
Fast and Accurate Time Series Classification
Through Supervised Interval Search

Nestor Cabello
The University of Melbourne

Melbourne, Australia
ncabello@student.unimelb.edu.au

Elham Naghizade
RMIT University

Melbourne, Australia
e.naghizade@rmit.edu.au

Jianzhong Qi
The University of Melbourne

Melbourne, Australia
jianzhong.qi@unimelb.edu.au

Lars Kulik
The University of Melbourne

Melbourne, Australia
lkulik@unimelb.edu.au

Abstract—Time series classification (TSC) aims to predict the
class label of a given time series. Modern applications such
as appliance modelling require to model an abundance of long
time series, which makes it difficult to use many state-of-
the-art TSC techniques due to their high computational cost
and lack of interpretable outputs. To address these challenges,
we propose a novel TSC method: the Supervised Time Series
Forest (STSF). STSF improves the classification efficiency by
examining only a (set of) sub-series of the original time series,
and its tree-based structure allows for interpretable outcomes.
STSF adapts a top-down approach to search for relevant sub-
series in three different time series representations prior to
training any tree classifier, where the relevance of a sub-series is
measured by feature ranking metrics (i.e., supervision signals).
Experiments on extensive real datasets show that STSF achieves
comparable accuracy to state-of-the-art TSC methods while being
significantly more efficient, enabling TSC for long time series.

Index Terms—Time series classification, Interval-based classi-
fier, Feature selection.

I. INTRODUCTION

Time series classification (TSC) aims to predict the class
label of a given time series (or parts of it). A time series
is an ordered time-stamped sequence of data points (i.e.,
observations from a variable of interest). Various TSC meth-
ods have been proposed for a rich set of application areas
such as medicine (e.g., classification of electrocardiograms
[1]). Modern applications such as appliance modelling and
stress detection pose significant challenges to the existing
TSC methods because (i) their data is usually collected via
sensors, resulting in large sets of time series with high up-
date frequencies which are also prone to signal noise (e.g.,
sensor defects) and (ii) they require interpretable models. For
example, a classifier for appliance modelling should report the
time intervals that differentiate the time series from different
types of appliances, enabling householders to understand their
energy consumption.

Ideally, a TSC method fulfills three criteria: it is accurate,
efficient and interpretable. However, accurate TSC methods
suffer in either efficiency and/or interpretability for modern
applications that usually involve long time series. For example,
the state-of-the-art TSC methods, hierarchical vote collective
of transformation-based ensembles (HIVE-COTE) [2] and
time series combination of heterogeneous and integrated em-
bedding forest (TS-CHIEF) [3] have bi-quadratic and quadratic

time complexity in the length of the series, respectively. None
of these methods provide interpretable classification results.

Fig. 1. Discriminatory interval 1 versus non-discriminatory interval 2.

To address efficiency and interpretability, novel techniques
known as interval-based classifiers have focused on intervals
rather than the whole signal. Time series forest (TSF) [4]
is the most accurate interval-based method and one of the
fastest TSC methods [5]. TSF randomly selects a number of
intervals (i.e., sub-series). Data points within each interval are
aggregated with statistical measurements (e.g., mean). The
original series are thus transformed into a representation of
intervals. The classification is performed using an ensemble
of trees, which allows for interpretability.

Motivated by the better efficiency of interval-based methods
and the intrinsic capability of providing interpretable classifi-
cations through the identification of discriminatory intervals
(cf. Figure 1), we also build our time series classifier based
on intervals. As Fig. 1 shows, interval 1 is an example
of a discriminatory interval. This interval differentiates the
blue time series from the red ones. In contrast, interval 2
is non-discriminatory because it cannot separate the red and
the blue series. When classifying large datasets with long
series, TSF may become computationally expensive due to
the larger number of intervals to be explored. We show that
a “supervised” selection of intervals is significantly more
efficient through training an ensemble of trees with a pre-
computed set of discriminatory intervals.

Our algorithm, Supervised Time Series Forest (STSF), op-
portunistically creates a time series forest for classification and
feature extraction based on such discriminatory intervals. For a
given set of time series with length m, the number of possible
interval features is quadratic to the length of the series, i.e.,
O(m2). Using a binary-inspired search strategy jointly with a
feature ranking metric (i.e., Fisher score [6]), STSF reduces



the interval feature space to O(log m). The main contributions
of this paper are summarized as follows:
• We propose STSF, a supervised interval search technique

with feature ranking metrics that is a highly efficient and
accurate interval-based TSC method. It minimizes un-
necessary computations when finding relevant intervals,
making it an order of magnitude faster than TSF.

• By extracting relevant intervals from the trained trees,
the generated regions of interest, i.e., groups of relevant
intervals, highlight the time periods where differences
in shape, distribution, or level, between time series of
different classes are more pronounced, and thus provide
interpretable outcomes of the classification.

• An extensive experimental study on 85 real datasets [7]
shows that STSF achieves classification accuracies com-
petitive to state-of-the-art methods but it is at least two
orders of magnitude faster than them. This makes STSF
suitable for large datasets with long time series.

II. RELATED WORK

Time series classification (TSC) methods can be broadly
categorised into instance-based, feature-based, and ensemble-
based. Instance-based methods such as 1-Nearest Neighbour
classifier with Dynamic Time Warping (1-NN DTW) [8] clas-
sify a time series according to the similarity of its ordered
data points to those of time series with known class labels,
where localized distortions of the data points are allowed.
These methods tend to be less accurate than feature-based
classifiers and computationally inefficient for long time series
(i.e., quadratic to the length of the series).

Feature-based methods such as Shapelet Transform (ST)
[9], bag-of-SFA-symbols (BOSS) [10], and time series forest
(TSF) [4] represent the raw time series with a set of derived
properties, i.e., features. ST uses shapelets, i.e., sub-series that
are representative of class membership, and time series are
classified according to their similarity to the (discriminatory)
shapelets. BOSS uses the relative frequency of discriminatory
sub-series for classification. It computes the number of times
that a discriminatory sub-series (represented as a word) ap-
pears in the time series. ST is expensive with a bi-quadratic
time complexity in the length of the series whereas BOSS has
a word length complexity in the size of the alphabet, which
makes it memory intensive for long series. TSF randomly
selects a number of intervals to extract discriminatory features
using statistical measurements. The idea is that time series
from the same class tend to have intervals with similar
characteristics. The random interval spectral ensemble (RISE)
was recently introduced [2] to capture the frequency-domain
features. RISE works similar to TSF, but extracts spectral
features over each random interval instead of statistical mea-
surements as in TSF. Both TSF and RISE are highly efficient
but usually less accurate than other TSC methods.

Ensemble-based methods use ensembles of individual
TSC methods. Two representatives are the elastic en-
semble (EE) [11] and the hierarchical vote collective of

transformation-based ensembles (HIVE-COTE) [2]. Both ap-
proaches are highly accurate but costly. They may become too
expensive on long series. EE is based on 11 instance-based
TSC methods, hence it has a quadratic time complexity in the
length of the time series. HIVE-COTE uses EE, ST, BOSS,
TSF, and RISE for classification. HIVE-COTE is the state-of-
the-art TSC method in terms of accuracy but is impractical for
long series (bi-quadratic time complexity in the length of the
time series). Proximity forest (PF) [12] and time series combi-
nation of heterogeneous and integrated embedding forest (TS-
CHIEF) [3] focus on providing highly accurate and scalable
classifications. PF builds an ensemble of proximity trees using
elastic distance measures as splitting criteria. While PF is more
scalable (quasi-linear time complexity in the number of time
series) than HIVE-COTE, it is significantly less accurate. TS-
CHIEF builds on PF and incorporates BOSS and RISE features
as splitting criteria. TS-CHIEF is statistically similar to HIVE-
COTE in classification accuracy, but more scalable (similar
to PF). PF and TS-CHIEF are quadratic to the series length,
which make them costly for long series.

Deep learning classifiers such as fully convolutional net-
works (FCN) and residual networks (ResNet) [13] obtain com-
petitive classification accuracy and allow interpretations on
the model decisions. However, they are also computationally
expensive for long series and require GPU.

III. PRELIMINARIES

Interval-based approaches extract sub-series for which ag-
gregates (e.g., mean and standard deviation) are computed
and used as features (i.e., interval features). To allow for
interpretable classifications, we focus on phase-dependent
intervals, i.e., discriminatory features located at the same time
regions over all time series in a given dataset.

Interval feature. Given a set of time series X =
{xxx1,xxx2,xxx3, ...,xxxn}, where xxxi = {xi

1,x
i
2, ...,x

i
m}, an aggregation

function f (·), and an interval (s,e), an interval feature aaa =
f (X ,s,e) is a vector of length n, defined as follows:

aaa = { f (xxx1,s,e), f (xxx2,s,e), f (xxx3,s,e), . . . , f (xxxn,s,e)}

where f (xxxi,s,e) = f ({xi
s,x

i
s+1, ...,x

i
e−1,x

i
e})16s6e6m.

With s=2, e=4, f =mean, an interval feature aaa = mean(X ,2,
4) is represented with the dashed rectangle as follows:

X =


x1

1 x1
2 x1

3 x1
4 x1

5 x1
6 . . . x1

m−1 x1
m

x2
1 x2

2 x2
3 x2

4 x2
5 x2

6 . . . x2
m−1 x2

m
...

...
...

...
...

...
...

...
...

xn
1 xn

2 xn
3 xn

4 xn
5 xn

6 . . . xn
m−1 xn

m



mean({x1
2,x

1
3,x

1
4})

mean({xn
2,x

n
3,x

n
4})

Problem statement. We consider a set of n univariate
time series X = {xxx1,xxx2, ...,xxxn}, where each time series xxxi =
{xi

1,x
i
2, ...,x

i
m} has m ordered real-valued observations, sam-

pled at equally-spaced time intervals. Each time series xxxi is
also associated with a class label yi. We aim to find the set
of interval features that yield the highest time series class



prediction accuracy. Finding such a set of interval features
is NP-hard. For a time series of length m, there are O(m2)

different intervals, and hence O(2m2
) subsets of intervals. For

a large m, it is prohibitively expensive to explore all subsets.
We present an efficient heuristic to avoid the exhaustive search
while retaining a high classification accuracy.

IV. OUR APPROACH

We take a stochastic optimization approach to select a
set of interval features with a high discriminating power Ā
(i.e., candidate discriminatory interval features) from the high
dimensional interval feature space A (i.e., all O(m2) possible
interval features). For a time series of length m, we reduce
the interval feature space size to O(log m). We search for the
best interval feature subset A∗ (i.e., discriminatory interval
features) through an ensemble of decision trees, which has
a time complexity O(r · n · log n · log m), where r is the total
number of trees in the ensemble, and n is the number of time
series instances. Fig. 2 shows an overview of STSF when
training a single tree. For a given training set X , a periodogram
representation of X , and a derivative representation of X , the
possible number of interval features for each representation
is denoted as AO, AF , and AD, respectively. For each interval
feature set AO, AF , and AD, STSF selects a group of candidate
discriminatory interval features ĀO, ĀF , and ĀD. Lastly, a
tree classifier, due to its intrinsic feature selection capability,
enables the selection of a set of discriminatory intervals A∗

with which classification is performed on the testing time
series. Features from A∗ may be used to add interpretability
to the classification task as discussed in Section VI.

Fig. 2. Overview of STSF. Sets of candidate discriminatory interval features
ĀO, ĀF , ĀD are selected from the high dimensional interval feature sets
AO,AF ,AD, respectively. The tree classifier uses the candidate sets to select a
set of discriminatory interval features A∗ to further perform the TSC task.

A. Time series representation

We first discuss time series representations to extract in-
tervals features. We use intervals from original (i.e., time
domain), periodogram (i.e., frequency domain), and derivative
representations. We focus on the latter two representations.

Periodogram representation: Several TSC methods [2],
[14] use the periodogram representation when looking for
time series similarities in the frequency domain. We adopt this
and exploit the periodogram representation of each time series
derived from the discrete Fourier transform. A side benefit of
this representation is that it helps to indirectly detect phase-
independent discriminatory intervals, i.e., discriminatory fea-
tures located at different time regions of the original series as
described in Fig. 3.

(a) (b)

Fig. 3. (a) Time series xi and xk , with a same class label (i.e., yi = yk)
present a similar sub-series but located at different time regions (i.e., phase-
independent). (b) The periodogram representation pi and pk of series xi and
xk , respectively. Our algorithm searches for discriminatory phase-dependent
interval features and cannot find discriminatory intervals that identify both
series as similar. The periodogram representation provides more flexibility
as it considers the frequency of the discriminatory sub-series (ignoring its
location in time) and thus helps to identify discriminatory sub-series even
when they appear at different locations in time across different time series.

Derivative representation: Using a (first-order) difference
representation of a given time series rather than the original
time series improves the classification accuracy [15] as it
provides trend information.

B. Selecting Candidate Discriminatory Intervals

Our approach to find candidate discriminatory intervals first
partitions a given time series set X of size n×m into two sub-
sets: (i) XL of size n×u, and (ii) XR of size n×m−u. The value
of u is randomly selected from the set of numbers {1,2, ...,m}.
The initial random partition (according to u) enables STSF
to explore more diverse sub-series (i.e., at different locations
and of different lengths). Next, a set of interval features is
extracted in a supervised manner independently from sub-sets
XL and XR using Algorithm 1. This last step runs for each
aggregation function detailed later. Note that the selection of
candidate discriminatory intervals runs on each of the time
series representations discussed in Section IV-A.

Our supervised search algorithm for the candidate discrimi-
natory intervals is summarized in Algorithm 1. The algorithm
recursively breaks a given interval into two equally-sized
intervals and computes interval features for the two resultant
intervals (Line 4). The Fisher score [6] (detailed below)
is further computed for each interval feature (Line 5). The
interval feature with a higher score is added to the set of
candidate discriminatory interval features (the starting and
ending time indices for each interval, and the aggregation
function used to represent the interval feature are also stored),
and the search continues within this interval (Lines 6 to 12).
The algorithm stops when the interval cannot be partitioned
further (with less than two points, Lines 1 to 3).

Feature ranking metric: The Fisher score of an interval
feature indicates how well the feature separates a class of
time series from the other classes. For a given vector of
class labels yyy ∈ {1,2, ...,c}n, the Fisher score of an interval
feature aaa is computed as FisherScore(aaa,yyy) = ∑

c
k=1 nk(µ

aaa
k −

µaaa)2/∑
c
k=1 nk(σ

aaa
k )

2. Here, µaaa is the overall mean of the
elements in aaa; µaaa

k and σaaa
k are the mean and standard deviation

of the elements in aaa labelled with the k-th class; and nk is the
number of time series labelled with the k-th class. We use the
Fisher score (instead of other metrics) for its fast computation.



Algorithm 1: SupervisedSearch
Input: X ′: set of n time series of length m′; y: class

label vector; f : aggregation function; f r:
feature ranking metric; Ā: set of candidate
discriminatory intervals.

1 if m′ < 2 then
2 return Ā;
3 else
4 aL← f (X ′,1,m′/2); aR← f (X ′,m′/2,m);
5 scoreL← f r(aL,y); scoreR← f r(aR,y);
6 if scoreL >= scoreR then
7 Ā← Ā∪{aL};
8 SupervisedSearch(X ′(1 : m′/2),y, f , f r, Ā);
9 else

10 Ā← Ā∪{aR};
11 SupervisedSearch(X ′(m′/2 : m),y, f , f r, Ā);
12 end
13 end
14 return Ā;

C. Classification with Discriminatory Intervals

STSF uses an ensemble of trees for classification. To train a
tree, STSF uses the set of O(log m) candidate discriminatory
intervals previously extracted from the series (detailed in
Section IV-B). In each tree node, we split the node according
to the feature with the highest information gain (IG). If the
entropy of the node is 0, we label the node as a leaf node. The
training process of STSF is less expensive than that in TSF. In
TSF, as stated in the original paper: “In each time series tree
node, we consider randomly sampling O(

√
m) interval sizes

and O(
√

m) starting positions”. Thus, in TSF, every node (of
each tree) has to compute O(

√
m) new features to split the

node, whereas in STSF each node uses the same O(log m)
features for the split. When classifying a new time series, the
class is predicted by a majority vote from the tree ensemble.

V. EXPERIMENTS

We evaluate our approach in two sets of experiments:
classification accuracy (i.e., effectiveness) and training time
(i.e., computational efficiency). For each set of experiments,
we describe the experimental setup and present the results.
STSF is implemented in Matlab. All experiments are run on
a macOS 10.14.3 system with a dual core CPU (i5, 2.3GHz)
using a single thread. We provide the full raw results and our
code at https://github.com/stevcabello/STSF.

A. Classification Accuracy

Experimental Setup: STSF is tested with a set of 85
benchmark datasets [7]. Each dataset provides a default train
and test split. We compare with TSF [4], RISE [2], HIVE-
COTE [2], TS-CHIEF [3], PF [12], BOSS [10], FCN [13],
ResNet [13], and 1NN-DTW [8]. STSF and TSF are trained
with 500 trees. STSF uses the mean, standard deviation (std),
median, interquartile range (iqr), minimum (min), maximum

(max), and slope aggregation functions. Similar to every non-
deterministic competitor (e.g., TSF, PF, and TS-CHIEF), we
compute the average classification accuracy over 10 runs of
STSF for each dataset.

Results: Table I shows the classification accuracy for STSF
and the competitors. STSF shows a competitive average ac-
curacy of 82.60, which is 4% higher than the best existing
interval-based method TSF. STSF ranks higher (on average)
than 1NN-DTW, TSF, RISE, PF, FCN and BOSS. Only
ResNet, HIVE-COTE, and TS-CHIEF rank higher than STSF.
However, as the critical difference diagram (Fig. 4) shows,
STSF is not significantly different from ResNet. Despite trad-
ing off accuracy for interpretability (only considering phase-
dependent discriminatory intervals), STSF achieves a highly
competitive accuracy close to the state-of-the-art. Meanwhile,
as our next set of experiments will show, STSF is at least two
order of magnitude faster than state-of-the-art TSC methods.

Fig. 4. Critical difference diagram of average ranks on 85 benchmark datasets.
Bold lines show groups of statistically similar methods. STSF is competitive
to exhaustive and state-of-the-art methods.

B. Training Time

Experimental Setup: We measured the training times of
TSF, TS-CHIEF, PF, ResNet, and 1NN-DTW over 45 datasets
(underlined in Table I). These methods (except for ResNet
and TSF) are implemented in Java. While comparing running
times of TSC methods implemented in different programming
languages may seem biased, STSF is implemented purely in
Matlab which is – as an interpreted language – slower than
Java (used for the baselines). Parameters of each competitor
are set as suggested in its original paper.

Results: In Fig. 5, we present the average ranks of each TSC
method and their scaled training times. STSF is two orders of
magnitude faster than ResNet and TS-CHIEF, and it is also
significantly faster than PF. STSF preserves its efficiency even
when classifying large datasets with long time series, whereas
PF, TS-CHIEF, and ResNet scale poorly. PF uses only 100
trees instead of 500 as TSF, TS-CHIEF, and STSF do. Since
PF’s training time scales linearly with the number of trees,
using 500 trees will make PF’s time five times larger than as
shown in Fig. 5. However, PF’s average rank is unlikely to
change. As the PF paper suggests: “It is unlikely that more
trees would provide a very significant improvement, because
the ratio of error-rates between 100 and 50 (trees) is already
close to 1 (i.e., the errors are only slightly reduced)”. Due
the expensive training times of HIVE-COTE, we report the
training times of HIVE-COTE when classifying 21/45 small to
medium datasets. The results suggest that STSF is two orders

https://github.com/stevcabello/STSF


TABLE I
AVERAGE CLASSIFICATION ACCURACY OVER 10 RUNS OF STSF AND TSF FOR EACH DATASET. OTHER METHODS ARE AS REPORTED IN THEIR PAPERS.

Datasets # classes # train # test length 1NN-DTW TSF RISE BOSS FCN ResNet HIVE-COTE PF TS-CHIEF STSF

Adiac 37 390 391 176 60.87 76.32 78.01 76.47 84.40 82.90 81.07 73.40 79.80 82.79
ArrowHead 3 36 175 251 80.00 72.57 79.43 83.43 84.30 84.50 86.29 87.54 83.27 67.49
Beef 5 30 30 470 66.67 86.33 83.33 80.00 69.70 75.30 93.33 72.00 70.61 84.00
BeetleFly 2 20 20 512 65.00 75.00 75.00 90.00 86.00 85.00 95.00 87.50 91.36 94.00
BirdChicken 2 20 20 512 70.00 80.00 95.00 95.00 95.50 88.50 85.00 86.50 90.91 90.00
Car 4 60 60 577 76.67 76.67 80.00 83.33 90.40 92.50 86.67 84.67 85.45 81.50
CBF 3 30 900 128 99.44 97.27 95.11 99.78 99.40 99.50 99.89 99.33 99.79 97.90
ChlorineConcentration 3 467 3840 166 65.00 74.93 76.85 66.09 81.40 84.40 71.20 63.39 71.67 78.04
CinCECGTorso 4 40 1380 1639 93.04 95.07 98.62 88.70 82.40 82.60 99.64 93.43 98.32 98.49
Coffee 2 28 28 286 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Computers 2 250 250 720 62.40 72.00 76.40 75.60 82.20 81.50 76.00 64.44 70.51 75.60
CricketX 12 390 390 300 77.95 64.97 69.74 73.59 79.20 79.10 82.31 80.21 81.38 68.33
CricketY 12 390 390 300 75.64 70.87 71.79 75.38 78.70 80.30 84.87 79.38 80.19 74.77
CricketZ 12 390 390 300 73.59 66.62 70.51 74.62 81.10 81.20 83.08 80.10 83.40 72.18
DiatomSizeReduction 4 16 306 345 93.46 94.80 92.81 93.14 31.30 30.10 94.12 96.57 97.30 96.63
DistalPhalanxOutlineAgeGroup 3 400 139 80 62.59 74.82 76.26 74.82 71.00 71.70 76.26 73.09 74.62 72.81
DistalPhalanxOutlineCorrect 2 600 276 80 72.46 77.17 77.54 72.83 76.00 77.10 77.17 79.28 78.23 78.84
DistalPhalanxTW 6 400 139 80 63.31 66.91 67.63 67.63 69.00 66.50 68.35 65.97 67.04 68.27
Earthquakes 2 322 139 512 72.66 74.82 74.82 74.82 72.70 71.20 74.82 75.40 74.82 76.91
ECG200 2 100 100 96 88.00 85.50 88.00 87.00 88.90 87.40 85.00 90.90 86.18 88.00
ECG5000 5 500 4500 140 92.51 93.89 93.69 94.13 94.00 93.40 94.62 93.65 94.54 94.21
ECGFiveDays 2 23 861 136 79.67 93.69 99.88 100.00 98.70 97.50 100.00 84.92 100.00 97.77
ElectricDevices 7 8926 7711 96 63.08 69.25 66.35 79.92 70.20 72.90 77.03 70.60 75.53 74.06
FaceAll 14 560 1690 131 80.77 76.83 76.15 78.17 94.50 83.90 80.30 89.38 84.14 78.85
FaceFour 4 24 88 350 89.77 98.41 89.77 100.00 92.80 95.50 95.45 97.39 100.00 97.73
FacesUCR 14 200 2050 131 90.78 90.01 87.51 95.71 94.60 95.50 96.29 94.59 96.63 88.59
FiftyWords 50 450 450 270 76.48 73.28 69.23 70.55 67.90 72.70 80.88 83.14 84.50 77.05
Fish 7 175 175 463 83.43 85.26 84.57 98.86 95.80 97.90 98.86 93.49 99.43 90.34
FordA 2 3601 1320 500 66.52 81.52 94.09 92.95 90.40 92.00 96.44 85.46 94.10 96.30
FordB 2 3636 810 500 59.88 68.77 81.11 82.00 87.80 91.30 82.35 71.49 82.96 79.42
GunPoint 2 50 150 150 91.33 95.07 98.00 100.00 100.00 99.10 100.00 99.73 100.00 92.00
Ham 2 109 105 431 60.00 74.29 68.57 66.67 71.80 75.70 66.67 66.00 71.52 73.81
HandOutlines 2 1000 370 2709 87.84 91.89 88.38 91.10 80.60 91.10 93.24 92.14 93.22 92.03
Haptics 5 155 308 1092 41.56 43.57 45.78 46.10 48.00 51.90 51.95 44.45 51.68 50.75
Herring 2 64 64 512 53.12 60.94 64.06 54.69 60.80 61.90 68.75 57.97 58.81 62.97
InlineSkate 7 100 550 1884 38.73 32.24 34.91 51.64 33.90 37.30 50.00 54.18 52.69 55.47
InsectWingbeatSound 11 220 1980 256 57.37 63.28 65.51 52.32 39.30 50.70 65.51 61.87 64.29 66.56
ItalyPowerDemand 2 67 1029 24 95.53 97.00 95.34 90.86 96.10 96.30 96.31 96.71 97.06 97.06
LargeKitchenAppliances 3 375 375 720 79.47 57.07 63.73 76.53 90.20 90.00 86.40 78.19 80.68 79.39
Lightning2 2 60 61 637 86.89 79.51 70.49 83.61 73.90 77.00 81.97 86.56 74.81 72.46
Lightning7 7 70 73 319 71.23 74.11 69.86 68.49 82.70 84.50 73.97 82.19 76.34 76.99
Mallat 8 55 2345 1024 91.43 96.46 92.15 93.82 96.70 97.20 96.20 95.76 97.50 96.88
Meat 3 60 60 448 93.33 93.33 93.33 90.00 85.30 96.80 93.33 93.33 88.79 93.17
MedicalImages 10 381 760 99 74.74 78.00 66.18 71.84 77.90 77.00 77.76 75.82 79.58 78.59
MiddlePhalanxOutlineAgeGroup 3 400 154 80 51.95 57.79 59.74 54.55 55.30 56.90 59.74 56.23 58.32 56.82
MiddlePhalanxOutlineCorrect 2 600 291 80 76.63 82.82 82.13 78.01 80.10 80.90 83.16 83.64 85.35 82.27
MiddlePhalanxTW 6 399 154 80 50.65 56.49 59.09 54.55 51.20 48.40 57.14 52.92 55.02 58.90
MoteStrain 2 20 1252 84 88.63 86.90 87.22 87.86 93.70 92.80 93.29 90.24 94.75 92.36
NonInvasiveFetalECGThorax1 42 1800 1965 750 82.90 89.97 90.13 83.82 95.60 94.50 93.03 90.66 91.13 93.27
NonInvasiveFetalECGThorax2 42 1800 1965 750 87.02 91.13 91.55 90.08 95.30 94.60 94.45 93.99 94.50 94.06
OliveOil 4 30 30 570 86.67 90.67 90.00 86.67 72.30 83.00 90.00 86.67 88.79 93.33
OSULeaf 6 200 242 427 59.92 58.39 64.88 95.45 97.70 97.90 97.93 82.73 99.14 79.83
PhalangesOutlinesCorrect 2 1800 858 80 76.11 80.30 81.35 77.16 82.00 83.90 80.65 82.35 84.50 83.17
Phoneme 39 214 1896 1024 22.68 21.20 35.55 26.48 32.50 33.40 38.24 32.01 36.91 32.52
Plane 7 105 105 144 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ProximalPhalanxOutlineAgeGroup 3 400 205 80 78.54 84.88 85.37 83.41 83.10 85.30 85.85 84.63 84.97 84.44
ProximalPhalanxOutlineCorrect 2 600 291 80 79.04 82.82 87.63 84.88 90.30 92.10 87.97 87.32 88.82 90.52
ProximalPhalanxTW 6 400 205 80 76.10 81.46 80.98 80.00 76.70 78.00 81.46 77.90 81.86 76.49
RefrigerationDevices 3 375 375 720 44.00 58.93 54.40 49.87 50.80 52.50 55.73 53.23 55.83 58.03
ScreenType 3 375 375 720 41.07 45.60 52.80 46.40 62.50 62.20 58.93 45.52 50.81 53.33
ShapeletSim 2 20 180 500 69.44 47.78 78.33 100.00 72.40 77.90 100.00 77.61 100.00 98.33
ShapesAll 60 600 600 512 80.17 79.17 83.33 90.83 89.50 92.10 90.50 88.58 93.00 85.22
SmallKitchenAppliances 3 375 375 720 67.20 81.07 81.07 72.53 78.30 78.60 85.33 74.43 82.21 83.44
SonyAIBORobotSurface1 2 20 601 70 69.55 75.64 82.20 63.23 96.00 95.80 76.54 84.58 82.64 90.67
SonyAIBORobotSurface2 2 27 953 65 85.94 81.86 91.08 85.94 97.90 97.80 92.76 89.63 92.48 83.25
StarLightCurves 3 1000 8236 1024 89.83 96.40 97.50 97.78 96.10 97.20 98.15 98.13 98.24 97.84
Strawberry 2 613 370 235 94.59 96.49 96.49 97.57 97.20 98.10 97.03 96.84 96.63 96.38
SwedishLeaf 15 500 625 128 84.64 89.57 93.60 92.16 96.90 95.60 95.36 94.66 96.55 94.29
Symbols 6 25 995 398 93.77 88.56 93.27 96.68 95.50 90.60 97.39 96.16 97.66 88.39
SyntheticControl 6 300 300 60 98.33 97.57 66.67 96.67 99.00 100.00 99.67 99.53 99.79 99.03
ToeSegmentation1 2 40 228 277 75.00 74.12 90.79 93.86 96.10 96.30 98.25 92.46 96.53 84.43
ToeSegmentation2 2 36 130 343 90.77 81.54 90.00 96.15 88.00 90.60 95.38 86.23 95.38 88.46
Trace 4 100 100 275 99.00 97.80 96.00 100.00 100.00 100.00 100.00 100.00 100.00 99.00
TwoLeadECG 2 23 1139 82 86.83 90.39 88.76 98.07 100.00 100.00 99.65 98.86 99.46 98.72
TwoPatterns 4 1000 4000 128 99.85 94.67 43.50 99.30 87.10 100.00 100.00 99.96 100.00 99.77
UWaveGestureLibraryAll 8 896 3582 945 96.23 95.73 92.13 93.89 81.70 86.00 96.85 97.23 96.89 95.48
UWaveGestureLibraryX 8 896 3582 315 77.44 78.96 61.86 76.21 75.40 78.00 83.98 82.86 84.11 81.10
UWaveGestureLibraryY 8 896 3582 315 70.18 71.15 66.69 68.51 63.90 67.00 76.55 76.15 77.23 74.16
UWaveGestureLibraryZ 8 896 3582 315 67.50 73.58 64.99 69.49 72.60 75.00 78.31 76.40 78.44 75.86
Wafer 2 1000 6164 152 99.59 99.50 99.55 99.48 99.70 99.90 99.94 99.55 99.91 99.98
Wine 2 57 54 234 61.11 62.96 64.81 74.07 58.70 74.40 77.78 56.85 89.06 66.85
WordSynonyms 25 267 638 270 74.92 62.43 58.93 63.79 56.40 62.20 73.82 77.87 78.74 63.64
Worms 5 181 77 900 53.25 61.04 66.23 55.84 76.50 79.10 55.84 71.82 80.17 76.75
WormsTwoClass 2 181 77 900 58.44 62.34 83.12 83.12 72.60 74.70 77.92 78.44 81.58 79.09
Yoga 2 300 3000 426 84.30 84.14 81.83 91.83 83.90 87.00 91.77 87.86 83.47 82.80
Average accuracy 75.91 78.19 78.84 81.16 80.92 82.48 84.71 81.94 84.64 82.60
Average rank 8.16 6.90 6.55 6.10 5.57 4.70 3.36 5.42 3.28 4.95



of magnitude faster than HIVE-COTE. On large datasets with
long time series, this difference is expected to be significantly
larger. We also calculated the average number of extracted
interval features per tree, i.e., number of computations, when
training STSF and TSF. TSF in highly efficient for small
datasets/shorts series. However, as the number/length of series
starts increasing, TSF becomes expensive. In such cases,
STSF is an order of magnitude faster than TSF and requires
approximately an order of magnitude less computations.

(a) (b)

Fig. 5. Average ranks vs training times of STSF, TSF, 1NN-DTW, PF, TS-
CHIEF, and ResNet, when classifying (a) all 45 datasets, (b) the three largest
datasets/longest time series NonECGT1, NonECGT2 and StarLtCurves. All
training times are scaled by that of STSF, i.e., training time of STSF = 1.
Interpretable TSC methods are in green. Non-interpretable ones are in red.
STSF is fast, highly accurate, and allows for interpretable classifications.

VI. INTERPRETABLE CLASSIFICATION

To provide further insights to the classification decisions,
we propose the use of regions of interest (ROIs). An ROI is a
time interval where a difference in levels (mean, median, min,
or max), distribution (std or iqr), or shape (slope), between
series of different classes is more pronounced. Discriminatory
intervals are located in the tree nodes. Each discriminatory in-
terval has information of the interval boundaries (i.e., starting
and ending time indices) and the aggregation function (e.g.,
mean) that was used to generate the corresponding feature.
To generate the ROIs, we only consider the discriminatory
intervals extracted from the original time series representation.
Frequency-based ROIs may be difficult to interpret, and first-
order difference-based ROIs are redundant, i.e., slope aggre-
gation on original sub-series also provides shape information.
Moreover, discriminatory intervals are likely to overlap with
each other, which hinders the ROIs’ interpretability. Thus, we
represent ROIs using the intersected regions of such intervals.
For example, we extracted shape ROIs when classifying the
ItalyPowerDemand dataset, which comprises of series of daily
household power consumption. Fig. 6 shows the extracted
shape ROIs (green areas). A difference in the trend of the
electrical power demand is more noticeable in the ROI be-
tween 7PM and midnight. This suggests that, in winter (red
series), the power demand peaks at 7PM and starts decreasing
after this time, whereas in summer (blue series), the power
demand is low at 7PM and increases after this time.

VII. CONCLUSIONS

We proposed STSF, a highly efficient algorithm for interval-
based time series classification over high-dimensional datasets.
STSF uses three time series representations and a supervised

Fig. 6. ROIs generated from intervals aggregated with slope statistic on
ItalyPowerDemand dataset. Summer days are represented with blue series
and winter days with red series. ROIs are represented with light green areas.

search strategy combined with a feature ranking metric to re-
duce unnecessary computations when searching for highly dis-
criminatory interval features on each representation. Discrim-
inatory interval features enable for interpretable outcomes of
a classification. Extensive experiments on real-world datasets
validate the accuracy and efficiency of STSF, as it is highly
accurate, close to state-of-the-art TSC methods but orders of
magnitude faster, enabling STSF to classify large datasets with
long series. We plan to extend our approach to multivariate
time series classification, exploring variables sampled at same
and different sampling rates.

REFERENCES

[1] S. Karpagachelvi, M. Arthanari, and M. Sivakumar, “Classification of
electrocardiogram signals with support vector machines and extreme
learning machine,” Neural Comput Appl, vol. 21, no. 6, pp. 1331–1339,
2012.

[2] J. Lines, S. Taylor, and A. Bagnall, “Time series classification with
hive-cote: The hierarchical vote collective of transformation-based en-
sembles,” TKDD, vol. 12, no. 5, p. 52, 2018.

[3] A. Shifaz, C. Pelletier, F. Petitjean, and G. I. Webb, “Ts-chief: A scalable
and accurate forest algorithm for time series classification,” Data Min
Knowl Discov, pp. 1–34, 2020.

[4] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest
for classification and feature extraction,” Inf Sci, vol. 239, pp. 142–153,
2013.

[5] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great
time series classification bake off: a review and experimental evaluation
of recent algorithmic advances,” Data Min Knowl Discov, vol. 31, no. 3,
pp. 606–660, 2017.

[6] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John
Wiley & Sons, 2012.

[7] A. Bagnall, J. Lines, W. Vickers, and E. Keogh, “The uea & ucr time
series classification repository,” 2019, www.timeseriesclassification.com.

[8] C. A. Ratanamahatana and E. Keogh, “Three myths about dynamic time
warping data mining,” in SDM, 2005, pp. 506–510.

[9] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, “Classifica-
tion of time series by shapelet transformation,” Data Min Knowl Discov,
vol. 28, no. 4, pp. 851–881, 2014.

[10] P. Schäfer, “The boss is concerned with time series classification in the
presence of noise,” Data Min Knowl Discov, vol. 29, no. 6, pp. 1505–
1530, 2015.

[11] J. Lines and A. Bagnall, “Time series classification with ensembles of
elastic distance measures,” Data Min Knowl Discov, vol. 29, no. 3, pp.
565–592, 2015.

[12] B. Lucas, A. Shifaz, C. Pelletier, L. O’Neill, N. Zaidi, B. Goethals,
F. Petitjean, and G. I. Webb, “Proximity forest: an effective and scalable
distance-based classifier for time series,” Data Min Knowl Discov,
vol. 33, no. 3, pp. 607–635, 2019.

[13] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in IJCNN, 2017, pp.
1578–1585.

[14] A. Bagnall, L. Davis, J. Hills, and J. Lines, “Transformation based
ensembles for time series classification,” in SDM, 2012, pp. 307–318.

[15] T. Górecki and M. Łuczak, “Using derivatives in time series classifica-
tion,” Data Min Knowl Discov, vol. 26, no. 2, pp. 310–331, 2013.

www.timeseriesclassification.com

