Median 75th 90th

Training queries 1.23 1.71 3.24
Testing queries 1.25 1.86 4.08

Settings.We focus on structured data, since the aforementioned
recent vision papers have shown the feasibility of using pre-trained
LLMs or transformer-based models to answer certain types of data-
base queries. We train an ML model on a data table and study how
well the model can remember the (key characteristics of the) data.

We use a multi-dimensional dataset (instead of a table of just spa-
tial coordinates, for generality) named CensusIncome.2 The dataset
has 48,842 records, each with 8 categorical (e.g., occupation and
marital status) and 6 numeric (e.g., age and capital gain) attributes.
Since the dataset does not come with a query workload, we fol-
low a previous study [11] and generate 20,000 range queries with
randomly selected numeric attributes and ranges.

We use a generative adversarial network (GAN)-based model
which has been shown to be able to generate tabular data [12].
We train a GAN model with the dataset and test how well it can
generate data records that preserve the data distribution and answer
range count queries, i.e., given a query range, we return the number
of records in the range. A GAN model has a generator module G
and a discriminator module D. The generator generates a record
given a random noise vector, z, as its input, while the discriminator
classifies whether the generated record (i.e., G (z)) resembles a real
record from the training dataset. The model is trained with a loss
function that aims to generate records that cannot be distinguished
from the real records. We adapt the loss function of the generator to
add a Q-Error [8] loss term, which measures how well a generated
table preserves the selectivity of given range queries, as follows:

min
G
L (G ) = Ez∼pz (z)[log(1−D (G (z)))]+

1
N

∑
i

max
(
1,
sel (qi )
ˆsel (qi )

,
ˆsel (qi )
sel (qi )

)
The second term here is the Q-Error loss, where N denotes the
number of range queries, qi denotes the ith range query, sel (qi )
denotes the ground truth selectivity of qi on the training dataset,
and ˆsel (qi ) denotes the selectivity of qi on the generated table. We
name the adapted GAN model RC-GAN. We omit the detailed
model structure and hyperparameter values due to space limit.

The experiments are run on a desktop computer with a 16-core
CPU, 32 GB memory, and 24 GB GPU memory.

Results. We train RC-GAN (implemented with PyTorch 1.13.1)
on the CensusIncome dataset in 10 epochs (which take about an
hour) and use the trained model to generate a table of the same size
of the dataset.We report the Q-Error of the generated data in Table 1,
where “Training queries” refers to computing the Q-Error with the
20,000 range queries as described above, which have been used in
model training, while “Testing queries” refers to computing the
Q-Error with another set of 5,000 range queries that are generated
separately (with the same procedure) and have not been seen at
training. We can see that the median Q-Errors are very close to 1
under both settings, i.e., the generated table has almost the same
query selectivity as the original dataset for half of the queries. The

2https://archive.ics.uci.edu/dataset/20/census+income

Table 2: Classification Accuracy with Generated Data

Training data Precision Recall F1

5% of CensusIncome + 10% of RC-GAN 0.79 0.97 0.87
15% of CensusIncome 0.82 0.96 0.88

Q-Errors at the 75th percentile are still within 2, while they only
deteriorate to larger values at the 90th percentile. Importantly, the
Q-Errors for the testing queries are close to those for the training
queries. These results demonstrate the potential of ML models to
“memorize” the key characteristics of structured data records.

We further train twoGradient Boosting classifiers with 15% of the
CensusIncome dataset and with 5% of the CensusIncome dataset
plus 10% of data generated by RC-GAN, respectively. The classifiers
predict if the income attribute of a record is greater than 50,000
given the other attributes. We test the classifiers on 1,000 randomly
selected records of CensusIncome not seen at training. Table 2
reports the results. We see that the classifiers trained under both
settings have very close performance, confirming the capability of
RC-GAN to “memorize” the data distribution characteristics.

Our results above are obtained with an ML model where the
number of parameters is at the thousand scale. When larger models
with more parameters are available, even better results are expected.

Learning spatial knowledge with LLMs. To provide further
evidence on LLMs’ potential to learn spatial knowledge, we query
ChatGPT with prompts: the geo-coordinates of the top 50 cities in
Australia are and can you give me more cities, until 50 cities were
returned. The returned geo-coordinates were correct for 49 cities,
with only the geo-coordinates of Hervey Bay (a small city in Queens-
land) being off by 10 km. We further randomly pair up the cities
to form 50 pairs. For every pair of cities A and B, we query Chat-
GPT with prompt: A is to which side of B. The returned position
results were correct for 44 pairs, with another 5 pairs obtained
correct results after the geo-coordinates are further included in the
prompt. Only one pair (Canberra and Orange) retained a wrong
result (southwest was returned while the answer should be south).

These demonstrate the potential of LLMs to learn spatial knowl-
edge and answer queries, and the research opportunities to train
such models to answer more complex queries faithfully.

4 CONCLUSIONS AND CHALLENGES
We presented a next-generation spatial database system. This sys-
tem treats ML models as first-class citizens and trains such models
to “memorize” data stored in a spatial database and to generate
query answers. It enables a new generation-based query paradigm
that replaces the traditional retrieval-based paradigm.

The system will significantly enhance the accessibility of spatial
database systems, as the ML models can offer an inbuilt natural
language-based user interface and well understand users’ query
needs. It will bring huge benefits in spatial analytics and query pro-
cessing, encouraging a new generation of location-based services
and allowing better-informed location-based decision making.

To realize such a system, there are various challenges, a subset of
which are summarized below. Simply fine-tuning an open-sourced
LLM such as Llama 2 directly cannot realize the system.

https://archive.ics.uci.edu/dataset/20/census+income
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(1) Faithful query result generation. Being able to generate query
results directly without an extra data retrieval process offers great
opportunities to answer complex spatial (analytical) queries. This,
however, also brings significant challenges to ensure the faithful-
ness of the results generated. ML models are known to return inac-
curate results. In terms of LLMs, hallucination is a known problem
that impinges LLMs’ wider applicability. When LLMs are applied
to form the query engine of spatial databases, it is important to
address the hallucination problem, e.g., to build a system that re-
turns faithfulness scores together with the generated answers. A
unique opportunity arises when building such a system for spa-
tial databases, as traditional retrieval-based query procedures can
be applied in parallel to compute query answers that serve as the
ground truth for training the faithfulness scoring module.

(2) Large model training with structured spatial data. There are
two major issues that prevent training LLMs on structured data
records directly (which are probably the reason why the other
vision papers [15, 17, 18] did not take this approach): (i) There is
limited availability of structured spatial data. Comparing with the
volume of free texts (e.g., web documents), the number of spatial
data tables available is much smaller. The number of data tables in a
spatial database is even smaller. How to train an LLM generalizable
to different queries with data in such smaller scale is challenging.
(ii) There is incompatibility between structured spatial data and
the training procedure of LLMs. LLMs are trained via the task of
predicting the next word in a sentence. Simply treating every spatial
data record as a sentence and every data field as a word to train an
LLM is ineffective. This is because words in a sentence have a strong
correlation, and the context of a word implies the semantics of the
word. In contrast, different fields of a data record may be much less
relevant, and the nearby fields of a value do not necessarily imply
the semantics of the value. Further, values in a data record may be
numeric and continuous, and the same value may have completely
different meanings in different fields, while words are discrete and
each word has much fewer different meanings. Novel model design
and training procedures are needed for structured spatial data.

(3) Versatile query processing. A problem related to the difficulty
in model training given limited structured spatial data is how to
answer different types of spatial queries using a model trained
with limited data. While data of limited scale may be easier to
be “memorized” by an ML model, it does not help train a model
that is generalizable to different types of queries. Also due to the
limited scale of data, the trained models may not have seen too
many different prompts that imply different types of queries. The
generalizability of the trained models would most likely need to
come from unstructured spatial data, e.g., the Wikipedia article
of a POI. Algorithms to fine-tune such models and incorporate
knowledge from structured spatial data await exploration.

Further, the models need to have multi-step reasoning capabili-
ties to answer complex spatial queries. For example, to “generate
a half-day trip in Hamburg within walking distance from the con-
ference venue of SIGSPATIAL’23” would require (i) producing the
location of the conference venue, (ii) producing POIs within walk-
ing distance around it, and (iii) selecting and ordering the POIs
to form a trip. While prompting, training, and fine-tuning strate-
gies have been proposed for this issue, achieving such advanced
reasoning capabilities remains an open challenge [3].

(4) Challenges in managing ML models for data management.
There are inherent problems in data management with ML models,
such as how to update the trained ML models when the underlying
data have changed (e.g., moving objects [20, 21]). Such challenges
have been discussed in the literature [15, 18] and are not reiterated.
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