
KDGAN: Knowledge Distillation with
Generative Adversarial Networks

Xiaojie Wang
University of Melbourne
xiaojiew94@gmail.com

Rui Zhang∗
University of Melbourne

rui.zhang@unimelb.edu.au

Yu Sun
Twitter Inc.

ysun@twitter.com

Jianzhong Qi
University of Melbourne

jianzhong.qi@unimelb.edu.au

Abstract

Knowledge distillation (KD) aims to train a lightweight classifier suitable to provide
accurate inference with constrained resources in multi-label learning. Instead of
directly consuming feature-label pairs, the classifier is trained by a teacher, i.e., a
high-capacity model whose training may be resource-hungry. The accuracy of the
classifier trained this way is usually suboptimal because it is difficult to learn the
true data distribution from the teacher. An alternative method is to adversarially
train the classifier against a discriminator in a two-player game akin to generative
adversarial networks (GAN), which can ensure the classifier to learn the true data
distribution at the equilibrium of this game. However, it may take excessively long
time for such a two-player game to reach equilibrium due to high-variance gradient
updates. To address these limitations, we propose a three-player game named
KDGAN consisting of a classifier, a teacher, and a discriminator. The classifier and
the teacher learn from each other via distillation losses and are adversarially trained
against the discriminator via adversarial losses. By simultaneously optimizing the
distillation and adversarial losses, the classifier will learn the true data distribution
at the equilibrium. We approximate the discrete distribution learned by the classifier
(or the teacher) with a concrete distribution. From the concrete distribution, we
generate continuous samples to obtain low-variance gradient updates, which speed
up the training. Extensive experiments using real datasets confirm the superiority
of KDGAN in both accuracy and training speed.

1 Introduction

In machine learning, it is common that more resources such as input features [47] or computational
resources [23], which we refer to as privileged provision, are available at the stage of training a model
than those available at the stage of running the deployed model (i.e., the inference stage). Figure 1
shows an example application of image tag recommendation, where more input features (called
privileged information [47]) are available at the training stage than those available at the inference
stage. Specifically, the training stage has access to images as well as image titles and comments
(textual information) as shown in Figure 1a, whereas the inference stage only has access to images
themselves as shown in Figure 1b. After a smart phone user uploads an image and is about to provide
tags for the image, it is inconvenient to type tags on the phone and thinking about tags for the image
also takes time, so it is very useful to recommend tags based on the image as shown in Figure 1b.
Another example application is unlocking mobile phones by face recognition. We usually deploy face

∗Corresponding author

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

Lake Lake mead Nice lake.

s1: A user uploads an image.

s2: The user adds a tag.

s3: The user adds a title.

s4: Another user comments.

(a) Training: After a user uploads an image, additional text such as
comments and titles besides the labeled tags is accumulated.

New post
Add some tags...

Recommended Tags
lake sky

(b) Inference: We recommend bay and
sky right after an image is uploaded.

Figure 1: Image tag recommendation where the additional text is only available for training.

recognition models on mobile phones so that legit users can unlock the phones without depending
on remote services or internet connections. The training stage may be done on a powerful server
with significantly more computational resources than the inference stage, which is done on a mobile
phone. Here, a key problem is how to use privileged provision, i.e., resources only accessible for
training, to train a model with great inference performance [29].

Typical approaches to the problem are based on knowledge distillation (KD) [7, 9, 23]. As shown
by the left half of Figure 2, KD consists of a classifier and a teacher [29]. To operate for resource-
constrained inference, the classifier does not use privileged provision. On the other hand, the teacher
uses privileged provision by, e.g., having a larger model capacity or taking more features as input.
Once trained, the teacher outputs a distribution over labels called soft labels [29] for each training
instance. Then, the teacher trains the classifier to predict the soft labels via a distillation loss such as
the L2 loss on logits [7]. This training process is often called “distilling” the knowledge in the teacher
into the classifier [23]. Since the teacher normally cannot perfectly model the true data distribution, it
is difficult for the classifier to learn the true data distribution from the teacher.

Generative adversarial networks (GAN) provide an alternative way to learn the true data distribution.
Inspired by Wang et al. [49], we first present a naive GAN (NaGAN) with two players. As shown by
the right part of Figure 2, NaGAN consists of a classifier and a discriminator. The classifier serves as
a generator that generates relevant labels given an instance while the discriminator aims to distinguish
the true labels from the generated ones. The classifier learns from the discriminator to perfectly
model the true data distribution at the equilibrium via adversarial losses. One limitation of NaGAN is
that a large number of training instances and epochs is normally required to reach equilibrium [15],
which restricts its applicability to domains where collecting labeled data is expensive. The slow
training speed is because in such a two-player framework, the gradients from the discriminator to
update the classifier often vanish or explode during the adversarial training [4]. It is challenging to
train a classifier to learn the true data distribution with limited training instances and epochs.

To address this challenge, we propose a three-player framework named KDGAN to distill knowledge
with generative adversarial networks. As shown in Figure 2, KDGAN consists of a classifier, a
teacher, and a discriminator. In addition to the distillation loss in KD and the adversarial losses
in NaGAN mentioned above, we define a distillation loss from the classifier to the teacher and an
adversarial loss between the teacher and the discriminator. Specifically, the classifier and the teacher,
serving as generators, aim to fool the discriminator by generating pseudo labels that resemble the true
labels. Meanwhile, the classifier and the teacher try to reach an agreement on what pseudo labels to
generate by distilling their knowledge into each other. By formulating the distillation and adversarial
losses as a minimax game, we enable the classifier to learn the true data distribution at the equilibrium
(see Section 3.2). Besides, the classifier receives gradients from the teacher via the distillation loss
and the discriminator via the adversarial loss. The gradients from the teacher often have low variance,
which reduces the variance of gradients and thus speeds up the adversarial training (see Section 3.3).

We further consider reducing the variance of the gradients from the discriminator to accelerate the
training of KDGAN. The gradients from the discriminator may have large variance when obtained
through the widely used policy gradient methods [49, 52]. It is non-trivial to obtain low-variance
gradients from the discriminator because the classifier and the teacher generate discrete samples,
which are not differentiable w.r.t. their parameters. We propose to relax the discrete distributions
learned by the classifier and the teacher into concrete distributions [25, 31] with the Gumbel-Max
trick [20, 30]. We use the concrete distributions for generating continuous samples to enable end-
to-end differentiability and sufficient control over the variance of gradients. Given the continuous
samples, we obtain low-variance gradients from the discriminator to accelerate the KDGAN training.

2

To summarize, our contributions are as follows:
• We propose a novel framework named KDGAN for multi-label learning, which trains a lightweight

classifier suitable for resource-constrained inference using resources available only for training.
• We reduce the number of training epochs required to converge by decreasing the variance of

gradients, which is achieved by the design of KDGAN and the Gumbel-Max trick.
• We conduct extensive experiments in two applications, image tag recommendation and deep model

compression. The experiments validate the superiority of KDGAN over state-of-the-art methods.

2 Related Work

We briefly review studies on knowledge distillation (KD) and generative adversarial networks (GAN).

KD aims to transfer the knowledge in a powerful teacher to a lightweight classifier [9]. For example,
Ba and Caruana [7] train a shallow classifier network to mimic a deep teacher network by matching
logits via the L2 loss. Hinton et al. [23] generalize this work by training a classifier to predict
soft labels provided by a teacher. Sau and Balasubramanian [39] further add random perturbations
into soft labels to simulate learning from multiple teachers. Instead of using soft labels, Romero
et al. [36] propose to use middle layers of a teacher to train a classifier. Unlike previous work on
classification problems, Chen et al. [10] apply KD and hint learning to object detection problems.
There also exists work that leverages KD to transfer knowledge between different domains [21],
e.g., between high-quality and low-quality images [41]. Lopez-Paz et al. [29] unify KD with
privileged information [35, 47, 48] as generalized distillation where a teacher is pretrained by taking
as input privileged information. Compared to KD, the proposed KDGAN framework introduces a
discriminator to guarantee that the classifier can learn the true data distribution at the equilibrium.

GAN is initially proposed to generate continuous data by training a generator and a discriminator
adversarially in a minimax game [17]. GAN has only recently been introduced to generate discrete
data [16, 54, 55] because discrete data makes it difficult to pass gradients from a discriminator
backward to update a generator. For example, sequence GAN (SeqGAN) [52] models the process
of token sequence generation as a stochastic policy and adopts Monte Carlo search to update a
generator. Different from these GANs with two players, Li et al. propose a GAN with three players
called Triple-GAN [13]. Our KDGAN also consists of three players including two generators
and a discriminator, but differs from Triple-GAN in that: (1) Both generators in KDGAN learn a
conditional distribution over labels given features. However, the generators in Triple-GAN learn a
conditional distribution over labels given features and a conditional distribution over features given
labels, respectively. (2) The samples from both generators in KDGAN are all discrete data while
the samples from the generators in Triple-GAN include both discrete and continuous data. These
differences lead to different objective functions and training techniques, e.g., KDGAN can use the
Gumbel-Max trick [20, 30] to generate samples from both generators while Triple-GAN cannot do
this. There is also a rich body of studies on improving the training of GAN [5, 33, 56] such as feature
matching [38], which are orthogonal to our work and can be used to improve the training of KDGAN.

We explore the idea of integrating KD and GAN. A similar idea has been studied in [51] where a
discriminator is introduced to train a classifier. This previous study [51] differs from ours in that their
discriminator trains the classifier to learn the data distribution produced by the teacher, while our
discriminator trains the classifier to learn the true data distribution.

We apply the proposed KDGAN to address the problem of deep model compression and image
tag recommendation. We can also apply KDGAN to address the other problems where privileged
provision is available [44]. For example, we can consider contextual signals in the intent tracking
problem [42, 43] or user reviews in the movie recommendation problem [50] as privileged provision.

3 Methods

We study the problem of training a lightweight classifier from a teacher that is trained with privileged
provision (denoted by %) to satisfy stringent inference requirements. The inference requirements may
include (1) running in real time with limited computational resources, where privileged provision
is computational resources [23]; (2) lacking a certain type of input features, where privileged
provision is privileged information [47]. Following existing work [29], we use multi-label learning
problems [12, 18, 53] as the target application scenarios of our methods for illustration purpose.

3

ClassifierTeacher Discriminator
sc = pc(y|x)LcDS

x

st = p%t (y|x) LtDS

x yc ∼ qc(y|x)

LnAD

yt ∼ q%t (y|x)
LnAD

y ∼ pu(y|x)

LpAD

x

KD NaGAN
KDGAN

Figure 2: Comparison among KD, NaGAN, and KDGAN. The classifier (C) and the teacher (T)
learn discrete categorical distributions pc(y|x) and p%t (y|x); y is a true label generated from the true
data distribution pu(y|x); yc and yt are continuous samples generated from concrete distributions
qc(y|x) and q%t (y|x); sc and st are soft labels produced by C and T ; LcDS and LtDS are distillation
losses for C and T ; LpAD and LnAD are adversarial losses for positive and negative feature-label pairs.

Since privileged provision is only available at the training stage, the goal of the problem is to train a
lightweight classifier that does not use privileged provision for effective inference.

To achieve this goal, we start with NaGAN, a naive adaptation of the two-player framework proposed
by Wang et al. in information retrieval (Section 3.1). Similar to other two-player frameworks [49],
the naive adaptation requires a large number of training instances and epochs [15], which is difficult
to satisfy in practice [4]. To address the limitation, we propose a three-player framework named
KDGAN that can speed up the training while preserving the equilibrium (Sections 3.2 and 3.3).

3.1 NaGAN Formulation

We begin with NaGAN that combines a classifier C with a discriminator D in a minimax game.
Since D is not meant for inference, it can leverage privileged provision. For example, D may have a
larger model capacity than C or take as input more features than those available to C. In NaGAN,
C generates pseudo labels y given features x following a categorical distribution pc(y|x), while D
computes the probability p%d(x,y) of a label y being from the true data distribution pu(y|x) given
features x. With a slight abuse of notation, we also use x to refer to features including privileged
information when the context is clear. Following the value function of IRGAN [49], we define the
value function V (c, d) for the minimax game in NaGAN as

min
c

max
d

V (c, d) = Ey∼pu [log p
%
d(x,y)] + Ey∼pc [log(1− p

%
d(x,y))]. (1)

Let h(x,y) and g(x,y) be the scoring functions for C and D. We define pc(y|x) and p%d(x,y) as

pc(y|x) = softmax(h(x,y)) and p%d(x,y) = sigmoid(g(x,y)). (2)

The scoring functions can be implemented in various ways, e.g., h(x,y) can be a multilayer per-
ceptron [27]. We will detail the scoring functions for specific applications in Section 4. Such a
two-player framework is trained by updating C and D alternatively [49]. The training will proceed
until the equilibrium is reached, where C learns the true data distribution. At that point, D can do no
better than random guesses at deciding whether a given label is generated by C or not [6].

Our key observation is that the advantages and the disadvantages of KD and NaGAN are com-
plementary: (1) KD usually requires a small number of training instances and epochs but cannot
ensure the equilibrium where pc(y|x) = pu(y|x). (2) NaGAN ensures the equilibrium where
pc(y|x) = pu(y|x) [49] but normally requires a large number of training instances and epochs. We
aim to retain the advantages and avoid the disadvantages of both methods in a single framework.

3.2 KDGAN Formulation

We formulate KDGAN as a minimax game with a classifier C, a teacher T , and a discriminator D.
Similar to the classifier C, the teacher T generates pseudo labels based on a categorical distribution
p%t (y|x) = softmax(f(x,y)) where f(x,y) is also a scoring function. Both T and D use privileged
provision, e.g., by having a large model capacity or taking privileged information as input. In KDGAN,
D aims to maximize the probability of correctly distinguishing the true and pseudo labels, whereas C
and T aim to minimize the probability that D rejects their generated pseudo labels. Meanwhile, C
learns from T by mimicking the learned distribution of T . To build a general framework, we also
enable T to learn from C because, in reality, a teacher’s ability can also be enhanced by interacting

4

Algorithm 1: Minibatch stochastic gradient descent training of KDGAN.
1 Pretrain a classifier C, a teacher T , and a discriminator D with the training data {(x1,y1), ..., (xn,yn)}.
2 for the number of training epochs do
3 for the number of training steps for the discriminator do
4 Sample labels {y1, ...,yk}, {yc1, ...,yck}, and {yt1, ...,ytk} from pu(y|x), qc(y|x), and q%t (y|x).
5 Update D by ascending along its gradients
6 1

k

∑k
i=1

(
∇d log p%d(x,yi) + α∇d log(1− p%d(x,z

c
i)) + (1− α)∇d log(1− p%d(x,z

t
i))
)
.

7 for the number of training steps for the teacher do
8 Sample labels {yt1, ...,ytk} from q%t (y|x) and update the teacher by descending along its gradients
9 1

k

∑k
i=1(1− α)∇t log q

%
t (y

t
i |x) log(1− p%d(x,z

t
i)) + γ∇tLtDS(p

%
t (y|x), pc(y|x)).

10 for the number of training steps for the classifier do
11 Sample labels {yc1, ...,yck} from qc(y|x) and update C by descending along its gradients
12 1

k

∑k
i=1 α∇c log qc(y

c
i |x) log(1− p%d(x,z

c
i)) + β∇cLcDS(pc(y|x), p%t (y|x)).

with students (see Figure 6 in Appendix D for empirical evidence that T benefits from learning from
C). Such a mutual learning helps C and T reduce their probability of generating different pseudo
labels. Formally, we define the value function U(c, t, d) for the minimax game in KDGAN as

min
c,t

max
d

U(c, t, d) = Ey∼pu [log p
%
d(x,y)] + αEy∼pc [log(1− p

%
d(x,y))]

+ (1− α)Ey∼p%t [log(1− p
%
d(x,y))] + βLcDS(pc(y|x), p

%
t (y|x)) + γLtDS(p

%
t (y|x), pc(y|x)),

(3)

where α ∈ (0, 1), β ∈ (0,+∞), and γ ∈ (0,+∞) are hyperparameters. We collectively refer to
the expectation terms as the adversarial losses and refer to LcDS and LtDS as the distillation losses.
The distillation losses can be defined in several ways [39], e.g., the L2 loss [7] or Kullback–Leibler
divergence [23]. Note that LcDS and LtDS are used to train the classifier and the teacher, respectively.

Theoretical Analysis. We show that the classifier perfectly learns the true data distribution at the
equilibrium of KDGAN. To see this, let p%α(y|x) = αpc(y|x) + (1− α)p%t (y|x). It can be shown
that the adversarial losses w.r.t. pc(y|x) and p%t (y|x) are equal to an adversarial loss w.r.t. p%α(y|x):

αEy∼pc [log(1− p
%
d(x,y))] + (1− α)Ey∼p%t [log(1− p

%
d(x,y))]

= α
∑

y pc(y|x) log(1− p
%
d(x,y)) + (1− α)

∑
y p

%
t (y|x) log(1− p

%
d(x,y))

=
∑

y

(
αpc(y|x) + (1− α)p%t (y|x)

)
log(1− p%d(x,y))

= Ey∼p%α [log(1− p
%
d(x,y))].

(4)

Therefore, let LMD = βLcDS(pc(y|x), p
%
t (y|x)) + γLtDS(p

%
t (y|x), pc(y|x)) and LJS be the Jensen-

Shannon divergence, the value function U(c, t, d) of the minimax game can be rewritten as

min
α

max
d

Ey∼pu [log p
%
d(x,y)] + Ey∼p%α [log(1− p

%
d(x,y))] + LMD

= min
α

2LJS(pu(y|x)||p%α(y|x)) + βLcDS(pc(y|x), p
%
t (y|x)) + γLtDS(p

%
t (y|x), pc(y|x))− log(4).

(5)

Here, LJS reaches the minimum if and only if p%α(y|x) = pu(y|x) and LcDS (or LtDS) reaches the
minimum if and only if pc(y|x) = p%t (y|x). Hence, the KDGAN equilibrium is reached if and only
if pc(y|x) = p%t (y|x) = pu(y|x) where the classifier learns the true data distribution. We summarize
the above discussions in Lemma 4.1 (the necessary and sufficient conditions of maximizing the value
function) and Theorem 4.2 (achieving the equilibrium), respectively (see Appendix A for proofs).
Lemma 4.1. For any fixed classifier and teacher, the value function U(c, t, d) is maximized if and
only if the distribution of the discriminator is given by p%d(x,y) = pu(y|x)/(pu(y|x)+p%α(y|x)).
Theorem 4.2. The equilibrium of the minimax game minc,tmaxd U(c, t, d) is achieved if and only
if pc(y|x) = p%t (y|x) = pu(y|x). At that point, U(c, t, d) reaches the value − log(4).

3.3 KDGAN Training

In this section, we detail techniques for accelerating the training speed of KDGAN via reducing the
number of training epochs needed. As discussed in earlier studies [8, 46], the training speed is closely
related to the variance of gradients. Comparing with NaGAN, the KDGAN framework by design

5

can reduce the variance of gradients. This is because the high variance of a random variable can
be reduced by a low-variance random variable (detailed in Lemma 4.3) and as we will discuss, T
provides gradients of lower variance than D does. To reduce the variance of gradients from D and
attain sufficient control over the variance, we further propose to obtain gradients from a continuous
space by relaxing the discrete samples, i.e., pseudo labels, propagated between the classifier (or the
teacher) and the discriminator into continuous samples with a reparameterization trick [25, 31].

First, we show how KDGAN reduces the variance of gradients. As discussed above, C only receives
gradients∇cV from D in NaGAN while it receives gradients∇cU from both D and T in KDGAN:

∇cV = ∇cLnAD, ∇cU = λ∇cLnAD + (1− λ)∇cLcDS, (6)

where λ ∈ (0, 1), ∇cLnAD and ∇cLcDS are gradients from D and T , respectively. Consistent with the
findings in existing work [23, 39], we also observe that ∇cLcDS usually has a lower variance than
∇cLnAD (see Figure 7 in Appendix D for empirical evidence that the variance of ∇cLcDS is smaller
than that of ∇cLnAD during the training process). Hence, it can be easily shown that the gradients
w.r.t. C in KDGAN have a lower variance than that in NaGAN (refer to Lemma 4.3):

Var(∇cLcDS) ≤ Var(∇cLnAD)⇒ Var(∇cU) ≤ Var(∇cV). (7)

Next, we further reduce the variance of gradients with a reparameterization trick, in particular, the
Gumbel-Max trick [20, 30]. The essence of the Gumbel-Max trick is to reparameterize generating
discrete samples into a differentiable function of its parameters and an additional random variable
of a Gumbel distribution. To perform the Gumbel-Max trick on generating discrete samples from
the categorical distribution pc(y|x), a concrete distribution [25, 31] can be used. We use a concrete
distribution qc(y|x) to generate continuous samples and use the continuous samples to compute the
gradients∇cLnAD of the adversarial loss w.r.t. the classifier as

∇cLnAD = ∇cEy∼pc [log(1− p
%
d(x,y))] = Ey∼qc [∇c log qc(y|x) log(1− p

%
d(x, z))]. (8)

Here, z = onehot(argmaxy) is a discrete pseudo label where y ∼ qc(y|x). We define qc(y|x) as

qc(y|x) = softmax(
log pc(y|x) + g

τ
), g ∼ Gumbel(0, 1). (9)

Here, τ ∈ (0,+∞) is a temperature parameter and Gumbel(0, 1) is the Gumbel distribution2 [31].
We leverage the temperature parameter τ to control the variance of gradients over the training.
With a high temperature, the samples from the concrete distribution are smooth, which give low-
variance gradient estimates. Note that a disadvantage of the concrete distribution is that with a high
temperature, it becomes a less accurate approximation to the original categorical distribution, which
causes biased gradient estimates. We will discuss how to tune the temperature parameter in Section 4.

In addition to improving the training of C, we also apply the same techniques to improve the training
of T . We update D with the back-propagation algorithm [37] (detailed in Appendix B). The overall
logic of the KDGAN training is summarized in Algorithm 1. The three players can be first pretrained
separately and then trained alternatively via minibatch stochastic gradient descent.

4 Experiments

The proposed KDGAN framework can be applied to a wide range of multi-label learning tasks where
privileged provision is available. To show the applicability of KDGAN, we conduct experiments
with the tasks of deep model compression (Section 4.1) and image tag recommendation (Section 4.2).
Note that privileged provision is referred to as computational resources in deep model compression
and privileged information in image tag recommendation, respectively.

We implement KDGAN based on Tensorflow [1] and here we briefly describe our experimental setup3.
We use two formulations of the distillation losses including the L2 loss [7] and the Kullback–Leibler
divergence [23]. The two formulations exhibit comparable results and the results presented are based
on the L2 loss [7]. Since both T and D can use privileged provision, we implement their scoring
functions f(x,y) and g(x,y) using the same function s(x,y) but with different sets of parameters.

2 The Gumbel distribution can be sampled by drawing u ∼ Uniform(0, 1) and computing g = − log(− logu).
3 The code and the data are made available at https://github.com/xiaojiew1/KDGAN/.

6

https://github.com/xiaojiew1/KDGAN/

Table 1: Average accuracy over 10 runs in model compression (n is the number of training instances).

Method MNIST CIFAR-10

n = 100 n = 1, 000 n = 10, 000 n = 500 n = 5, 000 n = 50, 000

CODIS 74.02 ± 0.13 95.77 ± 0.10 98.89 ± 0.08 54.17 ± 0.20 77.82 ± 0.14 85.12 ± 0.11
DISTN 68.34 ± 0.06 93.97 ± 0.08 98.79 ± 0.07 50.92 ± 0.18 76.59 ± 0.15 83.32 ± 0.08
NOISY 66.53 ± 0.18 93.45 ± 0.11 98.58 ± 0.11 50.18 ± 0.28 75.42 ± 0.19 82.99 ± 0.12
MIMIC 67.35 ± 0.15 93.78 ± 0.13 98.65 ± 0.05 51.74 ± 0.23 75.66 ± 0.17 84.33 ± 0.10

NaGAN 64.90 ± 0.31 93.60 ± 0.22 98.95 ± 0.19 46.29 ± 0.32 76.11 ± 0.24 85.34 ± 0.27
KDGAN 77.95 ± 0.05 96.42 ± 0.05 99.25 ± 0.02 57.56 ± 0.13 79.36 ± 0.04 86.50 ± 0.04

0 40 80 120 160 200
Training Epochs

0.0

0.2

0.4

0.6

0.8

Ac
cu
ra
cy DISTN

CODIS
NaGAN
KDGAN-WO-GM
KDGAN

(a) Deep model compression over MNIST.

0 80 160 240 320 400
Training epochs

0.0

0.1

0.2

0.3

P@
3 TPROP

REXMP
NaGAN
KDGAN-WO-GM
KDGAN

(b) Image tag recommendation on YFCC100M.

Figure 3: Training curves of the classifier in the proposed NaGAN and KDGAN.

We search for the optimal values for the hyperparameters α in [0.0, 1.0], β in [0.001, 1000], and γ in
[0.0001, 100] based on validation performance. We find that a reasonable annealing schedule for the
temperature parameter τ is to start with a large value (1.0) and exponentially decay it to a small value
(0.1). We leave the exploration of the optimal schedule for future work.

4.1 Deep Model Compression

Deep model compression aims to reduce the storage and runtime complexity of deep models and
to improve the deployability of such models on portable devices such as smart phones. Extensive
computational resources available for training are considered privileged provision in this task.

Dataset and Setup. We use the widely adopted MNIST [27] and CIFAR-10 [26] datasets. The MNIST
dataset has 60,000 grayscale images (50,000 for training and 10,000 for testing) with 10 different label
classes. Following an earlier work [39], we do not preprocess the images on MNIST. The CIFAR-10
dataset has 60,000 colored images (50,000 for training and 10,000 for testing) with 10 different
label classes. We preprocess the images by subtracting per-pixel mean, and we augment the training
data by mirrored images. We vary the number of training instances in [100, 10000] on MNIST and
in [500, 50000] on CIFAR-10. The scoring functions h(x,y) and s(x,y) are implemented as an
MLP (1.2M parameters) and a LeNet (3.1M parameters) on MNIST; while h(x,y) and s(x,y) are
implemented as a LeNet (0.5M parameters) and a ResNet (1.7M parameters) on CIFAR-10 (detailed
in Appendix C). We evaluate various methods over 10 runs with different initialization of C and
report the mean accuracy and the standard deviation. Since the focus of this paper is to achieve a
better accuracy for a given architecture of the classifier, we defer the discussion on the classifier’s
ratio of compression and loss of accuracy w.r.t. the teacher to Table 3 in Appendix D.

Results and Discussions. First, we compare the proposed NaGAN and KDGAN with KD-based
methods including MIMIC [7], DISTN [23], NOISY [39], and CODIS [2]. The results obtained by
varying the number of training images on MNIST and CIFAR-10 are summarized in Table 1. On both
datasets, KDGAN consistently outperforms the KD-based methods by a large margin. For example,
KDGAN achieves as much as 5.31% performance gain with 100 training images on MNIST. We
further compare NaGAN with the KD-based methods. We observe that NaGAN performs better
when a large amount of training data are available (e.g., 50,000 training images on CIFAR-10) while
KD-based methods perform better when a small number of training images are available (e.g., 500
training images on CIFAR-10). This is consistent with our analysis in Section 3.1 that NaGAN can
learn the true data distribution better, although this requires a large amount of training data.

7

.95

.97

.99
n=100 n=1000 n=10000

0.0 0.2 0.4 0.6 0.8 1.0
α

.73

.75

.77
Ac

cu
ra
cy

(a) Effect of varying α

.95

.97

.99
n=100 n=1000 n=10000

-3 -2 -1 0 1 2 3
log10 β

.73

.75

.77

Ac
cu

ra
cy

(b) Effect of varying β

-4 -3 -2 -1 0 1 2
log10 γ

0.6
0.7
0.8
0.9
1.0

n=100 n=1000 n=10000

Ac
cu

ra
cy

(c) Effect of varying γ

Figure 4: Effects of hyperparameters in KDGAN on MNIST for deep model compression.

Then, we compare NaGAN with KDGAN. As shown in Table 1, KDGAN achieves a larger per-
formance gain over NaGAN with fewer training instances. This indicates that KDGAN requires a
smaller number of training instances than NaGAN does to reach the same level of accuracy. This
can be explained by that KDGAN introduces T to provide soft labels for training C. The soft labels
generally have high entropy and reveal much useful information about each training instance. Hence,
the soft labels impose much more constraint on the parameters of C than the true labels, which can
reduce the number of training instances required to train C. We further investigate the training speed
of NaGAN and KDGAN by the number of training epochs. Typical learning curves of C in NaGAN
and KDGAN are shown in Figure 3a. Due to the page limit, we only show the results using 100
training images on MNIST. We find that KDGAN converges to a better accuracy with a smaller
number of training epochs (about 25 epochs) than NaGAN (about 135 epochs). After convergence,
the training curve in KDGAN is more stable than that in NaGAN. Moreover, we investigate the
benefit provided by the Gumbel-Max trick for the KDGAN training. We perform the KDGAN
training without using the Gumbel-Max trick (referred to as KDGAN-WO-GM) and also plot the
accuracy against training epochs in Figure 3a. By comparing KDGAN with KDGAN-WO-GM, we
can see that the Gumbel-Max trick speeds up the training process by around 45% in terms of training
epochs. The Gumbel-Max trick also helps improve the accuracy from 0.7605 to 0.7795 (by around
2.5%). One possible reason is that the Gumbel-Max trick effectively reduces the gradient variance
from the discriminator as discussed in Section 3.3. This is also observed in our experiments, e.g., by
comparing the gradient variance from the adversarial loss not using the Gumbel-Max trick in Figure
7a with the one using the Gumbel-Max trick in Figure 7b (see Appendix D for details).

Next, we study the reasons for the higher accuracy of KDGAN. We present how the accuracy of
KDGAN varies against the hyperparameters on the MNIST dataset in Figure 4 (Note the logarithmic
scale of the x-axis in Figures 4b and 4c). We find that α and β have a relatively small effect on the
accuracy, which suggests that KDGAN is a robust framework. Besides, if we set β to a small value
(0.0001), we get more than 2% accuracy drop when KDGAN is trained with 100 training instances.
This shows that T is important in training C when the number of training instances is small. We
further find that a large value of γ causes the accuracy to deteriorate rapidly. This is because the
soft labels provided by C are usually noisy. Emphasizing on training T to predict the noisy labels
decreases the accuracy of T , which in turn decreases the accuracy of C. We obtain similar results for
the effects of the hyperparameters on the CIFAR-10 dataset.

4.2 Image Tag Recommendation

Image tag recommendation aims to recommend relevant tags (i.e., labels) after a user uploads an
image to image-hosting websites such as Flickr4. As discussed before, we aim to recommend relevant
tags right after a user uploads an image. This way, the user can just select from the recommended
tags instead of inputting tags. Users may continue to add additional text for an uploaded image such
as image titles and descriptions. We only use such additional text at the training stage as privileged
information used by the teacher and the discriminator only. At the inference stage, our trained model
(i.e., the classifier) only takes an image as input to make tag recommendations.

Dataset and Setup. We use the Yahoo Flickr Creative Commons 100 Million (YFCC100M) dataset5
in the experiments [45]. To simulate the case where additional text about images is available for
training, we randomly sample 20,000 images with titles or descriptions for training and another 2,000

4 https://www.flickr.com/. 5 Yahoo Webscope Program. http://webscope.sandbox.yahoo.com/.

8

https://www.flickr.com/
http://webscope.sandbox.yahoo.com/

Table 2: Performance of various methods on the YFCC100M dataset in tag recommendation.

Method Most Popular Tags Randomly Sampled Tags

P@3 P@5 F@3 F@5 MAP MRR P@3 P@5 F@3 F@5 MAP MRR

KNN .2320 .1680 .2339 .1633 .5755 .5852 .1623 .1198 .1575 .1088 .3970 .4092
TPROP .2420 .1636 .2811 .1949 .6177 .6270 .1883 .1372 .1810 .1252 .4512 .4636
TFEAT .2560 .1752 .2871 .1999 .6417 .6503 .2002 .1420 .2195 .1495 .5149 .5309
REXMP .2720 .1800 .3324 .2295 .7015 .7122 .2228 .1378 .2427 .1669 .5205 .5331

NaGAN .2892 .1880 .3516 .2352 .7432 .7555 .2415 .1495 .2693 .1867 .5791 .5911
KDGAN .3047 .1968 .3678 .2526 .7787 .7905 .2572 .1666 .2946 .2009 .6302 .6452

.80

.84

.88
P@3 F@3 MAP MRR

0.0 0.2 0.4 0.6 0.8 1.0
α

.32

.36

.40Sc
or
e

(a) Effect of varying α

.80

.84

.88
P@3 F@3 MAP MRR

-3 -2 -1 0 1 2 3
log10 β

.32

.36

.40Sc
or
e

(b) Effect of varying β

.72

.80

.88
P@3 F@3 MAP MRR

-5 -4 -3 -2 -1 0 1 2
log10 γ

.28

.34

.40Sc
or
e

(c) Effect of varying γ

Figure 5: Effects of hyperparameters in KDGAN on YFCC100M for image tag recommendation.

images for testing. We create a dataset of images labeled with the 200 most popular tags and another
dataset of images labeled with 200 randomly sampled tags. Following an earlier study [3], we use a
VGGNet [40] pretrained on ImageNet [14] to extract image features and a LSTM [24] with pretrained
word embeddings [34] to learn text features. We implement h(x,y) as an MLP with image features
as input and implement s(x,y) as an MLP with the element-wise product of image and text features
as input (detailed in Appendix C). We use precision (P@N), F-score (F@N), mean average precision
(MAP), and mean reciprocal ranking (MRR) to evaluate performance.

Results and Discussions. First, we compareC in KDGAN with KNN [32], TPROP [19], TFEAT [11],
and REXMP [28]. The overall results are presented in Table 2. We find that KDGAN achieves
significant improvements over the other methods across all the measures. Although KDGAN does
not explicitly model the semantic similarity between two labels like what REXMP does, it still makes
better recommendations than REXMP does. The reason is that in KDGAN, T provides C with soft
labels at training. The soft labels contain a rich similarity structure over tags which cannot be modeled
well by any pairwise similarity between tags used in REXMP. For example, an image labeled with a
tag volleyball is supplied with a soft label assigning a probability of 10−2 to basketball, 10−4
to baseball, and 10−8 to dragonfly. The reason that T generalizes is reflected in the relative
probabilities over tags, which can be used for guiding C to generalize better.

Next, we compare the training curves of NaGAN, KDGAN-WO-GM, and KDGAN. We only plot
the performance measured by P@3 in Figure 3b because the other measures exhibit similar training
curves. We find that KDGAN learns a more accurate classifier with a smaller number of training
epochs (about 100 epochs) than NaGAN (about 220 epochs) and KDGAN-WO-GM (about 150
epochs). After convergence, KDGAN consistently outperforms the best baseline REXMP.

Last, we investigate how the performance of KDGAN varies against the hyperparameters over
the YFCC100M dataset. The results are summarized in Figure 5, which are consistent with our
observations in the task of deep model compression.

5 Conclusion

We proposed a framework named KDGAN to distill knowledge with generative adversarial networks
for multi-label learning with privileged provision. We have defined the KDGAN framework as a
minimax game where a classifier, a teacher, and a discriminator are trained adversarially. We have
proved that the minimax game has an equilibrium where the classifier perfectly models the true
data distribution. We use the concrete distribution to control the variance of gradients during the

9

adversarial training and obtained low-variance gradient estimates to accelerate the training. We have
shown that KDGAN outperforms the state-of-the-art methods in two important applications, image
tag recommendation and deep model compression. We show that KDGAN learns a more accurate
classifier at a faster speed than a naive GAN (NaGAN) does. For future work, we will explore
adaptive methods for determining model hyperparameters to achieve better training dynamics.

Acknowledgement

This work is supported by Australian Research Council Future Fellowship Project FT120100832 and
Discovery Project DP180102050. We thank the anonymous reviewers for their feedback on the paper.
We have incorporated responses to reviewers’ comments in the paper.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al. Tensorflow: a system for large-scale machine learning. In OSDI, 2016.

[2] R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and G. E. Hinton. Large scale distributed
neural network training through online distillation. In ICLR, 2018.

[3] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick, and D. Parikh. Vqa:
Visual question answering. In ICCV, 2015.

[4] M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial
networks. In ICLR, 2017.

[5] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875,
2017.

[6] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. Generalization and equilibrium in generative
adversarial nets (gans). In ICML, 2017.

[7] J. Ba and R. Caruana. Do deep nets really need to be deep? In NIPS, 2014.

[8] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
arXiv preprint arXiv:1606.04838, 2016.

[9] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. Model compression. In SIGKDD, 2006.

[10] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker. Learning efficient object detection
models with knowledge distillation. In NIPS, 2017.

[11] L. Chen, D. Xu, I. W. Tsang, and J. Luo. Tag-based image retrieval improved by augmented
features and group-based refinement. IEEE Transactions on Multimedia, 2012.

[12] W. Cheng, E. Hüllermeier, and K. J. Dembczynski. Label ranking methods based on the
plackett-luce model. In ICML, 2010.

[13] L. Chongxuan, T. Xu, J. Zhu, and B. Zhang. Triple generative adversarial nets. In NIPS, 2017.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

[15] S. Feizi, C. Suh, F. Xia, and D. Tse. Understanding gans: the lqg setting. arXiv preprint
arXiv:1710.10793, 2017.

[16] Z. Gan, L. Chen, W. Wang, Y. Pu, Y. Zhang, H. Liu, C. Li, and L. Carin. Triangle generative
adversarial networks. In NIPS, 2017.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In NIPS, 2014.

10

[18] M. Grbovic, N. Djuric, S. Guo, and S. Vucetic. Supervised clustering of label ranking data
using label preference information. Machine learning, 2013.

[19] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop: Discriminative metric learning
in nearest neighbor models for image auto-annotation. In ICCV, 2009.

[20] E. Gumbel. Statistical theory of extreme values and some practical applications: A series of
lectures. US Government Printing Office, Washington, 1954.

[21] S. Gupta, J. Hoffman, and J. Malik. Cross modal distillation for supervision transfer. In CVPR,
2016.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
2016.

[23] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In NIPS
workshop, 2014.

[24] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 1997.

[25] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. In ICLR,
2017.

[26] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical
report, University of Toronto, 2009.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

[28] X. Li and C. G. Snoek. Classifying tag relevance with relevant positive and negative examples.
In ACMMM, 2013.

[29] D. Lopez-Paz, L. Bottou, B. Schölkopf, and V. Vapnik. Unifying distillation and privileged
information. In ICLR, 2016.

[30] C. J. Maddison, D. Tarlow, and T. Minka. A* sampling. In NIPS, 2014.

[31] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of
discrete random variables. In ICLR, 2017.

[32] A. Makadia, V. Pavlovic, and S. Kumar. Baselines for image annotation. IJCV, 2010.

[33] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial networks. In
ICLR, 2017.

[34] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. In NIPS, 2013.

[35] D. Pechyony and V. Vapnik. On the theory of learnining with privileged information. In NIPS,
2010.

[36] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets: Hints for
thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[37] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science,
1985.

[38] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved
techniques for training gans. In NIPS, 2016.

[39] B. B. Sau and V. N. Balasubramanian. Deep model compression: Distilling knowledge from
noisy teachers. arXiv preprint arXiv:1610.09650, 2016.

[40] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

11

[41] J.-C. Su and S. Maji. Cross quality distillation. arXiv preprint arXiv:1604.00433, 2016.

[42] Y. Sun, N. J. Yuan, Y. Wang, X. Xie, K. McDonald, and R. Zhang. Contextual intent tracking
for personal assistants. In SIGKDD, 2016.

[43] Y. Sun, N. J. Yuan, X. Xie, K. McDonald, and R. Zhang. Collaborative nowcasting for contextual
recommendation. In WWW, 2016.

[44] Y. Sun, N. J. Yuan, X. Xie, K. McDonald, and R. Zhang. Collaborative intent prediction with
real-time contextual data. TOIS, 2017.

[45] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li.
Yfcc100m: the new data in multimedia research. Communications of the ACM, 2016.

[46] G. Tucker, A. Mnih, C. J. Maddison, J. Lawson, and J. Sohl-Dickstein. Rebar: Low-variance,
unbiased gradient estimates for discrete latent variable models. In NIPS, 2017.

[47] V. Vapnik and R. Izmailov. Learning using privileged information: similarity control and
knowledge transfer. JMLR, 2015.

[48] V. Vapnik and A. Vashist. A new learning paradigm: Learning using privileged information.
Neural networks, 2009.

[49] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, and D. Zhang. Irgan: A minimax
game for unifying generative and discriminative information retrieval models. In SIGIR, 2017.

[50] X. Wang, J. Qi, K. Ramamohanarao, Y. Sun, B. Li, and R. Zhang. A joint optimization approach
for personalized recommendation diversification. In PAKDD, 2018.

[51] Z. Xu, Y.-C. Hsu, and J. Huang. Learning loss for knowledge distillation with conditional
adversarial networks. arXiv preprint arXiv:1709.00513, 2017.

[52] L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence generative adversarial nets with policy
gradient. In AAAI, 2017.

[53] M.-L. Zhang and Z.-H. Zhou. A review on multi-label learning algorithms. TKDE, 2014.

[54] Y. Zhang, Z. Gan, and L. Carin. Generating text via adversarial training. In NIPS workshop on
Adversarial Training, 2016.

[55] Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, and L. Carin. Adversarial feature
matching for text generation. In ICML, 2017.

[56] J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. In ICLR,
2017.

12

A Theoretical Analysis

In this section, we provide detailed proofs of the theoretical results in the KDGAN framework. Let
p%α(y|x) = αpc(y|x) + (1 − α)p%t (y|x), which is referred to as the mixture distribution. We first
show that the optimal distribution of the discriminator balances between the true data distribution
pu(y|x) and the mixture distribution p%α(y|x), as stated below.

Lemma 4.1. For any fixed classifier and teacher, the value function U(c, t, d) is maximized if and
only if the distribution of the discriminator is given by p%d(x,y) = pu(y|x)/(pu(y|x)+p%α(y|x)).

Proof. Given the classifier pc(y|x) and the teacher p%t (y|x), the discriminator aims to maximize the
value function U(c, t, d) of the minimax game as

max
d

U(c, t, d)

= Ey∼pu [log p
%
d(x,y)] + αEy∼pc [log(1− p

%
d(x,y))] + (1− α)Ey∼p%t

[log(1− p%d(x,y))]

= Ey∼pu [log p
%
d(x,y)] + α

∑
y
pc(y|x) log(1− p%d(x,y)) + (1− α)

∑
y
p%t (y|x) log(1− p

%
d(x,y))

= Ey∼pu [log p
%
d(x,y)] +

∑
y

(
αpc(y|x) + (1− α)p%t (y|x)

)
log(1− p%d(x,y))

= Ey∼pu [log p
%
d(x,y)] +

∑
y
p%α(y|x) log(1− p%d(x,y))

=
∑

y
pu(y|x) log p%d(x,y) +

∑
y
p%α(y|x) log(1− p%d(x,y))

= F (p%d(x,y)).

The function F (p%d(x,y)) achieves the maximum if and only if the distribution of the discriminator
is equivalent to p%d(x,y) = pu(y|x)/pu(y|x)+p%α(y|x), completing the proof.

Next, we show that the equilibrium of the minimax game is achieved if and only if both the classifier
and the teacher perfectly model the true data distribution, which is summarized as follows.

Theorem 4.2. The equilibrium of the minimax game minc,tmaxd U(c, t, d) is achieved if and only
if pc(y|x) = p%t (y|x) = pu(y|x). At that point, U(c, t, d) reaches the value − log(4).

Proof. Let LMD = βLcDS(pc(y|x), p
%
t (y|x)) + γLtDS(p

%
t (y|x), pc(y|x)). Given the optimal distri-

bution of the discriminator in Lemma 4.1, the classifier and the teacher aim to minimize the value
function U(c, t, d) of the minimax game as follows,

min
s,t

U(c, t, d)

=
∑

y
pu(y|x) log

pu(y|x)
pu(y|x) + p%α(y|x)

+
∑

y
p%α(y|x) log(1−

pu(y|x)
pu(y|x) + p%α(y|x)

) + LMD

=
∑

y
pu(y|x) log

pu(y|x)
pu(y|x) + p%α(y|x)

+
∑

y
p%α(y|x) log

p%α(y|x)
pu(y|x) + p%α(y|x)

+ LMD

= − log(4) + LKL(pu(y|x)||
pu(y|x) + p%α(y|x)

2
) + LKL(p

%
α(y|x)||

pu(y|x) + p%α(y|x)
2

) + LMD

= − log(4) + 2LJS(pu(y|x)||p%α(y|x)) + βLcDS(pc(y|x), p%t (y|x)) + γLtDS(p
%
t (y|x), pc(y|x)).

Here, LKL is the Kullback–Leibler divergence. LJS is the Jensen-Shannon divergence which is non-
negative and reaches zero if and only if pu(y|x) = p%α(y|x). The distillation losses LcDS and LtDS
such as the L2 loss on logits [7] and the Kullback–Leibler divergence on distributions [23] achieve
the minimum at zero if and only if pc(y|x) = p%t (y|x). Therefore, the value function U(c, t, d)
reaches the minimum at − log(4) if and only if pc(y|x) = p%t (y|x) = p%α(y|x) = pu(y|x), which
completes the proof.

Further, we show that the high variance of a random variance can be reduced with a low-variance
random variance, which is summarized in Lemma 4.3.

Lemma 4.3. Let X and Y be random variables with Var(X) ≤ Var(Y). Let Z = λX + (1− λ)Y ,
then we have Var(Z) ≤ Var(Y) for all λ ∈ (0, 1).

13

Proof. Given Var(X) ≤ Var(Y), the covariance Cov(X,Y) is less than or equal to Var(Y) because

Cov(X,Y) ≤ |Cov(X,Y)| ≤
√
Var(X)Var(Y) ≤

√
Var(Y)Var(Y) ≤ Var(Y).

According to the properties of the variance, for all λ ∈ (0, 1), we have

Var(Z) = λ2 Var(X) + 2λ(1− λ) Cov(X,Y) + (1− λ)2 Var(Y)

≤ λ2 Var(Y) + 2λ(1− λ) Cov(X,Y) + (1− λ)2 Var(Y)

≤ λ2 Var(Y) + 2λ(1− λ)Var(Y) + (1− λ)2 Var(Y)

= Var(Y),

This completes the proof.

B Gradient Derivation

We provide detailed derivations of the gradient computation in the KDGAN framework. Similar to
the definition of the concrete distribution qc(y|x) for the classifier in Equation 9, we first define a
concrete distribution q%t (y|x) for the teacher as follows,

q%t (y|x) = softmax(
log p%t (y|x) + g

τ
), g ∼ Gumbel(0, 1),

where τ ∈ (0,+∞) is a temperature parameter and Gumbel(0, 1) is the Gumbel distribution [31].
The classifier and the teacher generate continuous samples from the concrete distributions qc(y|x)
and q%t (y|x), respectively, and then discretize the continuous samples into pseudo labels. The
discriminator aims to maximize the probability of correctly identifying the true labels as positive and
the pseudo labels as negative. The discriminator is trained to maximize the value function U(c, t, d)
of the minimax game by ascending along its gradients

∇dU(c, t, d)

= ∇d
(
Ey∼pu [log p

%
d(x,y)] + αEy∼pc [log(1− p

%
d(x,y))] + (1− α)Ey∼p%t [log(1− p

%
d(x,y))]

)
≈ 1

k

∑k

i=1

(
∇d log p%d(x,yi) + α∇d log(1− p%d(x, z

c
i)) + (1− α)∇d log(1− p%d(x, z

t
i))
)
.

Here, k is the number of samples used to estimate the gradients. The true label yi is sampled from the
true data distribution pu(y|x). zci = onehot(argmaxyci) and zti = onehot(argmaxyti) are pseudo
labels where yci ∼ qc(y|x) and yti ∼ q

%
t (y|x) are continuous samples.

The classifier aims to generate the pseudo labels that resemble the true labels and predict the soft
labels produced by the teacher. The classifier is trained to minimize the value function U(c, t, d) of
the minimax game by descending along its gradients

∇cU(c, t, d) = ∇c
(
αEy∼pc [log(1− p

%
d(x,y))] + βLcDS(pc(y|x), p

%
t (y|x))

)
= α∇c

∑
y
pc(y|x) log(1− p%d(x,y)) + β∇cLcDS(pc(y|x), p

%
t (y|x))

= α
∑

y
∇cpc(y|x) log(1− p%d(x,y)) + β∇cLcDS(pc(y|x), p

%
t (y|x))

= α
∑

y
pc(y|x)∇c log pc(y|x) log(1− p%d(x,y)) + β∇cLcDS(pc(y|x), p

%
t (y|x))

= αEy∼pc [∇c log pc(y|x) log(1− p
%
d(x,y))] + β∇cLcDS(pc(y|x), p

%
t (y|x))

≈ α

k

∑k

i=1
∇c log qc(yci |x) log(1− p

%
d(x, z

c
i)) + β∇cLcDS(pc(y|x), p

%
t (y|x)),

where zci = onehot(argmaxyci) is a pseudo label and yci ∼ qc(y|x) is a continuous sample. At the
training of the classifier, we use a control variate [49], which is defined as

bc = Ey∼pc(y|x)[log(1− p
%
d(x,y))] ≈

∑k

i=1
log(1− p%d(x, z

c
i)),

where zci = onehot(argmaxyci) is obtained by discretizing a continuous sample yci ∼ qc(y|x).
∇cLcDS is the gradients of the distillation loss LcDS w.r.t. the classifier, which can be easily computed

14

by the back-propagation algorithm. For example, if we use the L2 loss on logits [7] to define the
distillation loss LcDS as

LcDS(pc(y|x), p
%
t (y|x)) =

1

2
|| log pc(y|x))− log p%t (y|x)||22,

the gradients∇cLcDS are computed by

∇cLcDS(pc(y|x), p
%
t (y|x)) = || log pc(y|x))− log p%t (y|x)||2∇c log pc(y|x).

Similarly, the gradients to update the teacher are derived as follows,

∇tU(c, t, d) = ∇t
(
(1− α)Ey∼p%t [log(1− p

%
d(x,y))] + γLtDS(p

%
t (y|x), pc(y|x))

)
= (1− α)

∑
y
∇tp%t (y|x) log(1− p

%
d(x,y)) + γ∇tLtDS(p

%
t (y|x), pc(y|x))

= (1− α)
∑

y
∇tp%t (y|x) log(1− p

%
d(x,y)) + γ∇tLtDS(p

%
t (y|x), pc(y|x))

= (1− α)
∑

y
p%t (y|x)∇t log p

%
t (y|x) log(1− p

%
d(x,y)) + γ∇tLtDS(p

%
t (y|x), pc(y|x))

= (1− α)Ey∼p%t [∇t log p
%
t (y|x) log(1− p

%
d(x,y))] + γ∇tLtDS(p

%
t (y|x), pc(y|x))

≈ 1− α
k

∑k

i=1
∇t log q%t (yti |x) log(1− p

%
d(x, z

t
i)) + γ∇tLtDS(p

%
t (y|x), pc(y|x)),

where zti = onehot(argmaxyti) is a pseudo label and yti ∼ q
%
t (y|x) is a continuous sample. At the

training of the teacher, we also use a control variate [49], which is defined as

bt = Ey∼p%t (y|x)[log(1− p
%
d(x,y))] ≈

∑k

i=1
log(1− p%d(x, z

t
i)),

where zti = onehot(argmaxyti) is obtained by discretizing a continuous sample yti ∼ q%t (y|x).
∇tLtDS is the gradients of the distillation loss LtDS w.r.t. the teacher. For example, the gradients
∇tLtDS are given by

∇tLtDS(p
%
t (y|x), pc(y|x)) = || log p

%
t (y|x)− log pc(y|x)||2∇t log p%t (y|x),

when the distillation loss LtDS is defined as the L2 loss on logits [7],

LtDS(p
%
t (y|x), pc(y|x)) =

1

2
|| log p%t (y|x)− log pc(y|x))||22.

C Network Architectures

We describe network architectures which we use to conduct experiments in deep model compression
and image tag recommendation tasks. First, we describe the network architectures in deep model
compression task on the MNIST dataset. We implement the scoring function h(x,y) as an MLP [27].
The architecture of the MLP is given by

1. An input layer of a 28×28 grayscale image.
2. A stack of 2 fully connected layers with 800 neurons.
3. A softmax layer with 10 classes.

We implement the scoring function s(x,y) as a LeNet [27]. The architecture of the LeNet is given by

1. An input layer of a 28×28 grayscale image.
2. A convolutional layer with 32 kernels of size 5×5 and stride 1.
3. A max pooling layer with size 2×2 and stride 2.
4. A convolutional layer with 64 kernels of size5×5 and stride 1.
5. A max pooling layer with size 2×2 and stride 2.
6. A fully connected layer with 1024 neurons.
7. A softmax layer with 10 classes.

15

Next, we describe the network architectures in deep model compression task on the CIFAR-10 dataset.
We implement h(x,y) as a LeNet [27]. The architecture of the LeNet is given by

1. An input layer of a 32×32 colored image.
2. A convolutional layer with 64 kernels of size 5×5 and stride 1.
3. A max pooling layer with size 2×2 and stride 2.
4. A convolutional layer with 128 kernels of size 5×5 and stride 1.
5. A max pooling layer with size 2×2 and stride 2.
6. A fully connected layer with 1024 neurons.
7. A softmax layer with 10 classes.

We implement s(x,y) as a 101-layer ResNet [22]. The architecture of the ResNet is given by

1. An input layer of a 32×32 colored image.
2. A convolutional layer with 16 kernels with size 3×3 and stride 1.
3. Three stacked blocks of 3 convolutional layers which use 64 kernels of size 1×1, 64 kernels

of size 3×3, and 256 kernels of size 1×1, respectively.
4. Four stacked blocks of 3 convolutional layers which use 128 kernels of size 1×1, 128 kernels

of size 3×3, and 512 kernels of size 1×1, respectively.
5. Twenty three stacked blocks of 3 convolutional layers which use 256 kernels of size 1×1,

256 kernels of size 3×3, and 1024 kernels of size 1×1, respectively.
6. Three stacked blocks of 3 convolutional layers which use 512 kernels of size 1×1, 512

kernels of size 3×3, and 2048 kernels of size 1×1, respectively.
7. A global pooling layer.
8. A softmax layer with 10 classes.

Finally, we describe the network architectures in image tag recommendation task on the YFCC100M
dataset. We use the same network architectures when experimenting with the two datasets of images
labeled with the 200 most popular tags and 200 randomly sampled tags, respectively. We implement
a VGGNet [40] to extract image features. The architecture of the VGGNet is written as

1. An input layer of a 224×224 colored image.
2. A stack of 2 convolutional layers with 64 kernels of size 3×3 and stride 1.
3. A max pooling layer with size 2×2 and stride 2.
4. A stack of 2 convolutional layers with 128 kernels of size 3×3 and stride 1.
5. A max pooling layer with size 2×2 and stride 2.
6. A stack of 2 convolutional layers with 256 kernels of size 3×3 and stride 1.
7. A max pooling layer with size 2×2 and stride 2.
8. A stack of 2 convolutional layers with 512 kernels of size 3×3 and stride 1.
9. A max pooling layer with size 2×2 and stride 2.

10. A stack of 2 convolutional layers with 512 kernels of size 3×3 and stride 1.
11. A max pooling layer with size 2×2 and stride 2.
12. A fully connected layer with 4096 neurons.
13. A fully connected layer with 4096 neurons.
14. A fully connected layer with 100 neurons.

We implement a LSTM [24] to learn text features. The architecture of the LSTM is written as
ft = sigmoid(Wf · [ht−1,xt] + bf),
it = sigmoid(Wi · [ht−1,xt] + bi),
ot = sigmoid(Wo · [ht−1,xt] + bo),
st =ft � st−1 + it � tanh(Ws · [ht−1,xt] + bs),
ht =ot � tanh(st),

16

where [h,x] is the vector concatenation and � is the element-wise product. We set the hidden size
of the LSTM to 100 in the experiments. Let vx ∈ R100 be an image feature vector extracted by the
VGGNet and vz ∈ R100 be a text feature vector learned by the LSTM. We implement the scoring
function h(x,y) as an MLP [3]. The architecture of the MLP is written as

1. An input layer of a feature vector with size 100 (i.e. the image features vx).
2. A stack of 2 fully connected layers with 800 neurons.
3. A softmax layer with 200 classes.

We implement the scoring function s(x,y) as an MLP [3]. The architecture of the MLP is given by

1. An input layer of a feature vector with size 100 (i.e. the element-wise product of vx and vz).
2. A stack of 2 fully connected layers with 1200 neurons.
3. A softmax layer with 200 classes.

D Additional Experiments

−4 −3 −2 −1 0 1 2
log10 γ

0.7

0.8

0.9

Ac
cu

ra
cy

n=100
γ=0.0
n=100
γ=0.0

(a) Using 100 training images.

−4 −3 −2 −1 0 1 2
log10 γ

.980

.985

.990

.995

Ac
cu
ra
cy

n=10000
γ>0.0
n=10000
γ=0.0

(b) Using 10,000 training images.

Figure 6: The accuracy of the teacher against the hyperparameter γ in KDGAN on MNIST. Note that
γ controls how much the classifier distills its knowledge into the teacher.

0 40 80 120 160 200
Training Epochs

1E-4

1E-3

1E-2

Va
ria

nc
e

Gradien of he Adversarial Loss (∇c
n
A)

Gradien of he Dis illa ion Loss (∇c
c
D)

(a) KDGAN without the Gumbel-Max trick.

0 40 80 120 160 200
Training Epochs

1E-4

1E-3

Va
ria

nc
e

Gradien of he Adversarial Loss (∇c
n
A)

Gradien of he Dis illa ion Loss (∇c
c
D)

(b) KDGAN with Gumbel-Max trick.

Figure 7: Variances of the gradient of the adversarial loss (∇cLnAD) or the distillation loss (∇cLcDS)
w.r.t. the classifier. The results are obtained by training KDGAN with 100 training images on MNIST.

We study the classifier’s ratio of compression (number of parameters) and loss of accuracy w.r.t. the
teacher on MNIST. We vary the hidden layer size of the classifier from 100 (89,610 parameters)
to 1,200 (2,395,210 parameters) and present the results in Table 3 . The loss of accuracy generally
decreases as the hidden layer size of the classifier or the number of training examples increases.

Table 3: Model size and accuracy of the classifier and the
teacher (shown in parenthesis) in KDGAN on MNIST.

#Param. (M) n = 5K n = 10K n = 50K

0.09 (3.12) 97.96 (99.25) 98.74 (99.42) 99.03 (99.65)
0.19 (3.12) 98.72 (99.26) 98.92 (99.46) 99.27 (99.70)
1.22 (3.12) 99.01 (99.28) 99.25 (99.48) 99.54 (99.72)
2.28 (3.12) 99.04 (99.27) 99.40 (99.53) 99.77 (99.78)

Table 4: Average accuracy over 10 runs
with varying training size (n) on MNIST.

Method n = 5K n = 10K n = 50K

CODIS 98.53 98.89 99.31
DISTN 98.04 98.79 99.26
MIMIC 97.93 98.65 99.05
KDGAN 99.01 99.25 99.54

17

	Introduction
	Related Work
	Methods
	NaGAN Formulation
	KDGAN Formulation
	KDGAN Training

	Experiments
	Deep Model Compression
	Image Tag Recommendation

	Conclusion
	Theoretical Analysis
	Gradient Derivation
	Network Architectures
	Additional Experiments

