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Abstract. Detecting fake news on social media is an increasingly impor-
tant problem, because of the rapid dissemination and detrimental impact
of fake news. Graph-based methods that encode news propagation paths
into tree structures have been shown to be effective. Existing studies
based on such methods represent the propagation of news through static
graphs or coarse-grained graph snapshots. They do not capture the full
dynamics of graph evolution and hence the temporal news propagation
patterns. To address this issue and model dynamic news propagation at
a finer-grained level, we propose a temporal graph-based model. We join
this model with a neural Hawkes process model to exploit the distinc-
tive self-exciting patterns of true news and fake news on social media.
This creates a highly effective fake news detection model that we named
SEAGEN. Experimental results on real datasets show that SEAGEN achieves
an accuracy of fake news detection of over 93% with an advantage of over
2.5% compared to other state-of-the-art models.

Keywords: Fake News Detection - Dynamic Graph Embedding.

1 Introduction

Fake news created with malicious intent can lead to a substantially negative
impact on society, especially during major events such as the U.S. presidential
election and the COVID-19 pandemic. To combat the negative impact, various
methods have been proposed including exploiting the news content [4], the char-
acteristics of the users involved [17] and the message propagation patterns [1]. In
this paper, we focus on detecting fake news propagated on social media platforms
such as Twitter through its dissemination and user interactions patterns.

News propagation on social media can be represented by graph-based models
where the social media posts (or users) are represented as nodes, while replies,
retweets, or other dissemination actions are represented as edges. Many existing
graph-based fake news detection models [1,19] use a static graph that shows
the complete spatial propagation network after a (fake) news item has been
spread. However, these spatial structure-based approaches have largely oversim-
plified the temporal structure associated with the message propagation, i.e., the
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sequence and interval of the messages propagated along the timeline. For exam-
ple, in Fig. 1, three news propagation graphs (each node represents a post) share
the same tree structure, but have different temporal patterns. The propagation
graphs in Figs. 1a and 1b differ in the time order when the nodes vy, v3, and vy
are added to the graphs. For the propagation graphs in Figs. 1a and 1c, whilst
their time orders are the same, nodes v; to v4 in Fig. 1c are much closer in time.

Further, it has been observed that the fake news propagation process ex-
hibits a viral nature and has different stages in terms of people’s attention and
reactions, resulting in a unique life cycle [16]. In particular, fake news tend to
exhibit a sudden increase in the propagation process, while true news have a
much smoother process. A sudden increase can be related to the self-exciting
phenomenon [13] caused by social bot promotions or people’s rapid actions to
question or correct false information [16].

Such observations motivate us to model the temporal evolving nature of user
interactions (i.e., news propagation process) as the basis for detecting fake news.

Sequence-based methods (e.g., [8]) flatten the propagation graph into a chrono-
logical sequence of events. Models such as Recurrent Neural Networks (RNN)
and BERT [3] can then be applied to learn temporal patterns. A limitation
of such methods is that they largely overlook the graph structure of the news
propagation patterns.

Other studies [2] use propagation graph snapshots to model both the spatial
and temporal propagation patterns. This method only captures the graphs at
selected time points, hence they may miss the exact time when a drastic change
in the propagation graph occurs. Besides, these studies ignore the self-exciting
phenomenon associated with fake news.

To better model the temporal propagation patterns for fake news detection,
we propose the Self-Exciting-Aware Graph Evolution Network (SEAGEN) model,
based on the temporal interactions associated with news propagation processes.
We represent news propagation on social media using temporal graphs, where
social media posts are nodes and user interactions are the edges. Different from
existing graph-based methods, we encode the graph evolution process by in-
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Fig. 1: Example of three news propagation graphs.
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tegrating local sub-graph modeling and global evolution modeling. Our model
consists of three main components: (1) a local sub-graph encoding module, (2) a
self-attention-based global temporal evolution module, and (3) a neural Hawkes
process-based self-exciting module.

The local sub-graph encoding module encodes a local sub-graph, which mod-
els the interaction between a graph node and its neighbouring nodes. Each local
sub-graph represents a single temporal stage in the graph evolution process. By
encoding the full sequence of local sub-graphs, SEAGEN learns fine-grained news
propagation patterns that can then be used for fake news detection.

A Transformer-based global temporal evolution module then integrates the
sequence of local sub-graphs and captures the overall temporal evolution (i.e.,
news propagation) process. It uses a self-attention mechanism to re-weight the
(encoded) local sub-graphs based on their content and timestamp of interactions.

A neural Hawkes process-based self-exciting module models the self-exciting
phenomenon using a neural network and Hawkes process. We establish fake news
detection and Hawkes intensity prediction to capture the self-exciting nature of
social media-based fake news.

To summarise, this paper makes the following contributions:

we propose a novel model named SEAGEN for fake news detection based on

a sub-graph sequence-based approach to model temporal news propagation

patterns in social networks;

— to learn local propagation patterns, we propose a time-aware encoder to
encode local sub-graphs that model fine-grained user interaction events;

— to learn the overall propagation patterns, we use a self-attention-based global
temporal evolution module and a neural Hawkes process module, where the
former module integrates patterns learned from the local sub-graphs and the
latter captures the self-exciting phenomenon;

— we perform extensive experiments on social media datasets. The results show

that SEAGEN outperforms state-of-the-art models with an overall accuracy ex-

ceeding 93% for fake news detection, including a detection accuracy increase
in early stage.

2 Problem Formulation and Data Structure

We consider a fake news detection dataset from social media, which consists of
a set of claims C = {C1,Cy,...,C¢|}. Each claim C; = {vf, v, 05, ..., v, Gi}
corresponds to a news item, where vf, is a source post (e.g., a source tweet). There
should be n; (n; > 0) responding posts (e.g., retweets or replies) {v}, v5, ..., v}, }
listed in chronological order.

Graph G; = (V;, E;, T;) is a temporal graph (a tree) representing the propa-
gation pattern of the posts, where v{ is the root node (cf. the top left graph in
Fig. 2). The set of nodes V; = {vf, v}, v, ..., v}, } represents the source and the
responding posts. The set of edges E; = {e’,|s,t = 0,...,n;} represents the re-
sponding relationships between the posts, where s and t represent the subscripts
of a post and a response to it, respectively. When s = 0, it refers to the source
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post v§. The set T; = {t!,|s,t = 0,...,n;} represents the occurrence times of
the edges in E;. In this graph representation, each node v;- € V; is represented
by a vector x%, which is a text embedding of the post content. We use text
embeddings from a pre-trained BERT-base text encoder [3] for simplicity.

Given graph G;, our goal is to classify if it represents a fake or a true news.

We note that replies and retweets represent two different interactions on
Twitter. Replies are comments with textual contents, while retweets re-post
source posts and usually express a supportive attitude. To take advantage of
the textual content of replies and the supportive information of retweets, we
represent the replies with their own textual contents and retweets with the source
post’s textual contents, respectively.

3 Proposed Model

As shown in Fig. 2, SEAGEN consists of three modules: a local sub-graph encoding
(LSGE) module, a Transformer-based global evolution capturing (GEC) module,
and a neural Hawkes process module. The LSGE module extracts a sequence
of sub-graphs from G; and learns a representation for each sub-graph encoding
both the structural and the temporal information (Section 3.1). The learned
embeddings of the sequence of sub-graphs are fed into the GEC module that
re-weights the embeddings and prepares for the neural Hawkes process (Sec-
tion 3.2). The weighted embedding sequence is given to a neural Hawkes process
to establish the interaction intensities (Section 3.3) and to a feedforward neural
network (FFN) to determine whether G; represents a fake news item. The out-
put of the neural Hawkes process model and the FFN are used to compute the
loss function for model training (Section 3.4).
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Fig. 2: Architecture of SEAGEN.
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3.1 Local Sub-graph Encoding Module

Given graph G;, our LSGE module first extracts a sequence of local sub-graphs.
At each time ¢; that corresponds to the occurrence of node v§ € G; (i.e., post
w;) except for the source post (i.e., 7 > 0), we extract a sub-graph of G;. The
sub-graph is formed by v}, v%’s parent node v}, and vj,’s neighbor nodes N (v}; ;)
before time ¢;. For example, as shown in Fig. 2, as time ¢3, node v3 occurs. A local
sub-graph is formed by vs, v1 (i.e., v3’s parent node), and vy (i.e., a neighbour of
v1 that occurs before t3.), in which the latter occurring node v, is not included.
For simplification, in what follows, we omit the superscript ¢ for the nodes in
graph G;, and we simply use ¢ instead of t; to represent the occurrence time of
’Uj.

Each local sub-graph forms a small conversation represented by the topic
of discussion when v; occurs. Then, the sub-graph is embedded by multi-head
attention to form a new embedding h,(t) for node v;, as detailed below.

When the interaction between parent node v, and child node v; occurs at time
t, we consider v,’s neighbourhood N (vp;t) = {v], .0, v;\,} which takes place prior
to time t. The node features of v;, v,, and v,’s neighbours are input together into
the sub-graph encoder to produce a sub-graph representation h;(t). For any node
vy, we use the text representation x, € R% to denote its node features, where
dy is the dimension of the text representation. Every interaction between node
vi, and its parent node is also associated with a posting time ;. To compute the
sub-graph representation h;(t), a multi-head attention (MHA) mechanism [20]
is utilised to integrate features from two interacting nodes and their neighbours.
The query Q(¢) is defined from the child node v; which initiates the interaction.
The key K(t) and the value V(t) are defined from the parent node v, and its
neighbours. Formally,

h; (t) = FFN(x;|[h(t)) (1)

h(t) = MHA(Q(¢), K(t), V(1)) (2)

Q(t) = x,[|(0) 3)

K(t) = V(1) = [xplI®(t — t), % |[B(t = 1), ... x| [B(F — )] (4)

Here, h;(t) is the sub-graph representation of the current interaction and also
the computed hidden representation for node v;, §(-) represents the generic time
encoding [21], || is the concatenation operator, and t,, {t;, ...,y } are the posting
times of node v, and its neighbours N (v,;t). FFN is a feedforward network and
MHA is a multi-headed attention layer. FNN and MHA contain all trainable
parameters of the LSGE.

After LSGE, the representation of the full temporal graph G; consists the
embeddings of the source node and the sub-graphs (each corresponding to a
responsive node in G;): H = {xg, hy(t1), ..., hg(tx), ..., hxy (tn)}.
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3.2 Global Evolution Capturing Module

Next, we employ a Transformer [20] encoder based self-attention module, Global
Evolution Capturing (GEC) module, to capture the global evolution process. The
output of LSGE, which is the sub-graph enhanced representation of all nodes in
G, is fed into GEC in chronological order.

The original Transformer only considers element-wise relative positions via
Positional Encoding [20]. In our case, we need to be aware the interaction ab-
solute occurrence times for later neural Hawkes process module. Therefore, an
adaptive temporal-aware Positional Encoding is formulated as:

cos(t; /100007 ), if k is odd
[z(t;)]k = { ! (5)

sin(t; /1000037 ), if & is even

where z(t;) € RM is the time encoding of the j-th element in the sequence, and
M is the dimension of the encoding. Then the output of LSGE;, i.e., H, is first
enhanced with the time encoding as follows:

H=H+2Z (6)

After adding the time encoding, H’ is passed to a self-attention module:

QK"
S = Softmax Vv 7
f (\/MT<) (7)
Q=HWK=HWK V=HWY. (8)

Here, Q, K, ad V are the query, key, and value of the self-attention [20] trans-
formed from H’, while WQ, WX and WV are the weights of the linear trans-
formations. Note that multi-head self-attention is also implemented.

The output S will be used in the neural Hawkes process module to com-
pute the continuous conditional intensity which describe the dynamics of the
news propagation process.To prevent leftward information flow (i.e., the neural
Hawkes process predicts intensities by inferring future events’ timestamps), at-
tention mask is implemented like [20]. The veracity prediction is also computed
based on S, as defined by the following equation.

97 = FFN(MeanPooling(S)) 9)

3.3 Neural Hawkes Process Module

A Hawkes process [5] is a self-exciting point process. It can simulate news prop-
agation by modelling the generation of social media posts (tweets) over a con-
tinuous time domain. The frequency of posts and responses/retweets generated
is determined by an underlying intensity function which considers the impact
of past posts. The intensity function A(t) models the self-exciting nature by
summation of the impact of past posts, which is defined as:
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A(t) = po(t) + Y ¢t —tr) (10)

te<t

where po(t) is the base intensity, ¢ is a so-called kernel function that is used to
modulate the effect of previous events &k on the intensity A(t).

The traditional Hawkes process oversimplifies the dynamics of point pro-
cesses, and assumes that all previous events have positive impact on the occur-
rence of the current event. However, a user’s behaviour can contribute to the
spread of rumors on social media and/or curb them. To overcome this limita-
tion, we adopt a neural Hawkes based process [22] to model the complicated
self-exciting phenomenon.

The output of GEC S = {si,...,sy} is fed forward into the neural Hawkes
process module, to compute the continuous user interaction intensity. Given
a self-attentive sequence of interactions with timestamps before time ¢: H =
{(sk, tx) : tx < t}, the continuous intensity at time ¢, A\(¢t|H;), is computed by:

At[He) = f(a% +w'sj+b) (11)
f(x) = Blog(1 + exp(z/f)) (12)

where «, 8, and w are learnable parameters, s; is the self-attentive hidden state
for corresponding responsive post that occurs just before time .

3.4 Model Training

For a sequence S over observation interval [t1,¢7] with a continuous conditional
intensity function given as A(¢|H;), the log-likelihood can be computed as:

L tr,
Ls = logA(t|H) —/ (| )dt (13)

1

where the left part is the event log-likelihood and the right part is the non-event
log-likelihood. To calculate the integral non-event log-likelihood, Monte Carlo
integration [14] is utilised.

Meanwhile, the veracity prediction loss is computed as a cross-entropy loss:

Lo = —ylog(y1) — (1 — y)log(¥o) (14)

where the § = [4o, ¥1] denotes the probability of a given piece of news to be true
or false. The final loss function is the sum of Lg and Lo as weighted by ~.

L=Lc+7 Ls (15)
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Table 1: Statistics of the Datasets.

Statistic #source tweets | #users | #fake news | #true news | Avg. time length
Twitter 1,147 | 29,858 578 569 158 hours
FakeNewsNet 4,168 | 45,109 2,079 2,089 1,951 hours

4 Experiment

4.1 Datasets

We use public Twitter datasets Twitter [9] and FakeNewsNet [16]. The former in
particular is formed by true-rumours and false-rumours from the Twitter15 [9)
and Twitter16 [9] datasets, named as true news and fake news, respectively.

FakeNewsNet consists of two classes of data: true news and fake news. Table 1
summarises the datasets.

4.2 Baseline Methods

We compare with state-of-the-art fake news detection models including;:

— RvVNN [10] uses a recurrent neural network to learn discriminative features
from post contents by following their non-sequential propagation structure.

— Sta-PLAN [7] uses a self-attention mechanism and position encoding [20]
to extract textual features for sequence embedding learning.

— STS-NN [6] jointly models the spatial and the temporal structures of the
message propagation process using a gated recurrent unit (GRU).

— Bi-GCN [1] represents social media posts as nodes in a graph and utilises
a graph convolutional network (GCN)-based model to encode the graph.

— Dy-GCN [2] takes snapshots of the message evolution process, builds a
graph for every snapshot, and then encodes the graph snapshots by a GCN.

— GACL [19] enhances Bi-GCN by generating adversarial training samples
and training based on contrastive learning.

4.3 Experiment Setting

We run the baseline models with the default settings as reported in their orig-
inal papers. We implement our model SEAGEN in Python 3.8 and run it on a
NVIDIA A100 GPU. Datasets are split into training and test sets with a split
ratio of 8:2 without overlapping. A pre-trained BERT model is used to compute
textual embeddings as the initial graph node features of SEAGEN. The weighting
parameter ~ in the final loss function is set as 5e — 5 via a grid search in {5e — 3,
5e — 4, 5e — 5, 5e — 6}. The model parameters are optimised using the Adam
algorithm, and the model performance is evaluated by a 5-fold cross validation.
The average accuracy and F1 scores are reported as the evaluation metrics. We
will release our code in: https://github.com/gszswork/SEAGEN
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Table 2: Fake News Detection Performance on Twitter and FakeNewsNet (F-F1:
F1 score for fake news detection; T-F1: F1 score for true news detection).

Method Twitter FakeNewsNet

Acc F-F1 T-F1 Acc F-F1 T-F1
RvNN 0.805 0.803 0.807 0.828 0.801 0.829
Sta-PLAN 0.780 0.780 0.779 0.800 0.794 0.801
STS-NN 0.834 0.834 0.833 0.858 0.857 0.858
Bi-GCN 0.864 0.865 0.863 0.889 0.889 0.890
Dy-GCN 0.873 0.872 0.873 0.896 0.894 0.896
GACL 0.878 0.875 0.880 0.905 0.906 0.902
SEAGEN 0.908 0.910 0.906 0.930 0.929 0.931
gain +3% +3.5% +2.6% +2.5% +2.3% +2.9%

4.4 Performance Comparison

Table 2 shows the overall model performance results. On the two datasets, our
model SEAGEN significantly outperforms all the competitors — the performance
gain is up to 3%. This confirms the effectiveness of SEAGEN and using the tem-
porally evolving graph embeddings for fake news detection.

Further, we observe that the methods using graph neural networks (Bi-GCN,
Dy-GCN, GACL) outperform sequence-based methods (RvNN, Sta-PLAN, and
STS-NN), which confirms the effectiveness of graph based methods.

Meanwhile, the dynamic graph method Dy-GCN learns from snapshots of
static graphs at different time points. It only yields a marginal improvement over
Bi-GCN. Its performance is limited by its coarse-grained graph encoding because
the temporal graph information between snapshots cannot be captured. GACL
which is an enhanced Bi-GCN model achieves the second best performance. We
attribute this to the adversarial training samples and contrastive learning.

4.5 Ablation Study

To analyse the impact of each module in SEAGEN, we implement the following
variants:

— w/o LSGE: Removing the local sub-graph encoder and feeding the node
features in temporal order directly into the Global Evolution Capturing mod-
ule.

— w/o GEC: Removing the global evolution capturing module.

— w/o Hawkes: Removing the neural Hawkes process module and deactivat-
ing joint training.

The comparative performance patterns on the F1 scores are similar and hence
are omitted due to space limit. Same below. Each variant is trained on the same
datasets as the full model SEAGEN. The experimental results are shown in Ta-
ble 3. We see that the full model SEAGEN outperforms all model variants, con-
firming that each module contributes to the overall model performance. Among
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these variants, the w/o LSGE has the worst performance; this is because the
SEAGEN will degrade to a pure sequence model without the LSGE kernel. We
can also see that the GEC and Hawkes module do have contributions to the
model performance by capturing evolution sequential and self-exciting features.

4.6 Early Detection Performance

To mitigate the negative impact of

fake news, it is crucial to detect fake

news as early as possible. Therefore, Table 3: Fake News Detection Accuracy
we further study our model perfor- on Twitter and FakeNewsNet.

mance on the early detection of fake

news. We take the first 20%, 40%, 60%,  Variant Twitter|FakeNewsNet
80%, and 100% (in terms of the re-  w/o LSGE 0.866 0.884
sponse amount of a news) subsets of  w/o GEC 0.878 0.915
the two benchmark datasets to train ~ w/o Hawkes| 0.899 0.918
and test the models and show the accu- SEAGEN 0.908 0.930

racy in Fig. 3. Here, we only show the
most competitive baselines Dy-GCN
and GACL to simplify the figure.

It can be observed that, with the change of subset amounts, our model SEAGEN
consistently outperforms both Dy-GCN and GACL. As longer time spans are
considered, the performance gaps increases because more detailed temporal in-
formation is provided. The performance gain of SEAGEN over GACL increases
around 2% when only the first 20% replies/retweets of a source post is available,
which can result from the temporal feature extraction in our modules. This
confirms the effectiveness of SEAGEN in the early detection of fake news.

4.7 Case Study

We next showcase two samples from FakeNewsNet which are mis-classified by
Bi-GCN, GACL and Dy-GCN but successfully classified by SEAGEN. The true
news item A (Jennifer Aniston on a Friends Reunion: Anything Is a Possibility...I
Mean, George Clooney Got Married.) and the fake news item B (Kristen Stewart
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Fig. 3: Early Fake News Detection Performance on  Fig. 4: ecdf plot for item A,
Twitter (left) and FakeNewsNet (right). B.



Fake News Detection Through Temporally Evolving User Interactions 11

On Dating Robert Pattinson: The Public Were The Enemy.) share almost the
same propagation structure where most relies and retweets straightly interact
with the source post. Examples A and B also have similar propagation time
spans (around 60 hours) and propagation size (around 70 responses), and hence
they are difficult to be distinguished by static graph methods (Bi-GCN, GACL).
However, their propagation speeds over time can vary. The propagation speeds
of these two examples in the first 60 hours are visualised by their empirical
Cumulative Distribution Function (ecdf) in Fig. 4. Compared to that of the
true news item A, the propagation of fake news item B keeps mild until a viral
spread hits at around 15 hours, which can be captured by SEAGEN’s GEC and the
neural Hawkes module. In contract, Dy-GCN takes snapshots at equally spaced
timestamps (e.g., 20 hours, 40 hours, 60 hours), thus failing to capture the sudden
increase at early stage, which exemplifies the weakness of coarse-grained graph
snapshot-based methods.

5 Related Work

Existing approaches for fake news detection can be broadly divided into content-
based, social context-based, and environment-based.

Content-based approaches learn content or style features from the text or
media content of news [4]. They may also leverage external knowledge for fact
checking [15]. Social context-based approaches detect fake news through user
features [17] or propagation analysis. The propagation analysis is a hot topic
and develops from sequence modelling [8,7] to graph modelling [1]. Propaga-
tion temporal features are also exploited recently, such as Choi et al. [2] encode
the propagation as graph snapshots, Song et al.[18] utilises TGN [21] to encode
the propagation graph, and [11] detects fake news through self-exciting differ-
ence. Environment-based approaches [12] mainly zooms out and considers the
association across multiple news articles to debunk fake news.

In this paper, our approach focuses on social propagation graph, utilises
graph and sequential features in a hybrid way. Self-exciting features is also cap-
tured by joint learning.

6 Conclusion

In this paper, we proposed a novel social media fake news detection model
SEAGEN. It models the news propagation via self-exciting aware sub-graph se-
quence encodings. Extensive experiments on two benchmark datasets demon-
strated the superiority of our model, including in detection in early stage. In
the future work we intend to extend current work to user based temporal graph,
which will be more suitable to be deployed as an online learning framework.
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