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Abstract—Trajectory similarity measures act as query pred-
icates in trajectory databases, making them the key player in
determining the query results. They also have a heavy impact
on the query efficiency. An ideal measure should have the
capability to accurately evaluate the similarity between any two
trajectories in a very short amount of time. Towards this aim,
we propose a contrastive learning-based trajectory modeling
method named TrajCL. We present four trajectory augmentation
methods and a novel dual-feature self-attention-based trajectory
backbone encoder. The resultant model can jointly learn both
the spatial and the structural patterns of trajectories. Our model
does not involve any recurrent structures and thus has a high
efficiency. Besides, our pre-trained backbone encoder can be fine-
tuned towards other computationally expensive measures with
minimal supervision data. Experimental results show that TrajCL
is consistently and significantly more accurate than the state-of-
the-art trajectory similarity measures. After fine-tuning, i.e., to
serve as an estimator for heuristic measures, TrajCL can even
outperform the state-of-the-art supervised method by up to 56%
in the accuracy for processing trajectory similarity queries.

Index Terms—Trajectory similarity, spatial databases, con-
trastive learning, transformer

I. INTRODUCTION

A trajectory is commonly represented as a sequence of
location points to describe the movement of an object, such
as a person or a vehicle. Measuring the similarity between
trajectories is a fundamental step in trajectory queries [1]–[6],
since it is used as a query predicate which determines query
results and efficiency. Unlike numeric data and character data,
there are not many universally applicable comparison criteria
for trajectory data, and thus measuring similarity between
trajectories is an important area of research.

A series of trajectory similarity measures [7]–[13] have been
proposed, which can be classified into two categories: heuristic
measures and learned measures. Heuristic trajectory similar-
ity measures [7]–[10] mainly aim to find a point-oriented
matching between two trajectories based on hand-crafted rules.
For example, Hausdorff [9] leverages the Euclidean distances
between points on two trajectories to measure trajectory sim-
ilarity. Learned trajectory similarity measures [11]–[14], on
the other hand, utilize deep learning models to predict sim-
ilarity values by computing the distance between trajectory-
oriented embeddings (i.e., numeric vector representations of
trajectories). For example, t2vec [11] and E2DTC [14] adapt
recurrent neural networks (RNN) to encode trajectories into
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embeddings, TrjSR [12] uses convolutional neural networks
(CNN) to embed trajectories.

(a) Hausdorff (heuristic) (b) t2vec (learned) (c) TrajCL (ours)

Fig. 1: Querying the 3NN trajectories (The query trajectory is
in yellow with extra thick lines for easy viewing. The 3NN
results are colored in red, green and blue, respectively.)

TABLE I: Trajectory similarity computation time

Hausdorff t2vec TrajCL
Time (µs) 6.63 0.34 0.14

Measures in the both categories above face the following
challenges. (1) Ineffectiveness: Trajectories with different
sampling rates or containing noise can degrade the effective-
ness of the existing measures. This is because the heuristic
measures using hand-crafted rules are prone to errors by low-
quality trajectories. The learned measures also suffer from
this problem, since they mostly adopt deep learning models
which are not originally designed for trajectory data and may
fail to capture long spatial correlations between trajectory
points and between similar trajectories. For example, Fig. 1
shows the 3-nearest neighbor query results on the Porto taxi
trajectory dataset [15]. The query results obtained using t2vec
(Fig. 1b) are far from the query trajectory. Those obtained
by Hausdorff are closer to the query trajectory (Fig. 1a),
but not as close as those obtained by our TrajCL method
(Fig. 1c), while Hausdorff suffers in efficiency (discussed
next). (2) Inefficiency: Existing heuristic measures compute
the distance between each pair of points on two trajectories.
They take at least a quadratic time w.r.t. the number of
trajectory points, which is unacceptable in online systems,
especially when trajectories become longer. Although the
learned measures get rid of pairwise point comparisons, they
are still limited in efficiency. As Table I shows, Hausdorff takes
6.63 microseconds to compute the similarity of two Porto taxi



trajectories. t2vec reduces the time by more than an order
of magnitude to 0.34 microseconds. However, its recurrent
structure has not fully exploited the parallel power of GPUs.
Our TrajCL avoids this recurrent structure and further brings
the computation time down to 0.14 microseconds.

To address these issues, we propose TrajCL, a contrastive
learning-based trajectory similarity measure with a dual-
feature self-attention-based trajectory backbone encoder (Du-
alSTB). TrajCL first leverages our proposed trajectory aug-
mentation methods to generate diverse trajectory variants (i.e.,
so called views) with different characteristics for each training
sample. Then, the proposed DualSTB encoder embeds the
augmented trajectories into trajectory embeddings, which can
capture the spatial distance correlation between the trajecto-
ries. After that, we compute the similarity of two trajectories
simply as the L1 distance between their embeddings.

Due to the lack of ground-truth for trajectory similarity,
we train our proposed DualSTB encoder by adopting self-
supervised contrastive learning [16], [17] that aims to max-
imize the agreement between the representations of positive
(i.e., similar) data pairs and minimize that of the negative (i.e.,
dissimilar) data pairs, where the positive and negative data
pairs are generated from input data via augmentation methods.

The idea of using contrastive learning for representation
learning is not new. By introducing it into trajectory embed-
ding learning, our first technical contribution is four trajectory
augmentation methods that enable obtaining the positive and
negative data pairs for contrastive learning over trajectories.
These methods include point shifting, point masking, trajec-
tory truncating, and trajectory simplification. The augmented
trajectories can be regarded as a set of low-quality variants of
the input trajectories with uncertainty. Such diverse trajectories
guide our model to learn the key patterns to differentiate
between similar and not-so-similar trajectory pairs.

Our second technical contribution is a dual-feature self-
attention-based trajectory backbone encoder (i.e., DualSTB)
that encodes both structural and spatial trajectory features
of a trajectory into its learned embedding. The two types
of features together provide coarse-grained and fine-grained
location information of trajectories. To obtain a comprehensive
embedding based on the two types of features, we devise a
dual-feature multi-head self-attention module that first learns
the correlations between trajectory points based on each type
of features. Then, the module adaptively combines the two
types of correlations, and finally it forms the output embed-
dings. Such a module can capture the long-term dependency
between trajectory points, while its non-recurrent structure
enables model inference with high efficiency.

After TrajCL is trained, it can be fine-tuned towards any
existing heuristic measure as a fast estimator with little training
effort, similar to the approximate learned measures [18]–[21].
To sum up, we make the following contributions:
1) We propose TrajCL, a contrastive learning-based trajectory

similarity measure that does not rely on any supervision
data during training. Our measure is robust to low-quality
trajectories and efficient on trajectory similarity compu-

tation. Besides, pre-trained TrajCL models can be used to
fast approximate any existing heuristic trajectory similarity
measure with little training effort.

2) We design four trajectory augmentation methods for our
trajectory contrastive learning framework, to enhance the
robustness of TrajCL on measuring trajectory similarity.

3) We present a dual-feature self-attention-based trajec-
tory backbone encoder, which incorporates the structural
feature-based attention and the spatial feature-based at-
tention adaptively. It can capture more comprehensive
correlations between trajectory points comparing with a
vanilla self-attention-based encoder.

4) We conduct extensive experiments on three trajectory
datasets. The results show that: (i) Compared with the
state-of-the-art learned trajectory similarity measures, Tra-
jCL improves the measuring accuracy by 138% and re-
duces the running time by more than 50%, on average.
(ii) When acting as a fast estimator of a heuristic measure,
TrajCL outperforms the state-of-the-art supervised method
by up to 56% in terms of the prediction accuracy.

II. RELATED WORK

Trajectory similarity measures. Existing studies on mea-
suring the similarity between two trajectories can be divided
into two categories: heuristic measures and learned measures.

Heuristic measures, in general, compare pairs of points
from two trajectories to find optimal point matches [7]–[10],
[22]–[24]. The (Euclidean) distances aggregated from the
matched points formulate the similarity of two trajectories.
Such methods usually take O(n2) time given trajectories of
n points each. For example, Hausdorff [9] computes the
maximum point-to-trajectory distance between two trajecto-
ries. Fréchet [10] resembles Hausdorff but requires the point
matches to strictly follow the sequential point order. EDR [7]
and EDwP [8] compute edit distance between trajectories,
while EDwP [8] further considers the real point distances,
and it allows interpolation points to account for non-uniform
sampling frequencies. A few other studies [2]–[4] measure
similarity on spatial networks, which are less relevant.

A few recent studies [18]–[21], [25]–[27] take a supervised
approach and train a deep learning model to approximate a
heuristic measure (e.g., Hausdorff). Once trained, the model
can predict trajectory similarity in time linear to the embed-
ding dimensionality. For example, NEUTRAJ [18] leverages
LSTMs [28] with a spatial memory module to capture the
correlation between trajectories. Traj2SimVec [19] accelerates
NEUTRAJ training with a sampling strategy, and it uses an
auxiliary loss to capture sub-trajectory similarity. T3S [20] uses
vanilla LSTMs and self-attention [29] to learn heuristic mea-
sures. TrajGAT [21] proposes a graph-based attention model
to capture the long-term dependency between trajectories.

Learned measures [11]–[14] do not require a given heuristic
measure to generate model training signals. These methods
still learn trajectory embeddings with deep learning, which
are expected to be more robust to low-quality (e.g., noisy
or with low sampling rates) trajectories, since deep learning



models are strong in capturing the distinctive data features.
t2vec [11] uses an RNN-based sequence-to-sequence model
to learn trajectory embeddings and then the similarity. It uses
a spatial proximity-aware loss that helps encode the spatial
distance between trajectories. E2DTC [14] leverages t2vec
as the backbone encoder for trajectory clustering. It adds
two loss functions to capture the similarity between trajec-
tories from the same cluster. TrjSR [12] captures the spatial
pattern of trajectories by converting trajectories into images.
CSTRM [13] uses vanilla self-attention as its trajectory encoder
and proposes a multi-view hinge loss to capture both point-
level and trajectory-level similarities between trajectories. It
generates positive trajectory pairs using two augmentation
methods, i.e., point shifting and point masking, which are
empirically shown to be sub-optimal in Section V.

Our model is a learned trajectory similarity measure. It aims
to address the limitations of the existing learned measures in
effectiveness and efficiency as discussed in Section I.

Contrastive learning. Contrastive learning [16], [17], [30]–
[38] is a self-supervised learning technique. Its core idea is to
maximize the agreement between the learned representations
of similar objects (i.e., positive pairs) while minimizing that
between dissimilar objects (i.e., negative pairs). The positive
and the negative sample pairs are generated from an input
dataset, and no supervision (labeled) data is needed. Once
trained, the representation generation model (i.e., a backbone
encoder) can be connected to downstream models, to generate
object representations for downstream learning tasks (e.g.,
classification). A few studies introduce contrastive learning
into spatial problems, such as traffic flow prediction [39].

Self-attention models. Self-attention-based models [29],
[40]–[42] learn the correlation between every two elements
of an input sequence. Studies have adopted self-attention for
trajectory similarity measurement (i.e., T3S and CSTRM).
Unlike our model, both T3S and CSTRM adopt the vanilla
multi-head self-attention encoder [29], while we propose a
dual-feature self-attention-based encoder which can capture
trajectory features from two levels of granularity and thus
generate more robust embeddings.

III. SOLUTION OVERVIEW

We consider a trajectory T as a sequence of points recording
discrete locations of the movement of some entity, denoted by
T = [p1, p2, ..., p|T |], where pi is the i-th point on T , and |T |
denotes the number of points on T . A point pi is represented
by its coordinates in an Euclidean space, i.e., pi = (xi, yi).

Problem statement. Given a set of trajectories, we aim to
learn a trajectory encoder F : T → h that maps a trajectory
T to a d-dimensional embedding vector h ∈ Rd. The distance
between the learned embeddings of two trajectories should
be negatively correlated to the similarity between the two
trajectories (we use the L1 distance in the experiments).

Model overview. Fig. 2 shows an overview of our TrajCL
model. The model follows the dual-branch structure of a strong
contrastive learning framework, MoCo [16]. Our technical

contributions come in the design of the learning modules as
highlighted in red in Fig. 2, to be detailed in the next section.

Given an input trajectory T , it first goes through a trajec-
tory augmentation module to generate two different trajectory
views (i.e., variants) of T , denoted as T̃ and T̃ ′, respectively.
We propose four different augmentation methods that em-
phasize different features of a trajectory (Section IV-A). The
augmentation process is based on T directly, and hence no
additional manual data labeling efforts are needed.

The generated views T̃ and T̃ ′ are fed into pointwise
trajectory feature enrichment layers to generate pointwise
features beyond just the coordinates, which reflect the key
characteristics of T̃ and T̃ ′ (Section IV-B). We represent the
enriched features by two types of embeddings, the structural
feature embedding and the spatial feature embedding, for each
point in T̃ (and T̃ ′). These embeddings encode pointwise
structural and spatial features, and form a structural embedding
matrix T (T′) and a spatial embedding matrix S (S′).

Then, we input (T, S) and (T′, S′) into trajectory backbone
encoders F and F ′ to obtain embeddings h and h′ for T̃ and
T̃ ′, respectively (Section IV-C). Our backbone encoders are
adapted from Transformer [29], and they encode structural and
spatial features of trajectories into the embeddings.

Next, h and h′ go through two projection heads P and P ′

(which are fully connected layers of the same structure) to be
mapped into lower-dimensional vectors z and z′, respectively:

z = P(h) = (FC ◦ ReLU ◦ FC)(h) (1)

Here, FC denotes a fully connected layer, ReLU denotes the
ReLU activation function, and ◦ denotes function composition.
We omit the equation for P ′ as it is the same. Such projections
have been shown to improve the embedding quality [17], [30].

Model training. Following previous contrastive learning
models, we use the InfoNCE [43] loss for model training.
We use z and z′ as a pair of positive samples, as they both
come from variants of T and are supposed to be similar in
the learned latent space. The embeddings (except z′) from
projection head P ′ that are in the current and recent past
training batches are used as negative samples of z. The
InfoNCE loss L maximizes the agreement between positive
samples and minimizes that between negative samples:

L(T ) = − log
exp

(
sim(z, z′)/τ

)
exp

(
sim(z, z′)/τ

)
+

∑|Qneg|
j=1 exp

(
sim(z, z−j )/τ

)
(2)

Here, sim is the cosine similarity. τ is a temperature parameter
that controls the contribution of the negative samples [44].

We use a queue Qneg of a fixed size (an empirical pa-
rameter) to store negative samples. The queue includes the
embeddings from P ′ in recent batches, to enlarge the negative
sample pool, since more negative samples help produce more
robust embeddings [16], [17]. To reuse negative samples
from recent batches, the parameters of F ′ and P ′ should
change smoothly between batches. We follow the momentum
update [16] procedure to satisfy this requirement:

ΘF ′ = mΘF ′+(1−m)ΘF ; ΘP′ = mΘP′+(1−m)ΘP (3)
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Fig. 2: The model architecture of TrajCL (The modules in red are our core technical contributions.)

Here, ΘX denotes the parameters of model X ; m ∈ (0, 1)
(which is 0.999 in our experiments) is a momentum coefficient
that determines the smoothness of parameter updates. Note that
ΘF and ΘP are still updated by stochastic gradient descent.

Once trained, the pointwise trajectory feature enrichment
layers and trajectory backbone encoder F can be detached
from TrajCL to serve as an encoder to generate embeddings
for given trajectories, which can be used to directly compare
the similarity between trajectories. They can also be connected
to other models to approximate heuristic similarity measures.

IV. MODEL DETAILS

We next elaborate our model components, including tra-
jectory augmentation methods (Section IV-A), pointwise tra-
jectory feature enrichment layers (Section IV-B), and dual-
feature self-attention-based backbone encoders (Section IV-C).
We also analyze the model complexity (Section IV-D).

A. Trajectory Augmentation

Data augmentation creates different variants of an input
record such that the encoder later can learn to capture the
common (and distinguishing) features from the variants.

No augmentation methods have been proposed for trajectory
contrastive learning. We propose four augmentation methods
to fill this gap: (1) point shifting, (2) point masking (3) trajec-
tory truncating, and (4) trajectory simplification. The aim is
to cover the common trajectory transformations. Fig. 3 shows
examples for the four methods, where the trajectory in dark
blue denotes an input trajectory, and those in light blue are
variants generated by the different augmentation methods.

point
shifting

trajectory
simplification

point
masking

trajectory
truncating

input

Fig. 3: Examples of the proposed trajectory augmentation
methods (The same pi on different trajectories denotes the
same point from the input; p′i is shifted from pi.)

Point shifting. Given a trajectory T , point shifting randomly
adds an offset to each coordinate of pi ∈ T , aiming to learn

similar trajectories with minor point location differences. The
point-shifted output trajectory T̃ (or T̃ ′, same for the rest of
the subsection) of T can be represented as:

T̃ = [p′1, p
′
2, . . . , p

′
|T |],where ∀pi = (xi, yi) ∈ T,

p′i = (xi +∆xi, yi +∆yi), ∆xi ∼ Xn, ∆yi ∼ Xn

(4)

Here, ∆xi and ∆yi are the location offsets, and Xn is
their distribution. We use a bounded Gaussian distribution
Xn ∼ ρm

λ ·N (µ, σ2), since the location errors of a GPS point
cannot be arbitrarily large. Parameter ρm is the maximum
distance offset, and λ is a normalization coefficient to let the
integral of the cumulative distribution function of Xn to be 1:
λ =

∫ ρm

−ρm
fXn(x)dx, where fXn(x) is the probability density

function of Xn. We set ρm at 100 meters and use N (0, 0.52)
in the experiments.

Point masking. Given a trajectory T , point masking ran-
domly masks (i.e., removes) a subset of points in T to generate
a variant T̃ , to help learn similar trajectories with varying sam-
pling rates or incomplete records. We use an independent and
identically uniform distribution for the masking probability
of each point, and we set the proportion of points masked,
ρd ∈ (0, 1), to 0.3 in our experiments. The point-masked
output trajectory T̃ is represented as:

T̃ = [pn1 , pn2 , . . . , pn|T̃ |
], (5)

where n1, n2, . . . , n|T̃ | is a strictly increasing sequence, T̃ ⊂
T , and |T̃ | = ⌊(1− ρd) · |T |⌋.

Trajectory truncating. Given a trajectory T , trajectory
truncating cuts a prefix or a suffix (or both) from T and keeps
the rest as a variant T̃ . This method aims to uncover partially
overlapped trajectories for applications such as carpooling. We
use a parameter ρb ∈ (0, 1) to control the proportion of points
kept in T̃ . We set ρb = 0.7 in the experiments. Formally, a
variant T̃ generated by trajectory truncating is represented as:

T̃ =[pi, pi+1, . . . , p⌊i+ρb·|T |⌋],

where i is a random integer in [1, ⌈(1− ρb) · |T |⌉]
(6)

Trajectory simplification. Given a trajectory T , trajectory
simplification removes points from T that are not critical to the
overall shape and trend of T to form a variant T̃ . The variant is
meant to guide the trajectory encoder to focus on the critical
(e.g., turning) points of T . We adopt the Douglas–Peucker
(DP) simplification algorithm [45] for its wide applicability,
although other simplification methods also apply. DP starts by
drawing a line segment to connect the two end points of T . The



breaking point of T that is the farthest from this line segment
is calculated (e.g., p5 in Fig. 3), and two line segments are
drawn to connect this point with the two initial end points,
respectively. We repeat the breaking point finding process on
each of the two line segments recursively, until the breaking
points found are close to the line segments enough (defined
by a threshold ρp which is 100 meters in the experiments).
Only the breaking points found in the process are kept in T̃ .

T̃ = Douglas Peucker(T ) (7)

Discussion. Parameters ρm, ρd, ρb and ρp above control
how far off an augmented trajectory can be from the input
trajectory. We have set empirical values for them, while
changing their values offers flexibility in creating augmented
trajectories that help learn embeddings for trajectory similarity
queries of different accuracy requirements.

B. Pointwise Trajectory Feature Enrichment

After augmenting T , we obtain two augmented trajectory
views T̃ and T̃ ′. The next step is to enrich T̃ and T̃ ′ to create
features beyond just point coordinates that can reflect the key
characteristics of trajectories, which will later be used as the
input to the trajectory backbone encoder.

We create two types of features, i.e., structural features and
spatial features, for every trajectory point, and we represent
each feature by an embedding vector, i.e., the structural feature
embedding and the spatial feature embedding. To also preserve
the relative position information of the points, we further
encode positional information into embedding vectors.

Structural feature embedding. The structural features aim
to capture the general shape and point connectivity of a
trajectory. We partition the data space with a regular grid
where the cell side length is a system parameter, and we
represent a trajectory point by the grid cell enclosing it. The
sequence of grid cells passed by a trajectory T̃ (or T̃ ′) depicts
the trajectory shape, and the cell adjacency relationships reflect
the connectivity among the points on the trajectory.

Using an ID to represent each cell (and the trajectory points
inside) offers only sparse information and misses the cell
adjacency relationships. Instead, we learn a cell embedding
to capture such information as follows. We construct a graph
where each vertex represents a grid cell. A vertex correspond-
ing to a cell is connected by an edge to each of the eight
vertices that correspond to the eight cells surrounding the given
cell. We then run a self-supervised graph embedding algorithm
(i.e., node2vec [46]) to learn the vertex embeddings which
encode the graph (and hence the grid) structural information.
The vertex embeddings are used as the cell embeddings.

Once the cell embeddings (of dt dimensions) are obtained,
we represent every point pi on T̃ (and T̃ ′) by the cell embed-
ding of pi. This results in an embedding matrix T ∈ R|T̃ |×dt

(and T′ ∈ R|T̃ ′|×dt ) to represent T̃ (and T̃ ′).
Spatial feature embedding. We further capture fine-grain

location information of the points in a trajectory by computing
their spatial feature embeddings.

Given a point pi on T̃ (or T̃ ′), its spatial feature embedding
is a four-tuple (xi, yi, ri, li), where xi and yi are its spatial co-
ordinates, ri is the radian between the two trajectory segments
before and after pi, i.e., pi−1, pi and pi, pi+1, respectively, and
li is the mean length of pi−1, pi and pi, pi+1. Formally:

ri = ∠pi−1pipi+1; li = 0.5×
(
|pi−1, pi|+|pi, pi+1|

)
(8)

We use S ∈ R|T̃ |×ds and S′ ∈ R|T̃ ′|×ds to denote the spatial
feature embedding matrices of T̃ and T̃ ′, respectively (ds = 4).

Position encoding. The structural and the spatial feature
embeddings have not considered the relative positions (i.e.,
preceding and subsequent) of the points on a trajectory, which
are important information in trajectory similarity. We modify
these embeddings to further encode such information.

We adopt the sine and cosine functions [29] for point-
in-sequence position encoding. For the j-th dimension value
of the structural feature embedding (and the spatial feature
embedding) of the i-th point on a trajectory, denoted by T[i, j]
(and S[i, j]), we update it by adding the following value ei,j :

T[i, j] = T[i, j] + ei,j ; S[i, j] = S[i, j] + ei,j

ei,j =

{
sin

(
i/10000j/dp

)
, j is even

cos
(
i/10000(j−1)/dp

)
, j is odd

(9)

Here, dp denotes the embedding dimensionality of T or S,
respectively. Intuitively, ei,j encodes the position information
i which is added to the embeddings of the i-th point.

C. Dual-Feature Self-Attention-Based Backbone Encoder

We propose a dual-feature self-attention-based trajectory
backbone encoder (DualSTB) equipped with a dual-feature
multi-head self-attention module (DualMSM) to capture both
structural and spatial features of an input trajectory. Compared
with the vanilla multi-head self-attention module (MSM) in
Transformer [29], DualMSM models not only attentions for
each type of features separately but also their joint impact, to
generate more comprehensive trajectory representations.

DualMSM

Add & LN

Add & LN

MLP

AvgPool

MSM

Add & LN

Add & LN

MLP
Softmax

DualMSM

Fig. 4: The dual-feature self-attention-based trajectory back-
bone encoder, DualSTB (left), and the dual-feature multi-head
self-attention module, DualMSM (right)



DualSTB. Fig. 4 shows the structure of DualSTB (the
left sub-figure) and its DualMSM module (the right sub-
figure). DualSTB follows the overall structure of a multi-layer
Transformer encoder, where our new design lies in DualMSM
and the use of two types of input T and S instead of one
(T′ and S′ for DualSTB over T̃ ′, which is omitted below
for conciseness). We include the computation steps of the
DualSTB encoder for completeness. Readers who are familiar
with the Transformer model can skip the next paragraph.

DualSTB takes T and S as the input, which go through
a DualMSM module to learn the joint attention of the input
features. The output of DualMSM, denoted by Cts, is fed to
a residual connection [47] (i.e., a dropout function [48] and
an add function) and a layer normalization [49] which help
alleviate the problems of gradient vanishing and explosion to
obtain smoother gradients. Then, the output goes through a
multi-layer perceptron (MLP) with a residual connection and a
layer normalization to slow down the model degeneration. The
post-DualMSM processing steps are summarized as follows:

Ĉts = LayerNorm(T+Dropout(Cts)) (10)

Hts = LayerNorm(Ĉts +Dropout(MLP(Ĉts))) (11)

Here, Ĉts is an intermediate result and Hts is the trajectory
point representation matrix based on both structural and spatial
features. Multiple layers (two in the experiments) of the struc-
tures are stacked. Finally, we apply average pooling on Hts

of the last layer to obtain trajectory representation h ∈ Rd, by
averaging along each dimension of the point representations.

DualMSM. The core learning module of the DualSTB
encoder, DualMSM, takes as input both structural features
T ∈ Rl×dt and spatial features S ∈ Rl×ds of a trajectory and
outputs the hidden representations of trajectory points. Here,
l denotes the maximum number of points on a trajectory. We
pad trajectories with less than l points with 0’s.

DualMSM first applies linear transformations on T to obtain
a value matrix Vi

t ∈ Rl×(dt/h) = TWi
v , a key matrix Ki

t ∈
Rl×(dt/h) = TWi

k and a query matrix Qi
t ∈ Rl×(dt/h) =

TWi
q , where h is the number of heads, i denotes the i-th

head, and Wi
v , Wi

k and Wi
q (all in Rdt×(dt/h)) are learnable

weights of the i-th head. The multi-head mechanism maps
different features of T into different feature sub-spaces such
that each head only needs to focus on part of the features. Each
single head attention still covers all features of T, to reduce
feature bias. Besides, the linear transformation strengthens the
representation capacity of the inputs and refrains the attention
coefficient matrix from degrading into an identity matrix.

Then, we compute the attention coefficients between the
input points of each trajectory:

Ai
t = Softmax

(Qi
tK

iT
t√

dt/h

)
(12)

Here,
√

dt/h is used as a scaling factor, and Ai
t is the

structural attention coefficient matrix of the i-th head, which
represents the structural correlation between the points (cf. the
left half of the DualMSM module in Fig. 4).

For the right half of DualMSM in Fig. 4, following a
procedure similar to the above, we compute Vi

s, Ki
s and Qi

s

based on the spatial features S with a different set of learnable
parameters, and we compute the spatial attention coefficient
matrices Ai

s following an equation like Equation 12.
Then, we multiply the spatial attention coefficient matrix Ai

s

with the value matrix Vi
s to obtain the hidden output Ci

s ∈
Rl×(ds/h) for input S on the i-th head:

Ci
s = Ai

s ×Vi
s (13)

After that, we concatenate the output of each head to form
the full hidden output Cs for S:

Cs = (C1
s∥C2

s∥C3
s ... ∥Ch

s )Wo (14)

where ∥ denotes concatenation, and Wo ∈ Rds×ds is the
learnable weight matrix. The steps above on S correspond
to the MSM module at the bottom right of Fig. 4.

The full hidden output Cs then goes through layer nor-
malization with a residual connection, an MLP module with a
residual connection, and another layer normalization like those
described by Equations 10 and 11 above, where Ĉts, T, Cts

and Hts are replaced by Ĉs, S, Cs and Hs, respectively.
Similar to Transformer, we stack these layers in DualMSM
(two layers in the experiments).

So far, we have obtained both the structural and the spatial
attention coefficient matrices Ai

t and Ai
s (Ai

s denotes the
matrix of the last stacked layer). We calculate a weighted
sum of Ai

t and Ai
s with a learnable weighting parameter

γ as the final attention coefficient. This learnable parameter
guides the learned embeddings to adaptively take structural
and spatial correlations between trajectory points into consid-
eration. The output of the i-th head of DualMSM, denoted as
Ci

ts ∈ Rl×(dt/h), is computed by:

Ci
ts =

(
Ai

t + γAi
s)V

i
t (15)

Lastly, similar to Ci
s in Equation 14, we concatenate the

output of each head Ci
ts and apply a linear transformation to

form the final output of DualMSM, i.e., Cts ∈ Rl×dt .
Discussion. The differences between DualMSM and the

vanilla MSM [29] are twofold. First, DualMSM takes as
input two types of features, i.e., structural and spatial, for
trajectory embedding learning, while MSM only accepts one
type of input features. One may concatenate both types of
features into one to suit the input structure of MSM. Such
an approach, however, is shown to be inferior empirically
(Section V-G). Second, DualMSM allows learning exclusive
attention coefficients for each type of input features, which are
then integrated adaptively. Such a mechanism is not supported
in MSM. This mechanism ensures that the correlations (i.e.,
the attention coefficients) between points based on different
types of features are modeled independently, while the adap-
tive integration makes the attention mechanism more flexible
to combine different types of input features.



D. Cost Analysis

TrajCL takes O(l2 · d · L) time to compute h for T , where
l denotes the number of points on T , and L is the number of
DualMSM layers. This cost has hidden the O(l) time to obtain
the pointwise trajectory features, i.e., T → T and S, since the
dominating cost comes from the trajectory encoding stage (i.e.,
T and S → h), in particular, the matrix multiplication costs
in Equations 12 and 13. Without any recurrent structures, our
TrajCL model can be easily accelerated by GPUs.

In comparison, the representative competitor methods
t2vec [11] and E2DTC [14] take O(l ·d2 ·L) time to compute
a trajectory embedding, TrjSR [12] takes O(m2 ·k2 ·nk ·cl ·L)
time, and CSTRM [13] takes the same time as TrajCL, where
m is the side length (number of pixels) of trajectory images,
k is the side length of convolution kernels, nk is the number
of kernels, and cl is the number of image channels in TrjSR.

Once h is obtained, it will only take a time linear to d to
compute the similarity between two trajectories.

V. EXPERIMENTS

We evaluate TrajCL on three real trajectory datasets by com-
paring with heuristic methods and learned methods for both
trajectory similarity computation and similarity queries. We
also study the effectiveness of TrajCL on a downstream task
by fine-tuning it to learn heuristic similarity measures. Finally,
we study the impact of model components and parameters.

A. Experimental Settings

Datasets. We use three real-world trajectory datasets:
(1) Porto [15] contains 1.7 million taxi trajectories from Porto,
Portugal, between July 2013 and June 2014; (2) Xi’an [50]
contains 2.1 million ride-hailing trajectories from Xi’an,
China, during the first two weeks of October 2018; and
(3) Germany [51] contains 170.7 thousand user-submitted
trajectories within Germany, between 2006 and 2013. Follow-
ing previous studies [11]–[13], we preprocess each dataset by
filtering out trajectories that are outside the city (or country)
area or contain less than 20 points or more than 200 points.
The datasets after preprocessing are summarized in Table II.
We also evaluated on the Chengdu dataset [50] which is widely
used in previous studies. The results share similar comparative
patterns with those on the Xi’an dataset. We leave the results
in a technical report [52] due to space limit.

TABLE II: Dataset statistics

Porto Xi’an Germany
#trajectories 1,372,725 900,562 143,417
Avg. #points per trajectory 48 118 72
Max. #points per trajectory 200 200 200
Avg. trajectory length (km) 6.37 3.25 252.49
Max. trajectory length (km) 80.61 99.41 115,740.67

Each dataset is randomly partitioned into four disjoint sub-
sets: (1) 200,000 trajectories in Porto and Xi’an, and 30,000
trajectories in Germany for training, respectively, (2) a 10%
subset for validation, (3) 100,000 trajectories for testing, and

(4) 10,000 trajectories for downstream task experiments, i.e.,
learning to approximate a heuristic similarity measure, which
are further split by 7:1:2 for training, validation, and testing.

Competitors. We compare TrajCL with four representa-
tive heuristic trajectory similarity measures EDR, EDwP,
Hausdorff and Fréchet [7]–[10], and four recently proposed
self-supervised learned measures t2vec, TrjSR, E2DTC and
CSTRM [11]–[14]. Similar to TrajCL, all these measures
are used as a standalone trajectory similarity measure. These
baseline methods are described in Section II.

In the downstream task to fine-tune TrajCL and approximate
a heuristic measure, we compare TrajCL with the above
self-supervised methods and the latest supervised methods
Traj2SimVec, T3S and TrajGAT [19]–[21].

We use the released code and default parameters for all
baseline methods except CSTRM, Traj2SimVec and T3S
which have no released code. We implement these three
methods following their original proposals.

Implementation details. We implement TrajCL1 with Py-
Torch 1.8.1. We run experiments on a machine with a 32-
core Intel Xeon CPU, an NVIDIA Tesla V100 GPU and 64
GB RAM. We report mean results over five runs of each
experiment with different random seeds.

We train TrajCL using the Adam optimizer and a maximum
of 20 epochs, and we early stop after 5 consecutive epochs
without improvements in the loss. The learning rate is initial-
ized to 0.001 and decayed by half after every 5 epochs. We set
the embedding dimensionality d to 256 for all learned methods
except TrajGAT which uses its default value 32 for a better
performance. For TrajCL, CSTRM and T3S, the number of
heads h is 4, and the number of encoder layers #layers is
2. The default augmentation methods are point masking and
trajectory truncating for the two views. The side lengths of
the grid cells are 100 meters for Porto and Xi’an, and 1,000
meters for Germany for its large spatial region, respectively.

We use ‘▲’ (and ‘▼’) to indicate that larger (and smaller)
values are better, and the best results are in bold.

B. Learning Trajectory Similarity

We first investigate the effectiveness of TrajCL on learning
trajectory similarity, i.e., to find similar trajectories.

Setup. Following the baseline methods [11]–[13], the exper-
imental data includes a query set Q and a database D, which
are created from the 100,000 randomly chosen testing set (see
Datasets in Section V-A above) as follows. We test how well
TrajCL can help recover the ground-truth similar trajectories
in D for the query trajectories in Q.

From each dataset, we randomly sample 1,000 trajectories
from the 100,000 testing set. For each sampled trajectory T q ,
we create two sub-trajectories – one consisting of the odd
points of T q , i.e., T q

a = [p1, p3, p5, . . .], and the other the
even points, i.e., T q

b = [p2, p4, p6, . . .]. Trajectory T q
a is put

into the query set Q, and T q
b is put into the database D and

will serve as the ground-truth most similar trajectory of T q
a .

1Code is available at https://github.com/changyanchuan/TrajCL



We further add randomly chosen trajectories from the testing
set into D to form databases of different sizes. We generate
T q
a and T q

b because there is no known ground-truth similar
trajectory pair. Such a pair can be seen as different trajectories
recorded with the same sampling rate for the same movement
sequence but starting at slightly different locations. Thus, they
can be considered as a reasonably similar pair.

For every query T q
a ∈ Q, we compute the similarity between

T q
a and all trajectories in D (for each method), and we report

the mean rank of T q
b by sorting the similarity values of

trajectory pairs. Ideally, T q
b should rank 1st.

TABLE III: Mean rank (▼) of the ground truth most similar
trajectory vs. database size (Best results are in bold.)

Dataset Method 20K 40K 60K 80K 100K

Porto

EDR 8.318 14.398 17.983 22.902 28.753
EDwP 3.280 4.579 5.276 6.191 7.346
Hausdorff 3.068 4.014 4.649 5.451 6.376
Fréchet 3.560 4.959 5.968 7.192 8.631
t2vec 1.523 2.051 2.257 2.612 3.068
TrjSR 1.876 2.783 3.208 3.826 4.635
E2DTC 1.560 2.111 2.349 2.731 3.213
CSTRM 4.476 7.954 10.630 13.576 16.699
TrajCL 1.005 1.006 1.006 1.007 1.010

Xi’an

EDR 57.149 113.583 169.284 224.900 280.126
EDwP 2.318 2.611 2.929 3.288 3.606
Hausdorff 37.896 74.044 109.996 145.924 182.224
Fréchet 40.378 79.087 117.677 156.159 194.685
t2vec 2.574 4.047 5.538 7.047 8.644
TrjSR 13.791 26.901 39.683 52.559 65.647
E2DTC 2.988 4.909 6.854 8.810 10.861
CSTRM 3.078 5.231 7.317 9.402 11.635
TrajCL 1.023 1.050 1.066 1.087 1.107

Germany

EDR 279.385 558.288 834.208 1108.975 1370.004
EDwP 2.168 2.277 2.371 2.454 2.515
Hausdorff 2.803 3.509 4.206 4.906 5.551
Fréchet 2.581 3.108 3.633 4.113 4.589
t2vec 1.571 1.982 2.387 2.718 3.053
TrjSR 6.517 11.741 16.969 22.182 24.083
E2DTC 3.136 5.156 7.248 9.207 10.956
CSTRM - - - - -
TrajCL 1.012 1.022 1.034 1.040 1.045

Results. Varying database size |D|. We first vary the
database size |D| from 20,000 to 100,000. Table III shows
the mean rank of T q

b (smaller values are better) produced by
the different methods. TrajCL outperforms all heuristic and
learned similarity measures on all three datasets, producing
mean ranks very close to 1 consistently. For example, on Porto,
compared with the best heuristic competitor Hausdorff and
the best learned competitor t2vec, TrajCL reduces the mean
rank of T q

b by up to 5.31 times and 2.04 times smaller (1.010
vs. 6.376 and 3.068 when |D|=100K), respectively. Further,
TrajCL is more stable as |D| grows. Its worst mean rank
of T q

b when |D|=100K is just 1.107, which is captured on
Xi’an. In comparison, the worst-case mean rank of T q

b of
the best baseline method (i.e., t2vec) on the same dataset
grows to 8.644 which is 6.81 times larger. Such results
confirm the effectiveness of TrajCL to obtain better trajectory
representations that preserve the similarity.

Both t2vec and E2DTC share similar results, as they use the
same backbone encoder. E2DTC is slightly worse even though
it is a newer method. This is because E2DTC is designed for

trajectory clustering which may not be optimized for trajectory
similarity learning. We also note that TrjSR has reported better
performance than t2vec [12]. However, we were not able to
produce the same results on our datasets, while we do not have
access to their datasets. Besides, although CSTRM also uses
self-attention, it cannot accurately learn trajectory similarity.
This is because CSTRM uses the vanilla MSM and only learns
coarse-grained trajectory representations based on grid cells,
while our proposed DualMSM can capture both coarse-grained
and fine-grained features and leverage the topology of grid
cells. Further, due to the large number of parameters of the cell
embedding module in CSTRM, it triggers an out-of-memory
error on Germany and hence no results were obtained.

Further, we observe that, in general, the learning-based
methods achieve better results on Germany than on Xi’an, and
best results on Porto. Germany has the largest geographical
region and grid space among the three datasets, while it
has the fewest training trajectories. These make trajectory
point correlation learning among different grid cells difficult
and lead to a more challenging dataset than Porto. On the
other hand, Germany has the lowest trajectory density, and its
trajectories are easier to be distinguished among each other,
especially comparing with those in the Xi’an dataset which
are much denser (with the smallest geographical region).

Varying down-sampling rate ρs. We down-sample trajecto-
ries in Q and D by randomly masking points in each trajectory
with a probability ρs ∈ [0.1, 0.5], while |D| = 100, 000.
Table IV shows the results. TrajCL again achieves the smallest
mean ranks of T q

b consistently. Compared with the best heuris-
tic competitor EDwP and the best learned competitor t2vec,
TrajCL reduces the mean rank by at least 0.87 and 2.17 times
(on Porto), and up to 11.38 and 12.01 times, respectively.

TABLE IV: Mean rank (▼) vs. down-sampling rate

Dataset Method 0.1 0.2 0.3 0.4 0.5

Porto

EDR 57.173 203.993 806.033 2286.821 4872.231
EDwP 8.442 10.968 18.727 28.394 68.061
Hausdorff 10.026 23.293 56.561 89.827 275.206
Fréchet 10.668 18.516 29.740 93.851 181.271
t2vec 4.786 8.461 19.689 35.219 115.364
TrjSR 7.941 15.746 151.948 549.108 1341.883
E2DTC 5.100 9.385 21.845 39.402 124.320
CSTRM 24.794 47.137 123.124 257.540 687.262
TrajCL 1.026 1.191 1.513 3.847 36.352

Xi’an

EDR 279.835 285.550 340.820 367.227 516.571
EDwP 4.038 7.047 10.499 20.807 25.631
Hausdorff 64.390 122.651 124.112 127.969 184.158
Fréchet 66.813 86.647 144.120 160.499 196.099
t2vec 9.929 10.710 15.098 22.184 22.493
TrjSR 85.815 114.777 140.970 147.401 336.613
E2DTC 12.411 11.918 26.242 18.267 28.326
CSTRM 13.153 16.056 25.374 34.194 47.146
TrajCL 1.198 1.371 1.414 2.162 2.446

Germany

EDR 1368.829 1379.489 1375.261 1380.517 1389.433
EDwP 2.173 2.509 2.176 2.191 2.209
Hausdorff 2.514 2.742 4.353 4.448 5.627
Fréchet 2.358 2.492 3.735 3.824 4.642
t2vec 4.453 6.736 9.087 9.470 9.775
TrjSR 24.539 30.318 55.002 68.070 111.175
E2DTC 11.595 13.478 15.843 18.532 19.134
CSTRM - - - - -
TrajCL 1.048 1.050 1.059 1.418 2.045

Varying distortion rate ρd. We also randomly distort the



TABLE V: Mean rank (▼) vs. distortion rate

Dataset Method 0.1 0.2 0.3 0.4 0.5

Porto

EDR 28.243 28.498 27.899 28.070 28.932
EDwP 7.591 7.166 7.038 7.235 7.236
Hausdorff 6.549 6.737 6.706 6.592 6.739
Fréchet 8.689 8.854 8.755 8.636 9.083
t2vec 3.212 3.487 3.981 3.897 3.999
TrjSR 4.781 5.087 35.144 6.194 7.201
E2DTC 3.348 3.678 4.210 4.129 4.222
CSTRM 20.860 20.081 22.081 24.688 26.243
TrajCL 1.022 1.154 1.076 1.091 1.039

Xi’an

EDR 275.205 270.394 266.143 263.054 259.541
EDwP 16.545 7.587 16.371 17.833 35.977
Hausdorff 184.629 183.114 188.238 186.298 179.990
Fréchet 195.383 195.244 195.385 197.348 196.140
t2vec 11.045 11.912 10.522 12.834 12.233
TrjSR 64.139 82.476 89.274 106.198 80.282
E2DTC 13.490 14.768 13.227 16.621 16.498
CSTRM 15.261 15.063 13.253 16.865 13.924
TrajCL 1.331 1.376 1.420 1.470 1.268

Germany

EDR 1373.985 1372.984 1373.981 1373.966 1373.944
EDwP 2.488 2.489 2.492 2.489 2.489
Hausdorff 5.587 5.576 5.573 5.566 5.568
Fréchet 4.631 4.625 4.609 4.625 4.612
t2vec 3.863 3.976 4.903 3.580 3.625
TrjSR 27.146 27.156 27.032 26.935 27.035
E2DTC 10.946 11.161 10.940 11.275 10.693
CSTRM - - - - -
TrajCL 1.049 1.051 1.049 1.062 1.054

trajectories in Q and D by shifting point coordinates following
Equation 4. We vary the proportion of points distorted, denoted
by ρd, from 0.1 to 0.5, and we keep |D| = 100, 000. As
Table V shows, compared with the best baseline t2vec, TrajCL
reduces that mean rank of TQ

b by up to 2.85, 27.37 and 3.67
times on the Porto, Xi’an and Germany datasets, respectively.
The results further confirm that TrajCL is more robust than the
competitors on trajectories with distorted points. The results of
the methods fluctuate when ρd varies. This is because random
distortion is applied to all trajectories, not just the query
or ground-truth ones. The relative similarity of the different
trajectories may change towards any direction, such that there
is no unified changing pattern of the mean rank values.

TABLE VI: Mean rank (▼) vs. test dataset

|D|=100K ρs=0.2 ρd=0.2

Xi’an → Xi’an t2vec 8.644 10.710 11.912
TrajCL 1.107 1.371 1.376

Porto → Xi’an t2vec 1021.883 1031.330 6430.850
TrajCL 4.211 8.295 10.682

Varying test dataset. We further study the generalizability of
TrajCL under a cross-dataset setting, i.e., training TrajCL on
Porto and testing it on Xi’an without fine-tuning (denoted as
Porto → Xi’an). We compare with the best learned competitor,
t2vec, and we report the mean ranks of T q

b for the represen-
tative settings where |D|=100K (no trajectory modification),
ρs=0.2 and ρd=0.2, respectively. We only present the results
on Porto, since the relative performance on the other datasets
is similar. We also contrast the results with those on model
training and testing both on Xi’an (denoted as Xi’an → Xi’an).

As Table VI shows, TrajCL consistently outperforms t2vec
under the cross-dataset setting, and the performance gap is
even larger than that under the same-dataset setting. Com-

paring with the results reported in Tables III, IV and V on
Xi’an, TrajCL (Porto → Xi’an) still outperforms most of the
heuristic methods which are dataset independent, except for
EDwP with a small gap (4.211 vs. 3.606 at |D| = 100K).
These results show the strong generalizability of TrajCL,
attributing to our dual-feature encoder which can capture
generic correlation patterns between similar trajectories that
translate across datasets. In comparison, t2vec uses kNN to
compute the distance between cells, which is more vulnerable
to a changed data distribution across datasets.

C. Efficiency of Similarity Computation

Setup. We report the training and testing times of the
different methods to compute the similarity between 1,000
query trajectories from Q against 100,000 data trajectories in
D, i.e., 108 trajectory similarity computations in total. The
heuristic methods are run on a 32-core CPU. The learning-
based methods are trained on GPU and tested on a 32-core
CPU and on GPU (to observe the best performance) separately.

TABLE VII: Training time of learned measures (second)

Porto Xi’an Germany
t2vec 5,992 6,638 852
TrjSR 31,983 32,137 9,604
E2DTC 7,998 9,759 1,856
CSTRM 2,956 3,650 -
TrajCL 3,611 4,182 524

TABLE VIII: Trajectory similarity computation times (second)

Porto Xi’an Germany

CPU only

EDR 734 3,451 4,609
EDwP 31,956 305,219 341,904
Hausdorff 663 1,911 3,568
Fréchet 1,047 2,964 4,175
t2vec 55 70 61
TrjSR 1,390 1,289 1,338
E2DTC 55 70 61
CSTRM 111 149 -
TrajCL 126 153 164

GPU only

t2vec 34 36 37
TrjSR 228 237 226
E2DTC 34 36 37
CSTRM 11 14 -
TrajCL 13 16 18

Results. Training. As Table VII shows, TrajCL is only
slightly slower than CSTRM on Porto and Xi’an but faster
than the other models. CSTRM uses the vanilla multi-head
self-attention, which can be regarded as a simplified version of
our DualMSM module and hence is faster to train (but is also
much worse in model accuracy as shown above). On Germany,
TrajCL is the fastest (CSTRM triggers an out-of-memory error
as mentioned above), taking less than 9 minutes to train. Note
that all methods are faster on Germany than on the other two
datasets, as the Germany training set has 30,000 trajectories
while the other two datasets each has 200,000 trajectories for
training. The heuristic methods do not require training and
hence no training times are reported for them.



Similarity computation. As reported in Table VIII, TrajCL
takes less than 20 seconds (0.2µs per computation) for 108

trajectory similarity computations when powered by GPU,
which is the second fastest method on Porto and Xi’an, and
the fastest method on Germany. It achieves up to a 104-
time speedup against the heuristic methods (on Xi’an against
EDwP). When running on CPU, TrajCL is still at least 4.26
times (on Porto against Hausdorff) and up to 103 times (on
Germany against EDwP) faster than the heuristic methods.

We also note: (1) TrjSR is the slowest learned method in
both training and testing, because it stacks 13 convolutional
layers which is expensive to compute. (2) t2vec and E2DTC
share the same testing times, as E2DTC only uses a t2vec
backbone encoder during testing. (3) t2vec (and E2DTC) is
faster than TrajCL on CPU but is slower on GPU for testing.
This is because t2vec has l recurrent matrix computation steps,
while TrajCL can compute in one single step that suits GPU.
(4) The running times of the heuristic methods vary largely
across datasets due to the varying trajectory lengths, while
those of the learned methods are much less impacted, as they
use the same embedding size across datasets.

D. Scalability in TrajCL Traning

Next, we study the scalability of TrajCL in training. We
report the mean ranks and training times for the settings where
|D|=100K, ρs=0.2 and ρd=0.2 on Porto like above.
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Fig. 5: Impact of model training

Impact of the number of the training epochs. Fig. 5a
shows the performance of TrajCL trained in 1 to 18 epochs
of one run (when early termination is triggered and hence
a time different from that in Table VII is reported). As
expected, TrajCL produces lower mean ranks (i.e., better
model accuracy) when it is trained for more epochs. By the
7th epoch (about 20 minutes), TrajCL has already achieved a
satisfactory performance. This shows that TrajCL is easy to
train and converge, which helps its scalability.

Impact of the number of training trajectories. As Fig. 5b
shows, TrajCL benefits from more training trajectories. This
is expected as more training trajectories offer more examples
for the model to learn the different data patterns from. The
performance gains diminish when using more than 50,000
original trajectories for training, while it takes a few more
training trajectories when they are down-sampled or distorted,
which is also intuitive. Using 50,000 trajectories, TrajCL only

takes about 15 minutes to train, which is quite practical. We
used 200,000 as the default training set size, since the baseline
methods require at least this size [11]–[14].

E. Efficiency of K Nearest Neighbor Queries

In real applications, we may index the trajectory database D
to support fast similarity searches. We test TrajCL under such a
setting. To the best of our knowledge, this is the first reported
results for kNN queries over trajectories using a non-trivial
algorithm (i.e., non-full scans) based on learned embeddings.

Setup. We generate three trajectory databases D with
|D| = 0.1, 1 and 10 million, by distorting (ρd = 0.2) randomly
selected trajectories from the Xi’an dataset which has the
largest number of points per trajectory. The three datasets have
11.8 million, 118.0 million and 1.2 billion trajectory points,
respectively. We use the same 1,000 trajectory query sets as
before, and run kNN queries over the generated databases.

We run TrajCL to generate embeddings for the data trajec-
tories and index them with Faiss [53] which is a widely used
library for similarity queries over dense vectors based on a
Voronoi diagram. Note that our aim here is not to come up
with another trajectory index but to test the query efficiency
of TrajCL embeddings with existing kNN algorithms.

We compare with Hausdorff, since the other learned meth-
ods will share the same query efficiency with TrajCL on
Faiss, while Hausdorff is the fastest heuristic measure (cf. Ta-
ble VIII). For Hausdorff, we build a segment-based index with
kNN pruning strategies, following a recent work DFT [1].

Results. kNN query. Fig. 6 shows the total response times
to run 1,000 kNN queries, which grow with the dataset size
|D| for both methods, as expected. TrajCL is about two
orders of magnitude faster than Hausdorff, which attributes to
both the fast embedding-based similarity computation and the
efficient query procedure enabled by the embedding vectors.
The Hausdorff index triggers an out-of-memory error when
|D| = 10M and hence no results were obtained for this case.
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Fig. 6: kNN query costs

TABLE IX: Index building costs

|D| Time
(sec)

RAM
(GB)

Hausdorff
0.1M 20.7 2.8

1M 256.3 30.8
10M - OOM

TrajCL
0.1M 42.7 0.5

1M 426.1 2.9
10M 4,234.0 20.3

Index construction. Table IX further reports the index
construction costs, which also grow with |D|. The TrajCL
index (i.e., Faiss) takes about twice the time of the Hausdorff
index (i.e., DFT) to build, where the extra times are spent
on converting the trajectories to their embeddings. However,
the TrajCL index takes much less memory than the Hausdorff
index, e.g., 2.9 GB vs. 30.8 GB when |D| = 1M. This is
because DFT needs to store auxiliary data for query pruning,
which causes the out-of-memory error when |D| = 10M (1.2
billion segments, while DFT is a segment-based index).



TABLE X: HR@5, HR@20 and R5@20 (▲) of self-supervised and supervised methods to approximate heuristic measures

Dataset Category Method EDR EDwP Hausdorff Fréchet Average
rank (▼)HR@5 HR@20 R5@20 HR@5 HR@20 R5@20 HR@5 HR@20 R5@20 HR@5 HR@20 R5@20

Porto

Pre-trained
+ fine-tuning

t2vec 0.125 0.164 0.286 0.399 0.518 0.751 0.405 0.549 0.770 0.504 0.651 0.883 5
TrjSR 0.137 0.147 0.273 0.271 0.346 0.535 0.541 0.638 0.880 0.271 0.356 0.523 8
E2DTC 0.122 0.157 0.272 0.390 0.514 0.742 0.391 0.537 0.753 0.498 0.648 0.879 6
CSTRM 0.138 0.191 0.321 0.415 0.536 0.753 0.459 0.584 0.813 0.421 0.557 0.768 3
TrajCL 0.169 0.220 0.373 0.506 0.615 0.845 0.570 0.670 0.909 0.554 0.674 0.897 2
TrajCL∗ 0.172 0.222 0.376 0.546 0.646 0.881 0.643 0.721 0.954 0.618 0.740 0.955 1

Supervised
Traj2SimVec 0.119 0.163 0.285 0.172 0.253 0.390 0.339 0.429 0.543 0.529 0.664 0.894 9
TrajGAT 0.090 0.102 0.184 0.201 0.274 0.469 0.686 0.740 0.969 0.362 0.403 0.704 7
T3S 0.140 0.192 0.325 0.377 0.498 0.702 0.329 0.482 0.668 0.595 0.728 0.946 4

Xi’an

Pre-trained
+ fine-tuning

t2vec 0.162 0.244 0.361 0.272 0.317 0.494 0.354 0.514 0.683 0.445 0.565 0.774 6
TrjSR 0.151 0.267 0.391 0.218 0.273 0.439 0.536 0.661 0.843 0.379 0.464 0.685 7
E2DTC 0.152 0.232 0.344 0.244 0.291 0.455 0.317 0.472 0.628 0.400 0.529 0.724 8
CSTRM 0.161 0.244 0.360 0.336 0.364 0.522 0.522 0.656 0.848 0.497 0.605 0.816 5
TrajCL 0.178 0.269 0.399 0.360 0.414 0.672 0.580 0.705 0.901 0.592 0.687 0.908 2
TrajCL∗ 0.181 0.277 0.413 0.362 0.424 0.677 0.695 0.779 0.964 0.690 0.769 0.966 1

Supervised
Traj2SimVec 0.143 0.255 0.388 0.163 0.287 0.491 0.130 0.217 0.372 0.156 0.254 0.487 9
TrajGAT 0.131 0.269 0.387 0.312 0.440 0.696 0.739 0.787 0.976 0.476 0.537 0.884 3
T3S 0.175 0.272 0.408 0.328 0.439 0.617 0.423 0.601 0.782 0.539 0.651 0.848 4

Germany

Pre-trained
+ fine-tuning

t2vec 0.050 0.373 0.382 0.211 0.260 0.391 0.202 0.240 0.357 0.204 0.257 0.374 7
TrjSR 0.029 0.311 0.346 0.234 0.288 0.451 0.445 0.606 0.780 0.400 0.573 0.745 6
E2DTC 0.047 0.338 0.378 0.198 0.244 0.369 0.196 0.235 0.346 0.200 0.254 0.369 8
CSTRM - - - - - - - - - - - - 9
TrajCL 0.114 0.406 0.433 0.444 0.603 0.740 0.506 0.612 0.810 0.531 0.663 0.857 2
TrajCL∗ 0.127 0.427 0.461 0.486 0.679 0.908 0.619 0.736 0.919 0.620 0.755 0.922 1

Supervised
Traj2SimVec 0.073 0.386 0.437 0.309 0.433 0.584 0.428 0.634 0.812 0.456 0.640 0.883 4
TrajGAT 0.081 0.402 0.442 0.452 0.648 0.833 0.563 0.658 0.889 0.411 0.537 0.722 3
T3S 0.044 0.358 0.365 0.443 0.590 0.733 0.423 0.515 0.657 0.415 0.564 0.756 5

F. Approximating Heuristic Measures

We next fine-tune a pre-trained TrajCL to approximate a
heuristic similarity measure with very few labeled data. To the
best of our knowledge, this is the first study to investigate the
effectiveness of a learning-based trajectory similarity measure
to approximate a heuristic measure. The fine-tuned TrajCL can
be used as a fast estimator for fast online computation of an
expensive heuristic similarity measure (e.g., EDwP).

Setup. We take the trained encoder of TrajCL (and other
self-supervised methods) on each dataset from Section V-B
and connect it with a two-layer MLP where the size of
each layer is the same as d. We fine-tune the last layer of
the encoder and train the MLP to predict a given heuristic
similarity value, optimizing the MSE loss. Besides the above
self-supervised methods and the state-of-the-art supervised
methods mentioned in Section V-A, we also add an variant
to show the optimal performance of TrajCL where all layers
of the encoder are fine-tuned, named TrajCL∗.

Following the supervised methods [19]–[21], we report the
hit ratio results HR@k (k = 5, 20), i.e., the ratio of the
ground-truth top-k trajectories in the predicted top-k results,
and R5@20, which denotes the recall of returning the ground-
truth top-5 trajectories in the predicted top-20 results. We also
report the average rank of each method over the 4 measures
and 3 metrics on each dataset.

Results. Table X shows the results. Overall, TrajCL∗ is the
best (i.e., average rank is 1), while TrajCL ranks the second.

Comparing with the self-supervised baselines, TrajCL∗ and
TrajCL produce higher scores consistently. Based on HR@5,
TrajCL improves over the best baseline by up to 128.0%,
89.7%, 41.5% and 32.7% to approximate EDR, EDwP, Haus-
dorff and Fréchet, respectively. TrajCL∗ further improves over
TrajCL by up to 11.4%, 9.4%, 22.3% and 20.6% on the four

measures, respectively. Similar trends are observed on HR@20
and R5@20. The high R5@20 scores of TrajCL∗ and TrajCL
for Hausdorff and Fréchet, i.e., almost all over 0.9, show that
our models can approximate both measures very well, which
are based on spatial distances between point pairs.

Compared with the supervised methods Traj2SimVec, Tra-
jGAT and T3S, TrajCL∗ is better in 75% of the cases, i.e.,
28 out of the 36 cases tested, with a performance gain of
14.4% on average. When a supervised baseline performs
better, the average performance gap is just 3.1%, which are
mostly observed on Hausdorff, and the strong performance of
TrajGAT in these cases is consistent with its own study [21].

These confirm that the pre-trained TrajCL models can be
easily adapted to approximate a given heuristic similarity
measure. Such generalizability attributes to the trajectory aug-
mentation methods and the TrajCL encoder.

G. Ablation Study

Impact of the model components. We compare Tra-
jCL with two model variants: (1) TrajCL-MSM replaces
DualMSM with the vanilla MSM used in Transformer. This
variant also ignores the spatial features S. It can be regarded
as applying a vanilla Transformer encoder in our proposed
trajectory contrastive learning framework. (2) TrajCL-concat
also uses the vanilla MSM, but it concatenates the spatial
features with the structural features, i.e., T∥S, as the input.

We repeat the experiments of Sections V-B and V-F, i.e.,
running our models on their own (“no fine-tuning”) and fine-
tuning them to approximate a heuristic similarity measure
(“with fine-tuning”). When running our models on their own,
we follow the settings in Section V-D. When fine-tuning our
models to approximate a heuristic measure, we report HR@5.



We only present the results on Porto, since similar comparative
patterns are observed on the other datasets.

Results. Fig. 7a shows the results on TrajCL variants with-
out fine-tuning. TrajCL performs better than the two variants
by reducing the mean rank of T q

b by at least 72.29% and
89.08%, respectively. TrajCL-concat performs the worst, even
though it uses the spatial features while TrajCL-MSM does
not, as a direct concatenation can confuse the feature space of
the model. The result highlights the importance of DualMSM
that adaptively fuses both type of input features.

Fig. 7b shows the results with fine-tuning. TrajCL still out-
performs the two variants overall, except when approximating
EDwP where all variants have similar results. This confirms
that our DualMSM module has a strong generalization capa-
bility to capture the similarity between trajectories such that
the fine-tuned TrajCL can make more accurate predictions.
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Fig. 7: Ablation study results

Impact of the augmentation methods. Next, we study how
augmentation methods affect model performance by varying
the augmentation methods to generate T̃ and T̃ ′. We use
the same experimental setup as the last experiment. We only
report the mean ranks on |D|=100K without fine-tuning and
report the fine-tuning results of approximating EDwP (the
most accurate but slowest heuristic measure), due to similar
comparative patterns observed on other metrics.

Results. As Fig. 8 shows, overall, augmentation helps
TrajCL learn more robust embeddings. TrajCL without data
augmentation (i.e., Raw&Raw, using T as T̃ and T̃ ′) has the
lowest (i.e., worst) HR@5 value in Fig. 8b and the second-
largest (i.e., worst but second) mean rank values in Fig. 8a.
Such results confirm the importance of the augmentation
methods. Further, using the same augmentation methods may
be sub-optimal, as this limits the learning space. Overall, point
masking and trajectory truncating (i.e., Mask&Trun.) produce
the best results, and thus have been used by default.

Point masking helps learn the correlation between non-
adjacent points and hence makes TrajCL adaptive to trajec-
tories with different sampling rates. Meanwhile, trajectory
truncating helps learn the similarity between partial trajectories
and the full ones. In comparison, point shifting aims to guide
TrajCL to learn to overcome noises, while the grid cells used in
TrajCL can already achieve a similar purpose. Also, trajectory
simplification may remove too many points and hence miss
key movement patterns to reflect trajectory similarity.
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Fig. 8: Impact of the augmentation methods (Lighter color is
better. Raw, Shift, Mask, Trun. and Simp. denote no augmen-
tation, point shifting, point masking, trajectory truncating and
trajectory simplification, respectively.)

Impact of parameters in augmentation methods. We
focus on ρd and ρb for the two default augmentation methods
point masking and trajectory truncating, respectively.

Results. As Fig. 9 shows, TrajCL is not heavily impacted by
the two parameters unless for extreme values 0.1 and 0.9, i.e.,
when the augmented trajectories are too or little different from
the original ones. When ρd ∈ {0.3, 0.5} and ρb ∈ {0.5, 0.7},
TrajCL performs the best. We use 0.3 and 0.7 by default for
ρd and ρb, respectively, where the lowest (i.e., best) mean rank
is reached while HR@5 is also close to the best.
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Fig. 9: Impact of parameters of the augmentation methods

More results on the impact of other parameters are available
in our technical report [52].

VI. CONCLUSION

We proposed TrajCL, a self-supervised trajectory similarity
learning model that comes with a set of trajectory augmen-
tation methods and a dual-feature multi-head self-attention-
based trajectory backbone encoder. TrajCL can learn the inher-
ent similarity between trajectories and approximate predefined
heuristic trajectory similarity measures, which makes it highly
applicable. Experiments on real trajectory datasets show that,
compared with the state-of-the-art methods, TrajCL achieves
significant improvements in the accuracy for measuring tra-
jectory similarity and approximating a heuristic measure.
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