
187

WISK: A Workload-aware Learned Index for Spatial Keyword
Queries
YUFAN SHENG, University of New South Wales, Australia

XIN CAO∗, University of New South Wales, Australia

YIXIANG FANG, The Chinese University of Hong Kong, Shenzhen, China

KAIQI ZHAO, The University of Auckland, New Zealand

JIANZHONG QI, The University of Melbourne, Australia

GAO CONG, Nanyang Technological University, Singapore
WENJIE ZHANG, University of New South Wales, Australia

Spatial objects often come with textual information, such as Points of Interest (POIs) with their descriptions,

which are referred to as geo-textual data. To retrieve such data, spatial keyword queries that take into account

both spatial proximity and textual relevance have been extensively studied. Existing indexes designed for

spatial keyword queries are mostly built based on the geo-textual data without considering the distribution of

queries already received. However, previous studies have shown that utilizing the known query distribution

can improve the index structure for future query processing. In this paper, we propose WISK, a learned index

for spatial keyword queries, which self-adapts for optimizing querying costs given a query workload. One

key challenge is how to utilize both structured spatial attributes and unstructured textual information during

learning the index. We first divide the data objects into partitions, aiming to minimize the processing costs of

the given query workload. We prove the NP-hardness of the partitioning problem and propose a machine

learning model to find the optimal partitions. Then, to achieve more pruning power, we build a hierarchical

structure based on the generated partitions in a bottom-up manner with a reinforcement learning-based

approach. We conduct extensive experiments on real-world datasets and query workloads with various

distributions, and the results show that WISK outperforms all competitors, achieving up to 8× speedup in

querying time with comparable storage overhead.
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Fig. 1. Data-driven indexes vs query-aware indexes

1 INTRODUCTION
The worldwide mobile internet use has already surpassed desktop use since late 2016

1
. In such a

mobile internet, massive geo-textual data with spatial and textual attributes are generated, e.g.,

Points of Interest (POIs) in Google Maps are associated with geo-locations and descriptive texts.

Managing and retrieving geo-textual data at scale has attracted much attention. In recent years, the

spatial keyword queries [7, 12, 13, 15, 16, 20, 26, 58, 74] have been extensively studied, which

take a location and a set of keywords as arguments and return objects based on different definitions

of spatial proximity and textual relevance. Spatial keyword indexes are developed to process

such queries efficiently by incorporating the techniques of indexing spatial objects and documents.

However, state-of-the-art spatial keyword indexes still have several drawbacks. First, as shown

in previous studies [10, 12, 41], no existing index can work efficiently for all data distributions,

and there is no single approach that dominates all others. Second, traditional indexes may have

some parameters to be set with fixed values across the entire input data space. For example, CDIR-

tree [15] needs a parameter to balance the importance of spatial proximity and textual relevancy.

Since the query and data distributions vary in different areas, it is hard to select a single parameter

value that fits all distributions. Third, no indexes have considered utilizing the query workload.

Previous works [6, 55] have shown that certain data regions could be much more heavily queried.

For spatial keyword queries, both the query keyword distribution and query location distribution

can be various over different spatial regions. Thus, utilizing the known query distribution could

further optimize the index structure for future query processing [18, 45]. For example, as shown in

Figure 1, a spatial keyword query workload includes 𝑞1 and 𝑞2 with the same query region (red

rectangle) and different keywords. Existing data-driven indexes (Figure 1a) store objects with close

spatial distances and large textual similarities into a partition (enclosed by blue rectangles), and

both queries have to check two partitions containing four objects. If the four objects are grouped

in a different way to adapt for the query keywords, both queries only need to check two objects

in a single partition. Query-aware index can be expected to achieve better performance on future

queries following similar known query distributions.

Motivated by these observations, in this work, we propose a novel Workload-aware learned

Index for Spatial Keyword queries (WISK). The objective is to learn an index structure using both

the spatial and textual information such that the processing cost for the known query workload

using this index is minimized. We focus on the spatial keyword range query workload.

There exist some learned indexes for spatial query processing, which can also be classified

into data-driven indexes (such as ZM [62], LISA [38], and RSMI [51]) and query-aware indexes
(such as Flood [45] and Tsunami [18]). These learned spatial index structures are not suitable for

processing spatial keyword queries directly, because they only use spatial attributes for index

learning. Concurrent with our work, a learned index has been proposed for spatial keyword

1
Mobile vs. Desktop Internet Usage: https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-statistics/
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Fig. 2. Learning without and with textual information

querying [19]. It uses spatial attributes for index learning first and then creates the textual index,

and thus it cannot well learn the spatial and textual correlations for building the index.

The key challenge of learning a spatial keyword index is how to capture the data and query

distribution considering both the structured spatial information and unstructured textual attributes

during index learning, and make use of the distribution captured to partition the data objects such

that more irrelevant partitions can be filtered out during query processing, thus improving the

querying efficiency. One simple method is to learn a spatial index first, which does not consider

keywords, and then build an inverted file to manage the textual information within each partition

of the index. Our experiments show that this has poor performance. The reason could be briefly

explained in Figure 2, with a dataset containing 8 objects and a workload with 3 queries. The learned

spatial indexes put fewer objects into the left partition which contains more queries to reduce costs.

However, such partitions are worse than that in Figure 2b, when objects without query keywords

can be ignored during query processing using inverted files. Figure 2a has 3 query-relevant objects

(Store) in the left partition and 4 query-relevant objects (Food) in the right partition, and thus the

number of checks required is 2 × 3 + 1 × 4 = 10. But Figure 2b only needs 2 × 3 + 1 × 2 = 8 checks.

It can be observed that the query cost largely depends on how the objects are partitioned. We first

formulate a problem of finding 𝑘 partitions with the optimal cost for a given query workload. We

show theNP-hardness of this problem by a reduction from theMaxSkip partitioning problem [56, 73].

To learn good partitions, we design a cost estimation method considering both spatial and textual

information of the query and data, based on trained models that can approximate the Cumulative

Distribution Function (CDF) of geo-textual data. Then, we propose a heuristic algorithm and use

Stochastic Gradient Descent (SGD) [53] to generate the 𝑘 partitions.

If there is only one-level of partitions, we need to check many partitions irrelevant to the query.

Hence, we further group the partitions into a hierarchy as do most indexes. A simple way is to adopt

the method in CDIR-tree [15] for building the tree in a bottom-up manner. However, it is hard to

select the weights of the spatial proximity and textual relevance between partitions. We show that

it might even have worse query time in experiments. Instead, we propose to pack the nodes level

by level, and model the one-level node packing problem as a sequential decision-making process.

In particular, we develop a reinforcement learning [29] algorithm to find the optimal packing for

each level and build the index in a bottom-up manner by considering the query workload.

In summary, we make the following main contributions:

• We propose a query-aware learned index named WISK considering spatial and textual

attributes simultaneously.

• To generate the leaf nodes of WISK, we define an optimal partitioning problem and show its

NP-hardness. We propose a heuristic algorithm to solve the problem using machine learning

techniques.

• To build the hierarchy of WISK, we propose to pack the nodes level by level in a bottom-up

manner, and we treat the node packing as a sequential decision-making process. We develop

a solution based on reinforcement learning.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 187. Publication date: June 2023.
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• We perform a comprehensive empirical study using real-world datasets and synthetic query

workloads with various distributions. The results show that WISK outperforms the state-of-

the-art spatial keyword indexes consistently in terms of efficiency, achieving up to 8× times

speedup while having a comparable index size.

2 PRELIMINARIES
2.1 Problem Statement
We consider a geo-textual dataset 𝐷 where each data object, i.e., a geo-textual object 𝑜 ∈ 𝐷 , has a
point location denoted as 𝑜.𝑙𝑜𝑐 and a text description denoted as 𝑜.𝑘𝑤𝑠 , which is available from a

range of source [14]. For ease of discussion, we assume two-dimensional coordinates in Euclidean

space to represent 𝑜.𝑙𝑜𝑐 , although our proposed techniques can generalize to multi-dimensional

spaces easily. The text description 𝑜.𝑘𝑤𝑠 is represented as a set of keywords, e.g., tags indicating

the functionality of a POI. We aim to process spatial keyword range queries over 𝐷 .

Definition 1 (Spatial Keyword Range (SKR) Query). An SKR query q is represented by a
pair (𝑞.𝑎𝑟𝑒𝑎, 𝑞.𝑘𝑒𝑦𝑠) where q.area and q.keys denote a spatial region and a set of keywords, respectively.
The result of q, 𝑞(𝐷) = {𝑜 ∈ 𝐷 | 𝑜.𝑙𝑜𝑐 𝑖𝑛 𝑞.𝑎𝑟𝑒𝑎, 𝑜.𝑘𝑤𝑠 ∩ 𝑞.𝑘𝑒𝑦𝑠 ≠ ∅}, is a subset of D that includes
all objects within the query region containing at least one query keyword.

Here, we use a rectangular query region. Our techniques can be easily extended to handle other

shapes (e.g., circles) by an extra filtering after querying with the bounding rectangle.

Problem. Our goal is to learn an index structure that can efficiently process SKR queries utilizing

the distributions of the geo-textual data and the given query workload.

2.2 Reinforcement Learning
Reinforcement learning (RL) [29] is a machine learning technique where an agent learns from

feedback obtained from trial-and-error interactions with an environment. It has been shown to be

effective for sequential decision-making problems [54, 78].

RL formulation is based on the Markov Decision Process (MDP) [50]. An MDP has four compo-

nents: a set of states S, a set of actions A, transition probabilities 𝑃 , and rewards 𝑅. At some state

𝑠 ∈ 𝑆 , an agent may take an action 𝑎 ∈ 𝐴. As a result, there is a probability 𝑃𝑎 (𝑠, 𝑠 ′) that the agent
transits to state 𝑠 ′, and a reward 𝑅𝑎 (𝑠, 𝑠 ′) is received from such an action and state transition. The

goal of the agent is to learn a policy function 𝜋 : 𝐴×𝑆 → [0, 1], i.e., the probability of taking action
𝑎 at state 𝑠 , such that the cumulative reward of state transitions is maximized. Figure 3 shows the

basic workflow of RL. The environment connects to the agent via perception and action and it offers

the agent the possible action choices based on the current state of the agent. The agent learns its

policy based on rewards accumulated from interactions with the environment. Its learning process

stops when a terminal state is reached.

AgentEnvironment

State

Action

Reward Policy

Fig. 3. The typical RL learning framework

Q-learning [67] is a commonly used value-based policy learning algorithm, which learns the

value of an action given a state. It learns a policy that maximizes the value of a so-called Q-function,

𝑄 (𝑠, 𝑎), i.e., the overall expected reward when an agent plays following the policy [43]. State-of-

the-art RL models such as Deep-Q-Network (DQN) [44] use a deep neural network 𝑄 (𝑠, 𝑎;\ ) with

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 187. Publication date: June 2023.
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parameters \ to estimate the value of the Q-function 𝑄 (𝑠, 𝑎). Once 𝑄 (𝑠, 𝑎;\ ) is trained, it can be

used for decision-making for future events.

3 INDEX OVERVIEW
WISK consists of two parts: (1) learn an optimal data layout for the given query workload, and (2)

create an index based on that layout.

Query processing on an index that partitions objects into clusters typically involves two costly

operations: filtering and verification. Irrelevant partitions are filtered out, and objects in the

remaining partitions are verified. Thus, in WISK we first aim to learn an optimal partition of the

geo-textual objects, such that for the given SKR query workload we can achieve the minimum

query processing costs computed using both the filtering and verification costs. However, given

a large dataset, the number of possible partitions of the objects is extremely huge, and it is hard

to learn an optimal partition. We propose to simplify the problem: we divide the 2D space into

disjoint partitions to obtain an optimal spatial layout. We will give the detail in Section 4.

If there is only one layer of the index, we need to check all partitions to see if they are relevant

to the query, leading to a high filtering cost. We can organize the partitions obtained in the first

step into a tree structure to build the final index such that the query processing cost can be further

optimized. This is a type of combinatorial optimization task. We propose to pack the partitions

level by level, and view the one-level packing problem as a sequential decision-making process,

which can be solved by reinforcement learning. We will present the detail of this step in Section 5.

The framework of WISK is shown in Figure 4. A leaf node contains a number of objects, a

minimum bounding rectangle (MBR) of the objects, and an inverted file to index the objects in this

node. A non-leaf node contains pointers to its child nodes, an MBR for all child nodes, and a bitmap

to index keywords appearing in its sub-tree. Here, the bitmap is used due to its much smaller size.

Joint spatial 
and textual 

learning

Geo-textual
Data

Query 
Workload

Bottom Clusters

RL-based
packing

Hierarchical Index

… … … …

… …

…

…

…

Fig. 4. The WISK framework

Index construction. Algorithm 1 summarizes the construction process of WISK, which consists

of two main steps. Step 1 (lines 1 and 2) is to construct the bottom clusters. A high-quality partition

of bottom clusters should result in a low query cost given a query workload. We train machine

learning models to approximate the Cumulative Distribution Function (CDF) of geo-textual objects.

Then, we define the cost estimation function based on the learned CDFs and make it differentiable,

such that we can use stochastic gradient descent (SGD) to learn the optimal partitions. Step 2

(lines 3 and 4) is to construct the hierarchy of WISK by a bottom-up packing of the bottom clusters.

Our goal is to minimize the filtering cost when an SKQ query is processed by this hierarchy. We

model the packing process in one level as an MDP and apply RL to solve the problem. Based on the

given query workload, we design a reward to measure the reduction of the filtering cost given a

packing decision, and we train a model to predict the reward, which can be used to guide packing

the bottom clusters level by level. The RL approach can also be used to group objects into bottom

clusters. However, due to a large number of objects, this will require huge amounts of states during

the RL procedure, and both the training time and the performance would be unacceptable [60].
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Algorithm 1:WISK Construction

Input: Q, the workload; D, the dataset; C, the cost function
Output: I, a learned WISK index

1 KM ←MLModel(D) ; /* Learn CDF models of objects */

2 G← SGDPartition(Q, C, KM) ; /* G minimizes C */

3 RM ← RLTrain(G, Q) ; /* Learn a model RM based on G, Q */

4 I ← Packing(RM, G) ; /* Group G by using RM */

5 return I ;

Query processing. Our query algorithm is similar to those using traditional spatial keyword

indexes. Given a SKR query 𝑞, it traverses WISK in a breath-first manner starting from the root. A

queue 𝑄 is used to manage the nodes visited. For every non-leaf node visited, only the child nodes

whose MBRs overlap with 𝑞.𝑎𝑟𝑒𝑎 and contain some query keywords are added to 𝑄 for future

verification. When a leaf node (i.e., the bottom cluster) is reached, we use its inverted file to fetch

the query-relevant objects and return those in the query region.

4 PARTITIONING OPTIMIZATION
A core problem inWISK construction is to form partitions (i.e., bottom clusters) for costminimization

over the query workload. In this section, we model the query cost, define an optimal partition

problem, show the NP-hardness of the problem, and present a heuristic algorithm for the problem.

4.1 Cost Model
We model the time cost𝐶 (𝑞𝑖 ) to process an SKR query 𝑞𝑖 over a set of bottom clusters𝐺 as a linear

combination of (1) the cost to scan all bottom clusters to find a subset 𝐺𝑖 ⊂ 𝐺 that overlap with

𝑞𝑖 .𝑎𝑟𝑒𝑎 and containing at least one keyword in 𝑞𝑖 .𝑘𝑤𝑠 , and (2) the cost to examine the inverted

file in each cluster 𝑐 ∈ 𝐺𝑖 and find the objects in 𝑞𝑖 .𝑎𝑟𝑒𝑎 and contain at least one query keyword.

Eq. 1 formalizes the cost, where |𝐺 | denotes the total number of clusters, and

∑
𝑐∈𝐺𝑖
|𝑂𝑐 | denotes

the number of objects in 𝐺𝑖 that contains at least one query keyword. In particular,𝑤1 measures

the time cost for checking (1) if the MBR of a cluster intersects with the query region, and (2) if the

cluster contains some query keywords by scanning the textual index of the cluster. Both checks are

independent of the cluster size. Meanwhile,𝑤2 measures the time cost to perform the same checks

but at the object level. Following recent studies [18, 77], we use fixed values for these parameters.

𝐶 (𝑞𝑖 ) = 𝑤1 |𝐺 | +𝑤2

∑︁
𝑐∈𝐺𝑖

|𝑂𝑐 | (1)

Example 4.1: Figure 5 illustrates this cost function. Suppose that the red and green points represent

objects that contain keywords 𝑘1 and 𝑘2 respectively. There are two queries, and 𝑞1.𝑘𝑤𝑠 = {𝑘1}
and 𝑞2.𝑘𝑤𝑠 = {𝑘2}. If all objects are in a cluster (i.e., no partitioning, Figure 5a), according to Eq. 1,

the two queries incur a cost of 2(𝑤1 + 4𝑤2) = 2𝑤1 + 8𝑤2. This is because there is only one cluster,

and each query needs to check four objects containing the query keywords (i.e., four red points for

𝑘1 and four green points for 𝑘2). If the space is split forming two clusters of five and three points

each (Figure 5b), the cost of 𝑞2 and 𝑞1 will become 2𝑤1 + 2𝑤2 (checking two clusters and two green

(a) All objects in a cluster (b) Objects in two clusters

Fig. 5. Partitioning the space increases the number of clusters, which leads to a larger cluster scanning cost,
but also potentially a lower object scanning cost.
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points) and 2𝑤1 + 4𝑤2 (checking two clusters and four red points), which sum up to 4𝑤1 + 6𝑤2. The

partitioning may lead to an overall lower query cost if𝑤2 dominates the cost.

4.2 The Optimal Partitioning Problem
We formulate an optimal partition problem to find a set of clusters that minimize the query cost

over a given set of queries.

Problem 1 (Optimal Partitioning). Given a dataset D = {𝑜1, 𝑜2, . . . , 𝑜𝑛} and a query workload
W = {𝑞1, 𝑞2, . . . , 𝑞𝑚}, we aim to find an optimal partition, i.e., a set of k clusters 𝐺 = {𝑐1, 𝑐2, . . . , 𝑐𝑘 }
where (1) each object belongs to exactly one cluster, i.e.,

⋃
𝑐𝑖 ∈𝐺 𝑐𝑖 = 𝐷 , and ∀𝑐𝑖 ,𝑐 𝑗 ∈𝐺 𝑐𝑖 ∩ 𝑐 𝑗 = ∅, and (2)

the total cost,
∑

𝑞𝑖 ∈𝑊 𝐶 (𝑞𝑖 ), is minimized, where 𝐶 (𝑞𝑖 ) (Eq. 1) is the cost of 𝑞𝑖 .

4.2.1 Problem Analysis. We proceed to show that the optimal partitioning problem is NP-hard

by reducing from the MaxSkip partitioning problem, which has been shown to be NP-hard [56, 73].

Theorem 4.1. Problem 1 is NP-hard.

Proof. We first briefly introduce the MaxSkip partitioning problem, which arises from big data

analytics systems. Let Q be a collection of queries. Consider a set of partitions 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑘 }
where each partition is a collection of tuples, and the size of each partition is larger than a minimum

size bound 𝑏. A big data analytics system can prune a partition 𝑝𝑖 if none of the tuples in this

partition satisfies a query 𝑞 ∈ 𝑄 when processing 𝑞. A cost function (Eq. 2) can thus be defined on

each partition, which denotes the number of tuples that can be skipped for processing all queries

in 𝑄 , if such a partition is formed. Here, |𝑝𝑖 | denotes the number of tuples in partition 𝑝𝑖 , and 𝑄𝑖

denotes the set of queries that can be processed without accessing 𝑝𝑖 .

𝐶𝑜𝑠𝑡 (𝑝𝑖 ) = |𝑄𝑖 | |𝑝𝑖 |,𝑤ℎ𝑒𝑟𝑒 𝑄𝑖 ⊆ 𝑄 (2)

The MaxSkip partitioning problem aims to find the optimal partitions 𝑃𝑜𝑝𝑡 maximizing the total

number of tuples that can be skipped when executing Q, i.e., 𝑃𝑜𝑝𝑡 = argmax𝑃

∑
𝑝𝑖 ∈𝑃 𝐶𝑜𝑠𝑡 (𝑝𝑖 ).

We map one instance of the MaxSkip partitioning problem to an instance of our optimal parti-

tioning problem as below: for each query 𝑞𝑤 in 𝑄 , we create a keyword 𝑑𝑤 and form a SKR query

𝑞 = {𝑞.𝐿, 𝑞.𝑑𝑤} where 𝑞.𝐿 is the MBR of the entire space. For each tuple 𝑡𝑚 , we create a geo-textual

object 𝑜𝑚 such that its location is in 𝐿, and its keywords correspond to the queries it can satisfy in

𝑄 .

Given this mapping, in the MaxSkip partitioning problem, for a partition 𝑝𝑖 ∈ 𝑃 , if a set of queries
𝑄𝑖 ⊆ 𝑄 can be skipped when processing 𝑝𝑖 , we can get a cluster 𝑐𝑖 in our problem and a set of SKR

queries 𝑅𝑖 ∈𝑊 that are irrelevant to 𝑐𝑖 (since no geo-textual objects in 𝑐𝑖 contains a keyword in 𝑅𝑖 ).

Hence, if we could find an optimal partition that maximize the total number of tuples when running

queries in𝑊 , it is equivalent that we can find an optimal partitioning method that minimizes the

cost in our problem. Since the mapping is of linear time, we complete the proof. □

4.3 A Heuristic Partition Algorithm
As pointed out by Christoforaki et al. [13], a query region is usually much smaller than the data

space such that many data objects are not queried by the workload𝑊 . Hence, to fully utilize

the query workload for partitioning, a data based partitioning method is not suitable to solve

our problem. Instead, we employ a space-disjoint partitioning approach and propose a heuristic

partition algorithm.

Our index aims to learn splitting the spatial data space along different dimensions and coordinate

values. Our partition algorithm starts by initializing one single partition that covers the full data

space (which corresponds to a cluster that contains the full dataset). At this point, each query
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contributes the same𝑤1 + |𝐷 | ·𝑤2 cost to the overall cost of the query workload𝑊 . Then, we find

a split dimension 𝑑𝑠 and a split value 𝑣𝑠 that yield the largest reduction in the query cost. We use

the resulting 𝑑𝑠 and 𝑣𝑠 to split the data space into two sub-spaces and update the total query cost.

For each sub-space, we repeat the splitting process recursively until the total query cost cannot be

reduced or some pre-defined conditions, e.g., a minimum number of queries intersecting with the

sub-space, are met. When the algorithm terminates, we use the MBR of the data objects in each

resultant sub-space as a bottom cluster in WISK.

4.3.1 Learning the Split Dimension and Value. A naïve method to find the value to make

a split uses a brute-force search. Let 𝑉𝑑 (𝑑 ∈ {𝑥,𝑦}) be a sorted list of distinct object coordinate

values along dimension 𝑑 in the current (sub-)space to be partitioned. Except for the first and the

last values, every value in 𝑉𝑑 can be used to split the space into two sub-spaces. Examining all |𝑉𝑑 |
values takes O

(
𝑓 · ( |𝑉𝑥 | + |𝑉𝑦 |)

)
where 𝑓 denotes the time cost to split on a value and run queries

based on such a splitting This approach becomes impractical for large datasets with a large value

of |𝑉𝑥 | + |𝑉𝑦 |.
Motivated by the recent success of machine learning in solving complex problems [4, 49], we

propose a learning-based method to predict the query costs given a split dimension and a split

value, such that the optimal split can be approximated by minimizing the predicted query cost

with high efficiency. At the core of the query cost prediction problem of a split is to (1) predict the

number of resultant sub-spaces overlapping with the query, and (2) predict the number of objects

that contain any of the query keywords and reside in the resultant sub-spaces.

To address the first prediction problem, we use the indicator function [33] to denote whether a

sub-space overlaps with the query region. For example, let [𝑞𝑥𝑏 , 𝑞𝑥𝑢 ] be the x range of query q and

𝑝𝑥 be a split value along dimension x. The indicator functions 𝟙(𝑝𝑥 ≥ 𝑞𝑥𝑏 ) and 𝟙(𝑝𝑥 < 𝑞𝑥𝑢 ) are
used to decide whether 𝑞 intersects with the resultant left and right sub-spaces, respectively. If a

sub-space has an indicator function value of 1, we need to further predict the number of query result

objects within the sub-space. Otherwise, we can ignore the sub-space when computing the query

cost. The indicator function is not differentiable, and machine learning methods such as gradient

descent cannot be applied to solve a split value optimization problem formulated by such functions.

As such, we use the sigmoid function [24], 𝜎 (𝛽𝑥) with 𝛽 = 3, to approximate the indicator function

as does in prior work [8, 9], e.g., 𝟙(𝑝𝑥 ≥ 𝑞𝑥𝑏 ) = 𝟙(𝑝𝑥 − 𝑞𝑥𝑏 ≥ 0) ≈ 𝜎 (3(𝑝𝑥 − 𝑞𝑥𝑏 )).
To address the second prediction problem, we follow the idea in recent studies [36, 37, 45] that

learn the Cumulative Distribution Function (CDF) to estimate the density of objects in a data space.

Our goal is to learn the joint CDF 𝐹𝑋,𝑌 (𝑥,𝑦) of two variables X and Y, corresponding to the spatial

coordinates in two dimensions. The learned CDF can quickly estimate the number of objects in

a rectangular region, i.e., a sub-space. To accelerate the CDF learning, we assume that X and Y
are independent, following a previous study [45]. Thus, we can decompose the joint CDF into the

product of two marginal CDFs, 𝐹𝑋 (𝑥) and 𝐹𝑌 (𝑦), as shown in Eq. 3.

𝐹𝑋,𝑌 (𝑥,𝑦) = 𝑃 (𝑋 ≤ 𝑥,𝑌 ≤ 𝑦) = 𝐹𝑋 (𝑥)𝐹𝑌 (𝑦) (3)

For ease of presentation, we use F(x) and F(y) to denote the marginal CDFs of X and Y in the rest

of the paper, respectively.

Lemma 4.2. Given a two-dimensional object (𝑥,𝑦) and a rectangular region [(𝑥𝑏, 𝑦𝑏), (𝑥𝑢, 𝑦𝑢)]
where (𝑥𝑏, 𝑦𝑏) and (𝑥𝑢, 𝑦𝑢) denote the bottom-left and the upper-right points of the rectangular region,
respectively, the probability of an object residing in the area is:

𝑃 (𝑥𝑏 ≤ 𝑥 ≤ 𝑥𝑢, 𝑦𝑏 ≤ 𝑦 ≤ 𝑦𝑢) =
(
𝐹 (𝑥𝑢) − 𝐹 (𝑥𝑏)

) (
𝐹 (𝑦𝑢) − 𝐹 (𝑦𝑏)

)
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Proof. According to the definition of CDF, we have 𝑃 (𝑥𝑏 ≤ 𝑥 ≤ 𝑥𝑢, 𝑦𝑏 ≤ 𝑦 ≤ 𝑦𝑢) = 𝐹 (𝑥𝑢, 𝑦𝑢) −
𝐹 (𝑥𝑏, 𝑦𝑢) − 𝐹 (𝑥𝑢, 𝑦𝑏) + 𝐹 (𝑥𝑏, 𝑦𝑏). Due to the independence assumption, we can decompose each

joint CDF based on Eq. 3, and obtain the equation in Lemma 4.2. □

The CDF in Eq. 3 only estimates the spatial density of objects without considering the keyword

distribution. To solve this issue, we learn the marginal CDFs, i.e., 𝐹𝑘 (𝑥) and 𝐹𝑘 (𝑦), for each keyword

𝑘 . The choice of CDF models will be detailed in Section 6.

With the CDF models and the sigmoid functions, we formulate the cost for processing a query 𝑞

with region [(𝑥𝑏, 𝑦𝑏), (𝑥𝑢, 𝑦𝑢)] after splitting on dimensions 𝑥 or 𝑦 in Eq. 4.

𝐿𝑞 (𝑥) = 𝜎
(
3(𝑥 − 𝑥𝑏)

)
|𝑂1 | + 𝜎

(
3(𝑥𝑢 − 𝑥)

)
|𝑂2 |

𝐿𝑞 (𝑦) = 𝜎
(
3(𝑦 − 𝑦𝑏)

)
|𝑂1 | + 𝜎

(
3(𝑦𝑢 − 𝑦)

)
|𝑂2 |

(4)

where |𝑂1 | and |𝑂2 | denote the number of objects containing the query keywords in the two resulting

sub-spaces, respectively, which are estimated through the learned keyword-based marginal CDF

models. The sigmoid functions (e.g., 𝜎
(
3(𝑥 − 𝑥𝑏)

)
and 𝜎

(
3(𝑥𝑢 − 𝑥)

)
) predicts whether the query

intersects the two resultant sub-spaces, respectively. We apply stochastic gradient descent (SGD) to

minimize 𝐿𝑞 (𝑥) and 𝐿𝑞 (𝑦) using the query workload as the training data.

4.3.2 Bottom Cluster Generation. When splitting a data space, there are both profit and loss

in the query costs. The profit is gained by the reduced number of objects to be checked while the

loss reflects an increased number of sub-spaces to be checked. In Example 4.1, the profit and loss

are equal to 2𝑤2 and 2𝑤1, respectively. The difference between the profit and the loss determines

whether a split is needed, and where the split should be made.

Algorithm 2 summarizes our bottom cluster generation algorithm. The algorithm takes the query

workload𝑊 and the data space 𝑆 enclosing all geo-textual objects as the input, and it aims to

return a set of clusters that minimize the cost of executing all the queries in𝑊 . The algorithm

maintains a priority queue𝑄 of sub-spaces to the examined, which are prioritized by their numbers

of intersecting queries. At the start, 𝑄 contains only the input data space 𝑆 (lines 1 and 2). Then,

we iterate through the sub-spaces in 𝑄 . Let the current sub-space to be split be 𝑠 . We set the initial

object checking the cost of 𝑠 to be |𝑂𝑠 | · |𝑊𝑠 | ·𝑤2 where |𝑂𝑠 | and |𝑊𝑠 | denote the number of objects

in 𝑠 and the number of queries intersecting with 𝑠 , respectively (lines 5 and 6). Then, we find the

optimal split along both 𝑥- and 𝑦-dimensions, respectively (lines 7 and 8), and we use the one with

a smaller object checking cost as our candidate split (line 9). If the reduction in the object checking

cost from𝐶𝑠 outweighs the increase in cluster checking cost, i.e.,𝑤1 · |𝑊 | (every split adds a cluster

to be checked against |𝑊 | queries), we execute the split and enqueue the resultant sub-spaces (lines
10 to 13). Otherwise, 𝑠 is finalized, and we generate the MBR for the data objects in 𝑠 and use it as a

bottom cluster (lines 14 to 16). The process terminates when 𝑄 becomes empty (line 4).

When finding the optimal splitting value along a dimension (lines 18 to 24), we apply SGD [53]

to minimize Eq. 4 (line 21). Here, we use a map structure 𝑜𝑝𝑡 to record the new object checking

cost, the dimension, and the value of a learned optimal split.

The time complexity of each iteration in Algorithm 2 is O
(
ℎ · (𝐸𝑥 +𝐸𝑦)

)
whereℎ and 𝐸𝑑 , 𝑑 ∈ {𝑥,𝑦}

denote the time complexity of SGD per iteration and the number of epoches respectively. Recall

that the time complexity of the brute-force algorithm is O
(
𝑓 · ( |𝑉𝑥 | + |𝑉𝑦 |)

)
. We note that 𝑓 is larger

than ℎ because our heuristic algorithm does not need to run a split to calculate a query cost (while

the brute-force algorithm does). 𝐸𝑥 and 𝐸𝑦 depend on the algorithm configurations, such as the

learning rate and the number of model parameters. They are usually much smaller than 𝑉𝑥 and 𝑉𝑦 ,

respectively. Therefore, the time complexity of our heuristic algorithm is lower than that of the

brute-force algorithm.
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Algorithm 2: Bottom Clusters Generation

Input:W, the query workload; S, the data space
Output: G, the set of clusters

1 Q← NewPriorityQueue();

2 Q.Enqueue(S);
3 G← ∅;
4 while Q is not empty do

5 𝑠 ← Q.Dequeue();
6 𝐶𝑠 ← InitializeObjectCheckingCost(𝑠);

7 𝑜𝑝𝑡𝑥 ← FindOptimalPartition(𝑠 , x);

8 𝑜𝑝𝑡𝑦 ← FindOptimalPartition(𝑠 , y);

9 𝑏𝑒𝑠𝑡 ← 𝑜𝑝𝑡𝑥 if 𝑜𝑝𝑡𝑥 .cost ≤ 𝑜𝑝𝑡𝑦 .cost else 𝑜𝑝𝑡𝑦 ;
10 if 𝐶𝑠 − 𝑤2 · 𝑏𝑒𝑠𝑡 .𝑐𝑜𝑠𝑡 > 𝑤1 · |𝑊 | then
11 𝑠1, 𝑠2 ← GenerateSubSpace(𝑏𝑒𝑠𝑡 .dim, 𝑏𝑒𝑠𝑡 .val);

12 Q.Enqueue(𝑠1);
13 Q.Enqueue(𝑠2);
14 else

15 c← GenerateMBR(𝑠);

16 G.add(c);
17 return𝐺 ;

18 Function FindOptimalPartition(𝑠,𝑑):
19 𝑜𝑝𝑡 .𝑑𝑖𝑚← d ; /* a map structure to record optimal split result */

20 𝑐𝑜𝑠𝑡, 𝑣𝑎𝑙 ← SGDLearn(s.queries) ; /* SGDLearn() returns the optimal cost and split value */

21 𝑜𝑝𝑡 .𝑐𝑜𝑠𝑡 ← 𝑐𝑜𝑠𝑡 ;

22 𝑜𝑝𝑡 .𝑣𝑎𝑙 ← 𝑣𝑎𝑙 ;

23 return 𝑜𝑝𝑡 ;

5 BOTTOM-UP PACKING
The bottom clusters generated from Section 4 can be used as a flat and coarse-grained index. To

further improve the pruning power of our index, we build a hierarchical structure over the clusters.

5.1 Design Considerations
As shown in Section 3, when executing a query with a hierarchical index, we traverse all qualified

nodes until reaching the leaf nodes. An internal node and its descendants can be pruned if it does

not intersect with the query or include any query keyword. We build our hierarchical index level

by level, i.e., recursively packing the clusters to maximize the reduction in the pruning cost at each

level. Here we omit the object checking costs as they are only triggered on the bottom clusters.

5.1.1 Optimization Goal. The query time spent on node pruning can directly reflect the pruning

capability of a hierarchical index. Measuring the query time, however, needs to run all queries

in the query workload on an existing index, which is not suitable to be used as an optimization

metric of our bottom-up packing problem. We observe that the pruning time cost is proportional to

the number of accessed nodes for the workload such that it can be used to evaluate the pruning

capability. To adopt this criterion, we associate each bottom cluster 𝑐𝑖 with a query label set denoted

by 𝑐𝑖 .𝑙 . If a cluster 𝑐𝑖 intersects with a training query 𝑞 𝑗 and its textual document includes any

keyword of 𝑞 𝑗 , we add 𝑞 𝑗 to the query label set of this cluster, that is, 𝑐𝑖 .𝑙 = {𝑞 𝑗 }. During packing,

the labels of a node in an upper level (an “upper node” for short hereafter) can be easily generated

by merging all labels of its sub-tree.

5.1.2 Bottom-up Packing Problem. Next, we define the bottom-up packing problem tominimize

the number of accessed nodes.
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Fig. 6. An example of the state representation

Problem 2 (Bottom-up Packing). Given a query workload W and the set of bottom clusters 𝐺 ,
the bottom-up packing process aims to generate a hierarchical index 𝐼 that minimizes the number of
accessed nodes to process the queries in𝑊 .

Given the leaf nodes, i.e., bottom clusters, we can build a hierarchical index using techniques from

traditional indexes such as the CDIR-Tree. However, those techniques only consider the underlying

data distribution, which might lead to worse performance as shown in the later experiment.

To address these issues, and motivated by the strong performance of query-aware structures

learned by reinforcement learning (RL), we propose an RL-based algorithm to learn a packing. We

construct our index level by level with a bottom-up packing process, and we model the packing

problem at each level as a sequential decision-making process, i.e., a Markov decision process,

which makes it solvable by RL. To pack each level, the nodes from a lower level to be packed

(“bottom nodes” hereafter) are processed sequentially, and we find an upper node to host each

bottom node until there are no more bottom nodes. After the packing process of one level stops,

the non-empty upper nodes become the new bottom nodes to be packed for the next level.

5.2 Packing with Reinforcement Learning
We propose an RL-based packing algorithm following the idea of the Deep-Q-Network (DQN) [44]

to learn the optimal policy (i.e., a packing strategy) for solving the packing problem (Problem 2).

To form a tree structure, we require that the number of upper nodes does not exceed that of the

bottom nodes.

There are two main challenges in our packing problem.

(1) To use a neural network to estimate an expected reward (e.g., the reduction in the number of

node accesses), the states (e.g., the relation of two levels resulting from a packing decision)

need to be represented by a fixed-length vector. However, there are many different possibilities

of bottom nodes, and it is challenging to generate such a vector to encode the current packing

of bottom nodes effectively.

(2) Every time a node is added to the structure, it may lead to a reduced reward (i.e., more node

accesses). However, it is necessary to add nodes to the structure continuously such that the

structure can be built up. How to adapt the cost model for this case is another challenge.

To address these challenges, we formulate an MDP process for our packing problem as follows:

States. A state needs to capture the status of a (partially packed) level in an index structure. As

mentioned above, the number of bottom nodes bounds that of the upper nodes. Hence, we initialize

𝑁 empty upper nodes given 𝑁 bottom nodes. Consider𝑚 queries are used in the learning process.

Each of the 𝑁 upper nodes to be constructed takes an (𝑚 + 1)-dimensional vector representation.

The first𝑚 dimensions denote whether the node is labeled by each of the𝑚 queries, and the last

dimension is a count on the number of bottom nodes to be connected to this node. The 𝑁 upper

nodes together form an (𝑚 + 1) · 𝑁 -dimensional vector. We further append𝑚 dimensions to the
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Fig. 7. An example of MDP formulation for Problem 2

vector to represent the query label of the next bottom node to be connected to (i.e., packed into)

one of the upper nodes. Overall, these form an

(
(𝑚 + 1) · 𝑁 +𝑚

)
-dimensional vector representing a

state. Figure 6 shows an example, assuming𝑚 = 3 queries and 𝑁 = 3 bottom nodes (𝑋 , 𝑌 , and 𝑍 ).

The circles denote upper nodes, and the colors denote different query labels.

Actions. An action adds a bottom node to an upper node. To make the action space and the state

representation consistent, we define the action space 𝐴 = {1, 2, . . . , 𝑁 }, where action 𝑎 = 𝑖 denotes

packing the next bottom node into the 𝑖-th upper node.

Transition. Given a state and an action, the agent transits to a new state by packing a bottom

node into the chosen upper node and moving on to the next bottom node. The agent reaches a

terminal state when there are no more bottom nodes to be packed.

Reward. A larger reward represents a packing with better quality. Since we aim to reduce the

number of node accesses when executing the query workload, the reward signal should reflect the

expected number of node accesses before and after taking an action.

We propose to use the average number of node accesses per query to formulate the rewards

since the total number of node accesses grows monotonically as more bottom nodes are added to

the consideration, which will lead to constant negative rewards.

𝑟 = 𝑁𝑎 − 𝑁 ′𝑎 (5)

The reward function is formulated as Eq. 5, where 𝑁𝑎 (𝑁 ′𝑎) denotes the average number of node

accesses before (after) action 𝑎 is taken. The agent chooses the action that maximizes the reward

during exploitation. Additionally, we observe a positive correlation between the sum of rewards

and the reduction in the average number of node accesses after packing all bottom nodes. Let 𝑁 ∗𝑎
be the average number of node accesses of packing the last bottom node. As 𝑁𝑎 in each iteration is

identical to 𝑁 ′𝑎 of the last iteration, the sum of rewards after packing all 𝑁 bottom nodes is equal to

1 −𝑁 ∗𝑎 , and it is positively correlated to 𝑁 + 1 −𝑁 ∗𝑎 . Note that the number of node accesses is equal

to 𝑁 + 1 before creating the upper nodes. Thus, if the sum of the rewards at a level is not larger

than −𝑁 , the bottom-up packing process will be terminated.

Example 5.2: Figure 7 presents an example of the MDP for the bottom-up packing problem. Same

as in Figure 6, the colors represent different query labels. Here, we only show state transitions

with nonzero probabilities, and we have omitted the rewards to avoid clutter. The ellipse nodes

and edges represent states and actions, respectively. Since there are 3 bottom nodes (rectangle),

we initialize 3 upper nodes (circle), and the bottom nodes are to be packed sequentially. When no

incoming bottom node is to be inserted at one level, i.e. the leaf node in Figure 7, we reach the

terminal states at this level and move to the upper level.

5.3 Training
Recall that Q-learning is a commonly used RL algorithm as introduced in Section 2.2. We train a deep

Q-network (DQN) [44] to project the high-dimensional state and action spaces to low-dimension

spaces using neural networks and efficiently predict the value of the Q-function 𝑄 (𝑠, 𝑎). In our

model, we adopt the deep Q-learning with a technique known as experience replay where we
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Algorithm 3: DQN Learning for Node Packing

Input:𝐺 , the bottom nodes with query labels;𝑀 , replay memory; 𝐸, the number of epochs

Output:𝑄 (𝑠, 𝑎;\ ) , action-value function
1 Initialize𝑄 (𝑠, 𝑎;\ ), �̂� (𝑠′, 𝑎′, \−) ;
2 for epoch ∈ [1, 𝐸 ] do
3 𝐺𝑢 ← NewList();𝑀 ← NewList();

4 for 𝑐𝑖 ∈ G do

5 Update 𝑠 using𝐺𝑢 and 𝑐𝑖 ;

6 Compute the average number of node accesses 𝑁𝑎 according to𝐺𝑢 .𝑙 ;

7 Choose 𝑎 by the 𝜖-greedy method;

8 Pack 𝑐𝑖 into𝐺𝑢 [𝑎] and generate the new state 𝑠′;

9 Compute 𝑁 ′𝑎 according to the new𝐺𝑢 .𝑙 ;

10 Compute reward 𝑟 based on Eq. 5;

11 Store transition (𝑠, 𝑎, 𝑟, 𝑠′) into𝑀 ;

12 Draw a batch of samples from𝑀 and perform a gradient step based on Eq. 6;

13 Update �̂� (;\−) with𝑄 (;\ ) softly based on Eq. 7 after every C steps;

14 return𝑄 (𝑠, 𝑎;\ ) ;

store the agent’s experience 𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) at each time-step 𝑡 . We implement two networks, a

policy network 𝑄 and a target network �̂� separately, which has been shown to be more stable than

using only one network as done in the standard Q-learning [44].

Given a batch of transitions (𝑠, 𝑎, 𝑟, 𝑠 ′), the policy network parameters \ are updated with a

gradient descent step by minimizing the mean square error (MSE) loss as shown in Eq. 6, where

𝛾 ∈ (0, 1) denotes a discount factor determining the importance of future rewards, and \− are the
parameters of the target network.

𝐿(\ ) =
∑︁

𝑠,𝑎,𝑟,𝑠′

(
𝑟 + 𝛾 max

𝑎′
�̂� (𝑠 ′, 𝑎′;\−) −𝑄 (𝑠, 𝑎;\ )

)
2

(6)

Note that the target network parameters \− are only synchronized with the policy network

parameters \ every T steps and are held fixed between weight updates. However, directly copying

the weights has been shown to be unstable due to noise and outliers. Inspired by prior works

[34, 39], we apply the soft update (Eq. 7) to the target network. The weights of the target network

are updated by interpolating between the weights of the target network and those of the policy

network through a fixed ratio 𝜏 = 0.001 [39].

\− = 𝜏\ + (1 − 𝜏)\−, 𝜏 ≪ 1 (7)

We present the learning process in Algorithm 3. We first initialize the policy network and the

target network with the same random parameters (line 1). In each epoch, we reset the replay

memory𝑀 and the set of upper nodes 𝐺𝑢 (line 3). Then, the learning process sequential packs the

bottom nodes to the upper nodes (lines 4 to 13). For every incoming bottom node 𝑐𝑖 , we generate

the state by combining 𝐺𝑢 and 𝑐𝑖 (line 5). We compute the average number of node accesses based

on the query labels of the current upper nodes (line 6). To balance between RL exploration and

exploitation, we use the 𝜖-greedy algorithm [57] to choose a random action with probability 𝜖

(i.e., exploration) or the action that maximizes the action-value function of the policy network

(i.e., exploitation) (line 7). After 𝑐𝑖 is packed, we update the state representation and compute the

average value again (lines 8 and 9). Then, we compute the reward and store this transition in the

replay memory (lines 10 and 11). To train the DQN, we draw a batch of transitions to train the

policy network (line 12) and periodically copy the policy network parameters to the target network

(line 13). Finally, we use the learned action-value function 𝑄 (𝑠, 𝑎;\ ) to pack the nodes.
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6 DESIGN OPTIMIZATIONS
Choice of CDF models. For our heuristic partition algorithm, the number of objects with each

keyword is approximated by a model that learns the corresponding CDF. Prior works [36, 38] have

used the neural network (NN) to learn the CDF. However, learning an NN for each query keyword

may lead to a large number of NNs to be learned and hence high preparation costs.

We observe that the query time of WISK is more sensitive to high-frequency keywords. To

decrease preparation costs, we divide keywords into three classes based on their frequency: low

(≤ 0.001‰), medium (0.001 − 0.1‰), and high (≥ 0.1‰). Previous studies [64, 72] have shown that

more resources should be allocated to records with more frequent elements to get better prediction

accuracy. When calculating the query cost, low-frequency keywords are ignored as they have little

impact on the query time. We adopt Gaussian functions to approximate the data distribution of

each medium-frequency keyword and learn an NN to approximate the CDF of each rest keyword.

Our empirical results show that such a strategy balances the preparation costs and the query time.

Correlation between keywords. In Section 4, we consider each keyword independently when

approximating |𝑂𝑠 | (𝑠 ∈ {1, 2}) in Eq. 4. This independence assumption impacts the performance of

the heuristic partitioning algorithm when a query has more than one keyword, e.g., if an object

contains 𝑘 query keywords of a query, this object will be counted 𝑘 times when predicting the

number of objects in a sub-space, leading to inaccurate query cost prediction.

To solve this issue, we exploit frequent itemset mining to discover all frequent keyword sets and

extract associations among the given set of keywords [1, 2, 25, 59]. We apply a classic algorithm,

FP-Tree [25], to find frequent keyword sets from the underlying data. Then, we learn a CDF model

of objects containing all keywords in one frequent keyword set and use the learned model to predict

the number of objects with the set of query keywords more accurately.

Action mask in RL. When the packing of a level starts, the upper nodes are all empty. To choose

the upper node to insert for the first bottom node, we observe that actions 𝑎 = 𝑖 (𝑖 > 1) are all

equivalent to 𝑎 = 1. We call these actions duplicated actions. Duplicated actions exist when more

than one upper nodes are empty. As observed in Figure 7, the actions of adding the bottom node

to any of these empty upper nodes are equivalent. Such duplicated actions make the exploration

inefficient, leading to slow convergence [23].

Thus, motivated by a prior study [76], another use of the environment is to generate an action

mask based on the current state to hide the duplicated actions from the agent. In the example above,

before inserting the first bottom node, the action mask generated by the environment makes the

agent only chooses action 𝑎 = 1.

Training time acceleration.WISK has two steps: finding the bottom clusters and packing the

bottom clusters through RL. To reduce the training time of WISK, we design acceleration techniques

for both steps. The first technique is to use sampled training queries, following a previous work [45].

We use stratified sampling [5] to obtain query samples that can better represent the distribution

of the original workload. The second technique groups the bottom clusters using a clustering

algorithm to reduce the number of bottom clusters to be packed in the bottom-up packing step. We

utilize the spectral clustering [46] with the coordinates of the bottom left and top right points of

each bottom cluster as features.

7 EXPERIMENTS
7.1 Implementation and Setup
Implementation. The learning process of CDF NN models, Algorithm 2, and Algorithm 3 are

implemented with PyTorch [47]. The performance evaluation of all index structures is implemented

in C++ and compiled using GCC 9.3 with -O3 flag. In the process of generating the bottom clusters,
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we empirically set 0.1 and 1 to the weights of stage 1 and stage 2, i.e., 𝑤1 and 𝑤2, respectively.

The CDF network consists of 4 layers, and each hidden layer has 16 units. We use ReLU as the

activation function of the hidden layer. The output of the CDF is activated by a sigmoid function.

When packing the bottom clusters, we follow the original implementation of DQN [44]. The neural

network consists of 3 layers, and each hidden layer has 64 units. We set the capacity of experience

replay to 256, and the discount factor is set to 0.99. For 𝜖-greedy algorithm, the initial value of

𝜖 is set to 1, and the value decreases with more learning steps, which balances exploration and

exploitation well.

Environment. We run single-threaded experiments in the main memory on an Ubuntu machine

with Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz, 128GB RAM, and a 500 GB SSD disk. Besides,

we train our CDF models on an Ubuntu machine with Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz,

256GB RAM, and RTX 2080 Ti GPU.

Baselines.We compare WISK with four SOTA conventional indexes, i.e., CDIR-Tree [15], SFC-

Quad [13], ST2I [27], and ST2D [58]. We implement these indexes using the default parameter

values reported in their original papers. Note that ST2D is only evaluated on FS by setting the

similarity threshold to 0 since it is only suitable for the case that containing a few distinct keywords

(a few hundreds) because of the textual clustering.

We also integrate a learned spatial index with a textual index loosely, following traditional spatial

keyword indexes. This results in a learned spatial-first index (SFI) and a textual-first index (TFI).

SFI attaches an inverted file for keywords indexing to each leaf node of a learned spatial index,

while TFI uses an inverted file as its top-level index and creates a learned spatial index for the

objects containing the same keyword. It has been shown that textual-first indexes outperform their

spatial-first counterparts [61, 79]. Therefore, we only report results for TFI in our experiments.

LISA [38] is used as the learned spatial index since it returns the exact results. We further extend

a learned multi-dimensional index, i.e., Flood [45]. We build an inverted file for each grid cell in

Flood and also improve its cost function for building the grid index by incorporating the textual

information, utilizing our CDF models on the geo-textual data, following the method presented in

Section 4. We denote this index by Flood-T. It splits the data along only one dimension in the 2D

geographical space, which limits its capability to capture the complex data distribution. We also

compare with LSTI [19], the latest index to support spatial keyword queries. This method maps

the data into one dimension using a Z-order curve based on the spatial coordinates and builds a

RadixSpline index [32] using the mapped values. Then, an inverted file is created for each spline

point by scanning the dataset again.

7.2 Datasets and Workloads
We use three real-world datasets in Table 1. The FS dataset [71] consists of global-scale check-in

records of Foursquare (https://foursquare.com/) from Apr. 2012 to Jan. 2014. A check-in data has a

spatial location and its category. The SP dataset includes recreational and sports areas extracted

from OpenStreetMap (https://www.openstreetmap.org). We use the center of each area and the

original description as the spatial location and keywords, respectively. The BPD dataset contains

global POIs published by the SLIPO project [48] (http://slipo.eu/). The OSM dataset contains 100M

POIs extracted from OpenStreetMap, which is published in UCR STAR [22]. Each POI has a point

location, and its keywords include all related information such as street and category. As there

is no public real-world query workload for the geo-textual datasets, we generate the queries by

following previous works [10, 23, 28, 63, 65]. Specifically, to generate a query, we first sample

an object in the dataset, and then generate a bounding rectangular area with the location of this

object being its center. Inspired by previous works [23, 63], we use four methods to generate the

centers: (i) UNI, where centers are uniformly sampled from the dataset. (ii) LAP, where centers are
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Table 1. Dataset Statistics

Property FS SP BPD OSM

Number of data objects 3M 4M 25M 100M

Number of distinct keywords 462 1M 24M 447M

Total number of keywords 6M 11M 116M 478M

Table 2. Parameters and their settings

Parameter Setting

Query distribution UNI LAP GAUMIX

Query region size (%) 0.005 0.01 0.05 0.1 0.5 1

Number of query keywords 1 3 5 7 9

sampled from the Laplace distribution [35]. We set the location and scale parameters, i.e., ` and 𝑏,

to |𝐷 |/2 and |𝐷 |/10 respectively, where 𝐷 is the object set. (iii) GAU, where centers are sampled

from a Gaussian distribution (` = |𝐷 |/2, 𝜎 = 100). (iv)MIX, composing of the centers generated

from the (i) and (ii) in equal proportions. Finally, we associate keywords for the queries following

prior works [10, 65]. If the number of query keywords is less than the number of keywords of the

center, we choose the query keywords from the sampled object. Otherwise, we randomly choose

the remaining keywords from the global keyword set.

To evaluate the performance of indexes in different scenarios, we generate query sets with

different numbers of keywords and query sizes. Table 2 summarizes parameters, where default

values are in bold and underlined. We generate 2000 queries under each setting, in which 1000

queries are utilized to test the performance of all the indexes, and others are used to train learned

indexes.

7.3 Query Time Evaluation
To evaluate the query time, we execute testing queries 100 times and report the average cost of the

queries in each query set.

7.3.1 Effect of query distribution. In this experiment, we fix other settings except for the

query distribution and show the results on all datasets in Figure 8. Clearly, conventional indexes

(SFC-Quad, ST2I, and CDIR-Tree) perform worse on the skewed workload since they do not use

the query characteristics when constructing the index. For the learned indexes, TFI performs even

worse than the conventional indexes since it only loosely combines a learned spatial index with

a textual index. Flood-T shows a slight fluctuation in its performance since it learns from the

underlying data and the query workload simultaneously, but in the geo-textual scenario, it only

splits along one dimension, making it incompatible with the skewed workload. Our WISK improves

the partitioning and adopts RL to build a tree, so it is less sensitive to this alteration.
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Fig. 8. Varying the distribution of the query workload

7.3.2 Effect of query region size. We show the performance of all indexes, by varying the query

region size varies from 0.005% to 1% of the whole region in Figure 9. Again, WISK performs the best
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Fig. 9. Varying the query region size
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Fig. 10. Varying no. of query keywords

on four datasets. Besides, Flood-T performs slightly worse than ST2I on SP, even though it optimizes

its layout by learning from the data and query workload. It is because it only splits the whole region

along one dimension. Thus, we improve this process to generate the leaf nodes of WISK and also

pack the bottom clusters into a hierarchical structure. The two techniques simultaneously result in

the superiority of WISK over the other indexes.

7.3.3 Effect of number of query keywords. We evaluate the query sets with different numbers

of keywords. Figure 10 shows that the query time of all indexes grows with the query keyword

set size. The reason is that with the increase in the number of query keywords, more candidates

need to be verified after the filtering step. Besides, WISK consistently outperforms other baseline

indexes, and its cost grows much slower than those of others, e.g., the increased time of WISK on

BPD is around 100 `s while those of Flood-T and ST2I are both over 250 `s. Hence, compared to

other indexes, WISK is less sensitive to the number of query keywords.

7.3.4 Scalability. We generate five sub-datasets of OSM containing from 1 to 100 million objects

and run experiments on these sub-datasets. We choose ST2I, LSTI, and Flood-T as our baselines.

As shown in Figure 11, the query processing time increases with the size of the dataset, but WISK

performs more stable.
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Fig. 12. Comparison of performance
when changing query distribution

7.3.5 Robustness. We evaluate the performance of ST2I, Flood-T, and WISK when the query

distribution changes on FS. We initially train Flood-T and WISK based on the query workload with

UNI distribution. Then, we keep the index consistent and adjust the ratio of queries with LAP

distribution from 0.2 to 1.0 in the testing query set. As shown in Figure 12, the performance of

query-aware indexes becomes worse when query distribution is more different from the training
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one. However, it can be seen that WISK is more robust than Flood-T due to its improved partitioning

algorithm and the bottom-up packing process. Additionally, the query time of ST2I also increases

since it ignores the query knowledge when building the index, but the fluctuation is less than the

one of Flood-T.

7.4 Index Size & Construction
7.4.1 Index Sizes. Table 3 reports the index sizes. Overall, WISK costs less space than conventional

indexes but is comparable to that of the best adapted learned indexes. In particular, the size of

CDIR-Tree is larger than those of the others since each of its nodes has an inverted file. For query

efficiency, we have not compressed SFC-Quad, which leads to a larger size. ST2I has the smallest

size among the conventional indexes. Among the learned indexes, the sizes of TFI are the largest,

as it uses inverted files. WISK takes more space than Flood-T on a small dataset since the number

of its bottom clusters is similar to the number of the columns of Flood-T, but we build a hierarchical

index. However, on larger datasets, WISK needs less space cost, since Flood-T splits more columns

for better performance and builds inverted files for them.

Table 3. Index structure size

Index FS SP BPD OSM

CDIR-Tree 2002MB 3571MB 33.15GB 108.45GB

SFC-Quad 1406MB 2568MB 15.65GB 58.71GB

ST2I 761MB 1554MB 15.18GB 56.05GB

TFI 573MB 1423MB 8.86GB 32.05GB

LSTI 642MB 1073MB 8.85GB 8.09GB

Flood-T 400MB 937MB 7.15GB 27.94GB

WISK 483MB 980MB 7.02GB 25.78GB

7.4.2 Index Construction Time. We compare the efficiency of index construction algorithms

and report the results in Table 4. It takes the minimum time to build SFC-Quad and ST2I on small

datasets. However, the time cost of ST2I significantly increases when the dataset becomes larger,

since ST2I is built based on the set of converted points, and its time cost is positively correlated to

the total number of keywords. CDIR-Tree takes the highest time cost because it inserts the objects

sequentially.

Table 4. Index construction time

Index FS SP BPD OSM

CDIR-Tree 391 sec 490 sec 56.17 min 196.87 min

SFC-Quad 20 sec 30 sec 3.35 min 9.18 min

ST2I 19 sec 29 sec 6.55 min 26.23 min

TFI 125 sec 283 sec 33.75 min 143.07 min

LSTI 23 sec 32 sec 4.16 min 16.32 min

Flood-T 188 sec 974 sec 19.66 min 25.97 min

WISK

(Accelerated)

131 sec 547 sec 12.18 min 17.43 min

For the learned indexes, we report the training time. LSTI takes the least time to build because it

only needs to scan the whole dataset twice. The time cost of TFI increases significantly when there

are more different keywords. For Flood-T and WISK, we report the average time as the time costs

of query-aware learned indexes usually increase with more query keywords.

We designed two training time acceleration techniques as presented in Section 6. We report

the training and query times of WISK with different sampling ratios in Figure 13a. The result of
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Fig. 13. Training time and resulting query time on SP

each sampling ratio is an average of 10 runs. While the training time decreases by 72%, we do not

observe a large drop in query performance with a sample of only 30% of the full query workload.

We also observe that the standard deviation (represented by the width of the bands) of the training

and query times of WISK is consistently small for all sampling ratios. This demonstrates that WISK

has a stable performance using stratified sampling. We vary the clustering ratio, i.e., the number of

groups obtained over the number of bottom clusters, to balance the training and querying time.

Figure 13b shows that even when the number of bottom clusters decreases by 80%, the query time

of WISK still only changes slightly. We set the sampling ratio to 30% and the clustering ratio to 20%

and generate the Accelerated WISK. As shown in Table 4, WISK has longer training times than

the other learned indexes, but the acceleration techniques can reduce index training time up to 4

times while the query time is only affected marginally.

7.5 Index Update
7.5.1 Dynamic Query Workload Changes. To update the index when query distribution

changes, we can retrain WISK periodically following the former study [45]. We generate six

workloads for FS. For each workload, we randomly select the query region size and the number of

query keywords, and the query distribution adopts the default settings (MIX) and we randomly

select the proportions of UNI and LAP. Each workload runs for 30 minutes and consists of 100

queries. As Figure 14 shows, at the start of each 30-minute period, i.e., a new query workload starts,

retraining WISK is triggered, which happens in a separate thread and does not interrupt the query

processing. While the index is being rebuilt, WISK runs the new queries on its old layout, which

explains the jumps in the figure. The retraining lasts about 3 minutes, and then WISK switches to

the new layout adapted to the new query workload. Thus, the query time drops back again.

To capture minor changes in query distribution when retraining, we propose to apply incremental

updates to the original index, in parallel to the retraining process. We locate the bottom clusters

that are affected by the new queries, re-partition these clusters if the query costs can be reduced

using new queries, and then insert the new clusters back into the non-leaf nodes they previously

belonged to. The incremental updates may also help reduce the query times, which explains the

multiple drops (e.g., at 00:30 and 01:30).

Figure 14 also indicates the necessity of learning from the query workload. When a new workload

arrives, the performance of WISK drops due to its outdated layout. Re-learning the layouts based on

the new workload mitigates the impact of the changing query distribution. The other two indexes

do not utilize the queries during construction, which leads to much worse performance than WISK

(e.g. at 01:00, 02:00, and 02:30) on the skewed query workloads (i.e. high proportion of LAP).

7.5.2 Data Insertion. WISK also handles data insertion well. Given a new object o, we can

traverse WISK to find the bottom cluster where o falls. Next, we update the inverted file or the

bitmap of the affected nodes to obtain an updated index. This simple process, however, cannot

guarantee an optimal layout because the bottom clusters might need to be split after the insertion.

Thus, we buffer the inserted objects and retrain our index when the buffer is full.
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Fig. 14. Impact of dynamic workload changes

We set the buffer size at 100,000 (around 20MB) and run experiments to examine the impact of

data insertions. We randomly select 500,0000 objects from FS for the insertions. We insert 100,000

objects every 30 minutes. Figure 15 shows the performance of ST2I, LSTI, and WISK. We compare

with WISK using the simple insertion process without retraining. It can be seen that the query

time of all indexes increases when more objects are inserted. Between the two WISK variants, we

see that the query time of WISK without retraining increases faster with more insertions, thus

verifying the importance of retraining in improving the query time of WISK under dynamic data

settings. We also observe that the retraining process takes only 1 to 2 minutes each time, since

only the affected bottom clusters need to be split, and the RL-based packing can inherit knowledge

from the previous training process, i.e., the unaffected bottom clusters are initially packed into the

previous corresponding upper nodes.
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Fig. 15. Impact of data insertion

7.6 Ablation Study
7.6.1 RL-based Packing. We conduct an experiment to compare the cost at the leaf level and that

at the non-leaf level. Figure 16 shows that the time at the leaf level dominates the query processing

time, which occupies around 90% of the total cost, verifying the way to define cost function is

reasonable. In Figure 17, we observe that packing our bottom clusters by directly using CDIR-Tree

construction method might affect the query time because it may pack some leaf nodes intersecting

with various queries.
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Fig. 16. Comparison of processing time
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Fig. 17. Comparison of packing meth-
ods

We evaluate the effectiveness of the bottom-up construction process. As shown in Figure 18a,

the improvement of the different number of keywords is similar. This is because the number of
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query keywords has little effect on the number of bottom clusters. Thus, the improvement is stable

using this RL-based grouping algorithm.

 Flat  Hier

1 3 5 7 90
6 0

1 2 0
1 8 0
2 4 0
3 0 0

N o .  o f  k e y w o r d s

Qu
ery

 tim
e (

µs
)

(a) Varying no. of keywords

0 . 0 0 5 0 . 0 1 0 . 0 5 0 . 1 0 . 5 10
4 2 0
8 4 0

1 2 6 0
1 6 8 0
2 1 0 0

Q u e r y  r e g i o n  s i z e

Qu
ery

 tim
e (

µs
)

(b) Varying query region size

Fig. 18. Comparison of index layouts on BPD

It can be seen from Figure 18b that the improvement of hierarchical indexes becomes more

significant for queries of larger region sizes. This is because queries of larger region size correspond

to a wider space covered by these queries and more bottom nodes such that the bottom-up packing

process can reduce more filtering cost. However, we also observe that the improvement becomes

stable as the region size continues to get larger, as the query region covers most of the data space.

7.6.2 CDF Model. When generating bottom clusters, we use CDF models to estimate the number

of objects sharing the same keywords inside a region. To reduce the parameters, we propose to use

Gaussian functions and NNs for keywords with different frequencies. In Figure 19a, we compare

our method with the settings in which only Gaussian models or NN models are used. Although

the Gaussian-only method has the least training time, its estimation results are inaccurate, leading

to much worse query time. In contrast, the NN-only method achieves the best query time, but it

needs much more training time. In comparison, the proposed mixed method achieves similar query

performance as the NN-only method without significantly increasing the training time.
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Fig. 19. Effect of different CDF settings

To speed up pre-processing, we assume that the two spatial dimensions are independent following

the existing work [45]. We next study the impact of such an assumption.

We observe that keywords with higher frequency have a stronger impact on the query time, and

thus they need a more accurate CDF estimation. We run experiments with a randomly selected

high-frequency keyword on FS. We train two marginal (1D) models and a joint (2D) model for

the selected keyword on the whole dataset. The 1D models and the 2D model all employ a neural

network with 2 hidden layers and 16 hidden units. We also compare with two variants of the 2D

model, one uses more hidden units (32 units) and the other uses more layers (3 layers). We randomly

sample 1,000 rectangular query regions within the data space as testing data. For each query region,

we compute the proportion of objects that fall within it as the ground truth. The product of the

two 1D models and the output of the 2D models are used as the estimation results corresponding

to 1D and 2D models, respectively. For every 50 training rounds, we calculate the mean squared

error (MSE) between the estimations and the ground truth. Figure 19b shows that the 1D model
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converges much faster while its final loss is comparable to those of the 2D models. These results

justify the use of 1D CDFs in our method.

7.6.3 Frequent Itemset (FI). The FI mining extracts the frequent interrelation among keywords.

In this experiment, the minimum support is set to 0.01‰ and the maximum size of target itemsets is

equal to the number of query keywords. Figure 20 shows the effect of FI on the index construction

by query efficiency on FS and BPD. We see that the FI mining improves the performance of WISK

consistently when there is more than one query keyword. Without the FI mining component, we

learn models of each keyword separately where redundancies occur when there is more than one

keyword. We also observe that this adaptation is more beneficial given more query keywords. In

general, more query keywords lead to a higher possibility of resulting in redundancy since the

probability of an object including more than one query keyword increases.
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Fig. 20. Effect of the frequent itemset

Besides, the performance improvement on BPD is more obvious than that on FS. This is because

the number of distinct keywords on FS is much less, making the number of frequent itemsets

less than others. Additionally, the improvement becomes consistent when the number of query

keywords is larger than a threshold. The reason is that each object includes finite keywords, and

thus we cannot generate frequent itemsets with more keywords.

7.6.4 Action Mask. When using the RL framework, the environment applies the action mask to

reduce the action space. Here, we evaluate its effectiveness in two aspects. We use the SmoothL1Loss

with the sum reduction as the loss function in our RL framework. Figure 21a shows that the RL

framework with the action mask can speed up the model convergence and reach a smaller loss. In

Figure 21b, we sum the total rewards and the number of bottom nodes in each epoch to show the

reduction in the average number of accessed nodes. The result shows that the pruning capability is

always better when applying the action mask.
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Fig. 21. Comparison of model convergence and reward

there are some fluctuations in the results as the RL agent learns from the feedback through

trial-and-error interactions with the environment. RL balances the trade-off between exploration

and exploitation, which reduces the fluctuation with more training epochs. These results confirm

that the action mask helps to decrease the number of training epochs, leading to less training time.
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7.7 Parameter Sensitivity Study
We further evaluate the sensitivity of WISK’s training and query times to our key parameters. We

show the results of varying the numbers of hidden units and layers in the neural networks in Figure

22a. Using more hidden units significantly increases the training time but only slightly improves the

query time. Increasing the number of hidden layers shows a similar effect. Additionally, increasing

the size of the structure requires larger memory space. Thus, we set the default hidden units and

layers to 16 and 2.
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Fig. 22. Comparison of training time and query time

We also vary the capacity of experience replay and the discount factor. The results show that

they have minor impacts on the query time and the RL convergence rate. We omit the details due

to space limits. The performance of WISK is less sensitive to these hyper-parameters, and we can

follow the existing work [44] to set them.

8 RELATEDWORK
Traditional geo-textual indexes. In recent years, due to the popularity of SKR queries and their

applicability in practical scenarios, a series of geo-textual indexes [11, 13, 26, 31, 58, 61, 79] have

been proposed to support efficient SKR query processing.

The general idea of geo-textual indexes is to combine spatial and textual indexes to exploit their

pruning capabilities based on the spatial and textual attributes of the data. Early works only loosely

combine both types of indexes. For example, Vaid et al. [61] propose the first grid-based geo-textual

indexes, i.e., the spatial primary index (ST) and the text primary index (TS), which are spatial-first

and textual-first integrations, respectively. Parallel to this work, the R*-tree-inverted file (R*-IF)

and the inverted file-R*-tree (IF-R*) [79] combine the inverted file with the R*-tree [3]. The loose

integrated indexes has been shown to result in unsatisfactory query time in both the follow-up

study [10] and our experiments.

Later works combine spatial and textual indexes more tightly such that they use both types of

attributes of the data for search space pruning in parallel. For example, each grid cell in Spatial-

Keyword Inverted File (SKIF) [31] is presented by an inverted list, and it works in the rectangular

object scenario. Hariharan et al. [26] propose the Keyword-R*-tree (KR*-tree). Each node of this

index is associated with the set of keywords that appear in the sub-tree rooted at this node. Thus,

each tree node can prune the search space with both a spatial region and a set of keywords at the

same time.

The indexes above focused on SKR queries. There are also geo-textual indexes [15, 16, 27, 52, 68,

75], such as IR-Tree, developed for other types of spatial keyword queries. Some of these can be

adapted to answer SKR queries. However, since they are not tailored for SKR queries, their query

time is usually worse [10].

Learned indexes. Kraska et al. [36] propose the recursive model index (RMI), which leverages

machine learning models to replace a traditional index over one-dimensional search keys. The

motivation is that an index can be seen as a function mapping a search key to the storage position
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of the corresponding record. Several follow-up studies propose learned indexes for one-dimensional

data [17, 21, 69]. More details can be found in a benchmark study [42].

To handle multi-dimensional data, the Z-order model [62] extends RMI by utilizing a Z-order

curve to map multi-dimensional search keys into one-dimensional keys. Since this index might

lead to large and uneven gaps between the mapped keys of adjacent objects, RSMI [51] proposes a

rank space-based technique, and it further proposes a hierarchical learned partitioning strategy for

index learning over large spatial datasets. A parallel work, LISA [38], designs a grid-based index

that supports data updates. The RLR-tree [23] uses machine learning techniques to build a better

R-tree without the need to change the structure or query processing algorithms of the R-tree.

Although these indexes have shown performance gains by exploiting the data distribution, they

have ignored the query workload in index construction. Several studies [18, 40, 45] take into account

the query workload and propose to automatically optimize the index structure for a given data and

query distribution.

Reinforcement learning. RL is often utilized in sequence generation applications, such as game

playing [54], machine translation [30], and bin packing [78]. Recently, it has been adapted to solve

database optimization problems, such as query optimization [76], index tuning [70], and trajectory

simplification [66]. However, these problems are quite different from ours by definitions, and so are

their state and reward formulations. Thus, our RL formulation requires new designs in the states

and reward functions.

9 CONCLUSIONS AND FUTUREWORK
We proposed a hierarchical index named WISK for SKR queries, which is jointly optimized for a

given dataset and a query workload. WISK is built in two stages. First, a partitioning algorithm finds

the data clusters that minimize the time cost of executing the query workload. Then, an RL-based

algorithm packs the data clusters into a hierarchical index in a bottom-up manner for more efficient

pruning at query time. Learning from the query workload enables WISK to significantly outperform

traditional SKR indexes. Experimental results on real-world datasets show that WISK yields strong

query performance over various workloads, achieving up to 8× times speedups with comparable

storage overhead.

There are several directions for future work. First, we intend to better answer Boolean 𝑘NN

queries and to support more types of spatial keyword queries. Second, even WISK can adapt to

workload changes by model retraining, a data-driven learned index, which is compatible with

frequent workload shifts and data changes, is an interesting direction to explore.
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