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Abstract—Existing ridesharing services have focused on on-

demand trip matching, which resembles traditional taxi 
dispatching. This may encourage more private vehicles on the road, 
which aggravate traffic congestions in peak hours rather than 
alleviating them. We propose CommuteShare, a novel ridesharing 
service for daily commuters that encourages long-term 
ridesharing among commuters with similar commuting patterns, 
to increase the traffic efficiency in peak hours. We first identify 
commuting private vehicles (CPVs) from traffic records and model 
their commuting patterns. We then design a dynamic model to 
formulate the intention level of a CPV driver to offer a ride based 
on the spatio-temporal convenience and dynamic traffic conditions. 
Based on the commuting patterns of the CPVs and the dynamic 
model of the CPV drivers, we propose a ridesharing algorithm to 
compute ridesharing matches among CPVs. We perform extensive 
experiments on three real-world cross-domain urban big datasets 
from a major city of China.  Experimental results show that, using 
the proposed CommuteShare service, over 5,300 private vehicles 
can be reduced daily on average during morning peak hours, with 
a reduction of 7-minute average waiting time for the riders. 

Keywords—ridesharing, services computing, urban computing. 

I. INTRODUCTION 
Heterogeneous urban big data contributed by both the crowd 
and the large number of sensors brings opportunities to create 
innovative services to solve a variety of urban problems via 
understanding individuals’ behaviors and their collective 
patterns. In this study, we are interested in alleviating traffic 
congestions using urban big data. For a long time, public 
transportation systems (e.g., buses and subways) have been a 
main way to alleviate traffic congestions. However, there is still 
a common use of private vehicles for commuting, due to the 
long waiting time and far walking distances of public 
transportation systems in peak hours. A survey shows that 
commuting private vehicles (CPVs) has an average occupancy 
rate (i.e., the number of travelers per trip) of 1.17. Such a low 
occupancy rate of CPVs has been considered as a major source 
of traffic inefficiency in urban transportation [1]. 

 
* Correspondence author. 
1 Uber, https://www.uber.com 

Ridesharing (a.k.a. carpooling) services are designed to 
overcome the traffic inefficiency of non-shared rides by 
offering the vacant seats to additional passengers [2]. Many 
ridesharing service providers, e.g., Uber1 and Didi Chuxing2, 
have mobile APPs to match drivers’ offers with riders’ requests. 
Traditionally, there are two main types of ridesharing services 
[2]: (1) on-demand ridesharing, which is for one-time trips and 
requires a real-time response without considering any historical 
mobility patterns of the riders; and (2) tailored ridesharing, 
which is for a group of passengers with similar and repeating 
mobility patterns. On one hand, on-demand ridesharing services 
rely much on a large number of CPVs on the road, which may 
aggravate the traffic congestion rather than alleviating it. On the 
other hand, tailored ridesharing services, such as airport shuttles, 
often operate with a fixed route and a fixed schedule. Thus, they 
may have a long detour distance to pick up all the riders, which 
causes a low user satisfactory.  

Inspired by studies on human mobility with large-scale 
datasets such as GPS [4], Call Detail Records [5] and check-ins 
[6], we utilize a large-scale vehicle license plate recognition 
(VLPR) dataset [7] to follow a tailored ridesharing scheme by 
reducing the number of vehicles on the road while incorporating 
the flexibility of on-demand ridesharing. We propose 
CommuteShare, an improved ridesharing service for daily 
commuters that encourages stable ridesharing companions. 
First, we identify CPVs from massive traffic records and model 
their commuting patterns. Second, a ridesharing algorithm is 
proposed to compute ridesharing matches among CPVs. An 
extensive empirical study is conducted on three real-world 
cross-domain urban datasets from Xiamen, a major city of 
China. The datasets contain 4 million commuting trips in May 
2016, 134,721 traffic accidents during January and September 
2016, and hourly weather data in May 2016. The experimental 
results show that, using the CommuteShare system, over 5,300 
private vehicles can be reduced on daily average during 7am 

2 Didi Chuxing, http://www.xiaojukeji.com 
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and 9am in the morning peak hours3, with only a 7-minute 
average waiting time for the riders.  

The rest of this paper is organized as follows. Section II 
presents related studies. Section III describes the cross-domain 
urban datasets and observations. Section IV details the 
proposed algorithms. Section V shows the experimental results. 
Section VI concludes the paper. 

II. RELATED WORK 
Ridesharing is a process of at least two travelers sharing a ride 
in a vehicle with respect to regular itineraries. The benefits of 
ridesharing services are manifold [3], including waiting time 
saving, travel cost reduction, etc. Two types of ridesharing are 
[2]: on-demand ridesharing, and tailored ridesharing.  

Wang et al. [7] propose to incorporate the human mobility 
mechanism into unlicensed taxis detection from massive 
citywide vehicles. 

Tailored ridesharing [6], such as tailored buses, is designed 
for travel companions with similar mobility patterns (e.g., 
travelling on the same route). Tailored ridesharing has a high 
occupancy rate and is environmental friendly. However, it is 
inflexible and forces passengers to comply with fix routes and 
schedules of the tailored services. To avoid those limitations 
above, we aim to design a ridesharing service that balances the 
user satisfaction (i.e., a high ridesharing match and a short 
waiting time) and the social benefit (i.e., a large number of 
vehicles reduced from the road). 

III.  DATASETS AND OBSERVATIONS 
We first describe the data used for our study. 

A. Cross-domain Urban Big Datasets 
We use datasets from the following three domains that impact 
the traffic efficiency.  
(1) Vehicle License Plate Recognition (VLPR) Data 

VLPR devices can recognize a vehicle’s license plate number 
attributing to advanced techniques in image processing and 
pattern recognition [7]. VLPR devices deployed on city-wide 
road networks (i.e., 439 devices in Xiamen) are capable of 
generating a large-scale mobility dataset, reflecting the city 
pulse of traffic congestions, accidents, as well as vehicle 
moving patterns. For example,  

We obtained two VLPR datasets in Xiamen: the VLPR 
records dataset and the VLPR devices dataset. The VLPR 
records dataset records when and where a vehicle passes a 
VLPR device, while VLPR devices dataset records the 
geographic information (i.e., longitude and latitude) and types 
of VLPR devices.  
(2) Multi-sourced Traffic Data 

We consider two types of traffic data that may impact the 
ridesharing efficiency: traffic accident and traffic condition. 
Traffic accidents are considered as one of the major causes of 
traffic congestions, and dataset contains 134,721 traffic 
accidents during the first nine months of 2016 in Xiamen. Each 
accident record has four fields: accident ID, accident time, 
accident coordinates, and crash type (i.e., single vehicle, side-
 

3 We focus on identifying ridesharing companions for morning peak hours 
only and leave the evening commuting problem for the future work. 

wipe, or rear-end). Traffic condition represents the level of 
traffic congestions, and our dataset contains the average travel 
time for CPVs in morning peak hours. Fig. 1 shows, CPVs 
spend more travel times on Monday than other working days, 
indicating that Monday mornings are more congested. 

 
Figure 1. Data observation of traffic condition. 

(3) Weather Forecasting Data 
Weather conditions have a significant impact on traffic 

congestion and anomalies [8]. Precipitation, such as the amount 
of rainfall/snowfall and the duration, is the most important 
weather factor to traffic congestion. Other weather conditions 
such as fogs can reduce visibility. We collected a weather 
dataset that consists of historical hourly weather data4 in May 
2016 in Xiamen, including attributes such as precipitation, 
visibility, temperature, atmospheric pressure, etc. 

B. Data Pre-processing 
First, private vehicles are recognized from the VLPR dataset, 
according to both the color of the license plate. Second, we 
extract key attributes from the VLPR dataset, which include the 
following 10 attributes: license plate number, license plate color, 
lane number, device id, device type, device direction, passed 
time, device location, longitude, and latitude. Third, we filter 
out redundant and incomplete VLPR records, e.g., a VLPR 
device may take redundant pictures of the same vehicle during 
the congestion. Finally, trajectories of each private vehicle are 
generated sequentially. 

C. Observations 
We make the following observations on the daily mobility 
patterns of commuting private vehicles (CPVs). 

 
Figure 2. Observations of CPVs’ mobility patterns 

4 Open weather data, http://rp5.ru/Weather_in_the_world 
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(a) The number of CPVs is huge. We compared the numbers 
of CPVs and taxis in Fig. 2(a), and the number of CPVs in 
working days is much larger than that of taxis. 

(b) The travel distance of CPVs is short. In Fig. 2(b), we find 
that a CPV has a very short travel distance (around 10 VLPR 
records in each trip) in morning peak hours. 

 
These observations imply the opportunity to create a 

ridesharing service for CPVs users to reduce the number of non-
shared CPVs on the road in peak hours. 

IV. THE COMMUTESHARE METHOD 

A. Proposed Framework 
We propose a framework to compute the optimal matching of 
CPVs with riders leveraging the spatio-temporal closeness of 
the commuting trips in Fig. 3. 

 
Figure 3. Overview of the proposed framework 

B. Ridesharing Algorithm 
We detail the proposed CommuteShare algorithm below. We 
use all workdays in a month (i.e., 20 workdays in May 2016) as 
the range of observations. 
Stage 1: CPV Identification  

First, by considering the periodicity and repeatability of 
commuting patterns of CPVs, we exclude inactive private 
vehicles which have VLPR records in less than 15 working days 
per month.  

Second, in Fig. 4, we infer potential home and work locations 
(VLPR device locations close to home or work place) according 
to the staying duration between two VLPR records. Intuitively, 
a CPV stays the longest duration at home overnight, and spends 
the longest duration at work in the daytime.  

 
Figure 4. Identify diurnal stay location and overnight stay location 

 
Third, we infer more accurately the home and work locations 

from the potential locations, as there may be more than one 
home or work locations identified by the heuristics used in the 
second step.  

Finally, from 1,204,790 private vehicles, we identify 18,944 
CPVs, and the trajectories between two closest VLPR devices 
to their home/work locations are considered as commuting 
trajectories.  
Stage 2: Feature Extraction 

Feature extraction includes the following three steps.  
(1) Spatial feature extraction. For each CPV, we extract its 

home and work coordinates as the spatial feature.  
(2) Temporal feature extraction. We use the departure time 

and arrival time during the observation period (i.e., 20 
workdays in our experiment) as the temporal features.   

(3) Dynamic feature extraction. We use traffic condition, 
accidents, and weather in each workday as dynamic features.  

In summary, we extract 124 features, including the locations 
of home or work (four coordinates), departure and arrival times 
in 20 working days (40 time values), Monday-or-not, number 
of accidents, visibility, and precipitation in 20 days (80 values).  
Stage 3: Dynamic Ridesharing Matching  

We perform matching in two steps.  
   (1) Coarse ridesharing matching. We first consider the 
temporal features and spatial features of CPVs which form 
feature vectors of 44 dimensions. We apply the k-means 
algorithm on these feature vectors to cluster the CPVs to find 
the ones sharing similar commuting patterns. 

(2) Ridesharing based on willingness. In order to identify 
pick-up/drop-off coordinates and the departure/arrival times for 
rideshared CPVs in a cluster, we need to generate the center 
vector for each CPV cluster, which is computed as the average 
of all CPVs in a cluster. For example, we denote all feature 
vectors in a cluster as , and each feature vector 
can be denoted as ), where  
and  is the number of dimensions of feature vectors. The 
center vectors of the cluster is computed as   = 

( ), . As a result, the center 
vector includes the information of pick-up/drop-off coordinates 
and departure/arrival time in each working day for rideshared 
CPVs in a cluster. The pseudo code of the above procedure is 
as follows. 

Algorithm. Ridesharing algorithm 

Input: number of ridesharing seats 

            inputted cluster single cluster  

number of resultant clusters  

Output: , resultant clusters 

1) use AGNES algorithm to generate an initial cluster result 

; 

2) for each cluster  do 

3)     if  do 

4)         ; 

5)         go to 1); 

6)     else 

7)         save ; 

8)     end if 

9) end for 
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V. PERFORMANCE EVALUATION 

A. Experimental Settings  
The experiments are run with MATLAB (R2014a) on an 

ASUS K55V computer with 64-bits Windows 7 system, 32 GB 
RAM and an Intel Core I7 3.6 GHz CPU. 

The performance of CommuteShare is measured by three 
metrics: 1) average waiting time of riders; 2) average rideshare 
accuracy; and 3) number of vehicles reduced. 

B. Baselines 
• K-means based on Squared Euclidean Distance, the 

distance measurement function is denoted as:
. 

• K-means based on BlockCity Distance, the distance 
measurement function is denoted as: 

. 
• K-means++, i.e., an improvement of k-means, which uses 

initial centers of clusters as far from each other as possible 
to achieve a better clustering result. 

• AGNES, i.e., a classic condensed hierarchical clustering 
algorithm, which uses each target as a cluster at the 
beginning, and then merges the clusters progressively.  

C. Evaluation and Results 
Two evaluation metrics (i.e., average waiting time of riders 

and average rideshare accuracy) are presented to evaluate the 
performance of CommuteShare, compared with the baseline 
methods. 

 
Figure 5. The comparison of (a) average waiting time of riders, and (b) 
average rideshare accuracy. 

Fig. 5(a) shows that the average waiting time of 
CommuteShare is 7 minutes, which is significantly less than 
baseline methods. Fig. 5(b) indicates that the average rideshare 
accuracy of CommuteShare is significantly higher than 
baselines.  

VI. CONCLUSION 
We presented a novel ridesharing service, CommuteShare, 
which is able to match rideshare companions with a high 
accuracy for daily commuters. Specifically, CommuteShare 
significantly outperforms the baseline methods in improving 
both riders’ satisfaction and social benefits: 1) CommuteShare 
achieves higher rideshare accuracy (an average daily rideshare 
accuracy of 83%) than the baseline methods; 2) CommuteShare 
can reduce over 30% of commuting private vehicles during 
morning peak hours of workdays. 

Future works may include: 1) extending the algorithm to 
enable dynamic ridesharing in evening peak hours where there 
are many complicated alternatives for the commuters rather 
than going home directly (e.g., going shopping, dining out, 
visiting a bar, etc.); and 2) employing deep neural networks to 
uncover the complexity in ridesharing. 
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