A Joint Context-Aware Embedding for Trip
Recommendations

Jiayuan He, Jianzhong Qi*

, Kotagiri Ramamohanarao

School of Computing and Information Systems
The University of Melbourne, Australia
hjhe @student.unimelb.edu.au, {jianzhong.qi,kotagiri} @unimelb.edu.au

Abstract—Trip recommendation is an important
location-based service that helps relieve users from the
time and efforts for trip planning. It aims to recommend a
sequence of places of interest (POIs) for a user to visit that
maximizes the user’s satisfaction. When adding a POI to a
recommended trip, it is essential to understand the context
of the recommendation, including the POI popularity,
other POIs co-occurring in the trip, and the preferences of
the user. These contextual factors are learned separately
in existing studies, while in reality, they jointly impact on
a user’s choice of POI visits. In this study, we propose
a POI embedding model to jointly learn the impact
of these contextual factors. We call the learned POI
embedding a context-aware POI embedding. To showcase
the effectiveness of this embedding, we apply it to generate
trip recommendations given a user and a time budget.
We propose two trip recommendation algorithms based
on our context-aware POI embedding. The first algorithm
finds the exact optimal trip by transforming and solving
the trip recommendation problem as an integer linear
programming problem. To achieve a high computation
efficiency, the second algorithm finds a heuristically
optimal trip based on adaptive large neighborhood
search. We perform extensive experiments on real
datasets. The results show that our proposed algorithms
consistently outperform state-of-the-art algorithms in trip
recommendation quality, with an advantage of up to 43%
in F;-score.

I. INTRODUCTION

Tourism is one of the most profitable and fast-growing
economic sectors in the world. In 2017, the tourism
industry contributed more than 8.27 trillion U.S. dollars
to global economy. The massive scale of the tourism
industry calls for more intelligent services to improve
user experiences and reduce labor costs of the industry.
Trip recommendation is one of such services. Trip rec-
ommendation aims to recommend a sequence of places
of interest (POIs) for a user to vist to maximize the user’s
satisfaction. Such a service benefits users by relieving
them from the time and efforts for trip planning, which
in return further boosts the tourism industry.

*Primary contact

o =
ST Kilda Beach \) N <)

N

Esplanade Market .‘-\,\ '

s s >Qs

[claypots Seafood Bar| “\,\

s
3 \"’fo
[ST Kilda Botanic Garden|

Fig. 1: Impact of co-occurring POIs

Most existing studies on trip recommendations con-
sider POI popularities or user preferences towards the
POIs when making recommendations [4], [14]. Several
recent studies [3], [20] consider the last POI visit when
recommending the next POI to visit. These studies do not
model the following two characteristics that we observe
from real-world user trips (detailed in Section III). (i)
A POI to be recommended is impacted not only by the
last POI visit but also all other POIs co-occurring in the
same trip. For example, in Fig. 1, a user has just visited
“ST Kilda Beach” and “Esplanade Market”. She may be
tired after the long walk along the beach and the market.
Thus, compared with “Luna Park™ which is a theme park
nearby, the user may prefer a restaurant (e.g., “Republica
ST Kilda” or “Claypots Seafood Bar”) to get some food
and rest. The user plans to visit “Botanic Garden” later
on. Thus, she decides to visit “Claypots Seafood Bar”
since it is on the way from the beach to the garden. Here,
the visit to “Claypots Seafood Bar” is impacted by the
visits of not only “Esplanade Market” but also “ST Kilda
Beach” and “Botanic Garden.” (ii) POI popularities, user
preferences, and co-occurring POIs together impact the
POIs to be recommended in a trip. In the example above,
there can be many restaurants on the way to “Botanic
Garden.” The choice of “Claypots Seafood Bar” can be
impacted by not only “Botanic Garden” but also the

fact that the user is a seafood lover and that “Claypots
Seafood Bar” is highly rated. Most existing models [16],
[20] learn the impact of each factor separately and simply
combine them by linear summation, which may not
reflect the joint impact accurately.

In this study, we model the two observations above
with a context-aware POI embedding model to jointly
learn the impact of POI popularities, user preferences,
and co-occurring POIs. We start with modeling the
impact of co-occurring POIs. Existing studies model the
impact of the last POI visit with a first-order Markov
model [3], [12], [20]. Such a model requires a large
volume of data to learn the impact between every pair
of POIs. However, real-world POI visits are sparse and
highly skewed. There are not enough observations to
learn a Markov model accurately. We address the above
data sparsity limitation by embedding the POIs into a
space where POIs that co-occur frequently are close to
each other. This is done based on our observation that
a trip can be seen as a “sentence” where each POI
visit is a “word.” The occurrence of a POI in a trip
is determined by all the co-occurring words (POIs) in
the same sentence (trip). This enables us to learn a POI
embedding similar to the Word2Vec model [18] that
embeds words with a similar context close to each other.

To further incorporate the impact of user preferences
into the embedding, we project users into the same latent
space of the POIs, where the preferences of each user
is modeled by the proximity between the user and the
POIs. We also extend the embedding of each POI by
adding a dimension (a bias term) to represent the POI
popularity. We jointly learn the embeddings of users and
POIs via Bayesian Pairwise Ranking [21].

To showcase the effectiveness of our proposed
context-aware POI embedding, we apply it to a trip
recommendation problem name TripRec where a user
and her time budget is given. We propose two algorithms
for the problem. The first algorithm, C-ILP, models
the trip recommendation problem as an integer linear
programming problem. It solves the problem with an
integer linear programming technique [1]. C-ILP offers
exact optimal trips, but it may be less efficient for large
time budgets. To achieve a higher efficiency, we further
propose a heuristic algorithm named C-ALNS based
on the adaptive large neighborhood search (ALNS)
technique [22]. C-ALNS starts with a set of initial trips
and optimizes them iteratively by replacing POIs in the
trips with unvisited POIs that do not break the user time
budget. We use the POI-user proximity computed by our
context-aware POI embedding to guide the optimization
process of C-ALNS. This leads to high-quality trips with
low computational costs.

This paper makes the following contributions:

1) We analyze real-world POI check-in data to show
the impact of co-occurring POIs and the joint
impact of contextual factors on users’ POI visits.

2) We propose a novel model to learn the impact of
co-occurring POIs. We further propose a context-
aware POI embedding model to jointly learn the
impact of POI popularities, co-occurring POIs, and
user preferences on POI visits.

3) We propose two algorithms C-ILP and C-ALNS
to generate trip recommendations based on our
context-aware POl embedding model. C-ILP trans-
forms trip recommendation to an integer linear
programming problem and provides exact optimal
trips. C-ALNS adapts the approximate large neigh-
borhood search technique and provides heuristi-
cally optimal trips close to the exact optimal trips
with a high efficiency.

4) We conduct extensive experiments on real datasets.
The results show that our proposed algorithms out-
perform state-of-the-art algorithms consistently in
the quality of the trips recommended as measured
by the F;-score. Further, our heuristic algorithm C-
ALNS produces trip recommendations that differ
in accuracy from those of C-ILP by only 0.2%
while reducing the running time by 99.4%.

The rest of this paper is structured as follows. Sec-
tion II reviews related studies. Section III presents an em-
pirical analysis on real-world check-in datasets to show
the factors impacting POI visits. Section IV formulates
the problem studied. Section V and VI detail our POI
embedding model, and trip recommendation algorithms
based on the model. Section VII reports experiment
results. Section VIII concludes the paper.

II. RELATED WORK

We compute POI embeddings to enable predicting
POI sequences (trips) to be recommended to users. We
review inference models for predicting a POI to be
recommended in Section II-A. We review trip generation
algorithms based on these models in Section II-B.

A. POI Inference Model

Most existing inference models for trip recommenda-
tions assume independence between recommended POls,
i.e., the probability of recommending a POI is indepen-
dent from that of any other POI [2], [7], [14], [26],
[27]. Such an independence assumption loses the POI
co-occurrence relationships. We do not discuss studies
based on this assumption further.

Three existing models incorporate POI dependency in
their inferences. Kurashima et al. [12] adopt Markov

model that represents the dependence of a POI [, on
its preceding POI [; in a trip by the transit probability
from [; to [, ;. Rakesh et al. [20] also assume that each
POI visit depends on its preceding POI. They unify such
dependency with other factors (e.g., POI popularities)
into a latent topic model, where the topical distribution
of the next POI visit depends on its preceding POI.
These two studies suffer from the data sparsity problem
since the real-world check-in dataset is too sparse to
learn the pairwise POI transit probabilities accurately.
Chen et al. [3] overcome the data sparsity problem by
factorizing the transit probability between two POIs as
the product of the pairwise transit probabilities w.r.t. five
pre-defined features: POI category, neighborhood (geo-
graphical POI cluster membership), popularity (number
of distinct visitors), visit counts (total number of check-
ins), and average visit duration. These five features can
be considered as an embedding of a POI. However, such
an embedding is manually designed and may not reflect
the salient features of a POI.

POI dependency is also considered in POI recommen-
dations [5], [6], which aim to recommend an individual
POI instead of a POI sequence. Such studies do not
consider the dependence among POIs in a trip. Liu et
al. [16] also use a latent space for POI recommendations.
They first learn the latent vectors of POIs to capture
the dependence between POIs. Then, they fix the POI
vectors and learn the latent vectors of users from the
user-POI interactions. These studies differ from ours
in three aspects: (i) Their models learn the impact of
POIs and the impact of user preferences independently,
while our model learns the impact of the two factors
jointly, which better captures the data characteristics
and leads to an improved trip recommendation quality
as shown in our experiments. (ii) Their models focus
on user preferences and do not consider the impact of
POI popularities, while ours considers both factors. (iii)
These studies do not consider constraints such as time
budgets while ours does.

B. Trip Generation

Trip recommendation aims to generate a trip, i.e.,
a sequence of POIs, that meets user constraints and
maximizes user satisfaction. Different user constraints
and user satisfaction formulation lead to different trip
generation algorithms. Due to the page limit, we only
discuss the studies that consider POI dependencies.
Hsieh et al. [11] and Rakesh et al. [20] assume a given
starting POI [,, a given time budget ¢,, and a given
time buffer b. They generate a trip recommendation by
starting from [; and progressively adding more POIs
to the trip until the trip time reaches t, — b. They

repeatedly add the unvisited POI that has the highest
transit probability from the last POI in the trip. As
discussed earlier, their transit probabilities depend only
on the last POI but not any other co-occurring POlIs.
Chen et al. [3] assume given starting and ending POIs
and a time budget. They formulate trip recommendation
as an orienteering problem in a directed graph, where
every vertex represents a POI and the weight of an edge
represents the transit probability from its source vertex to
its end vertex. Our trip recommendation problem shares
similar settings. However, Chen et al.’s algorithm does
not apply to our problem as we not only consider the
transit probabilities between adjacent POIs but also the
impact of all POIs in a trip.

III. OBSERVATIONS ON POI CHECK-INS

We start with an empirical study on real-world POI
check-in data to observe users’ check-in patterns. We
aim to answer the following three questions: (1) Are
users’ check-ins at a POI impacted by other POIs co-
occurring in the same trip? (2) Are users’ check-ins at a
POI impacted by (other users’) historical check-ins at the
PO, i.e., the popularity of the POI? (3) Are the impact
of co-occurring POIs and the impact of POI popularity
independent from each other?

We analyze four datasets [3], [14], extracted from
the Yahoo!Flickr Creative Commons 100M dataset [24].
They contain check-ins in the cities of Edinburgh, Glas-
gow, Osaka, and Toronto respectively. Table I summa-
rizes the statistics of the four datasets.

TABLE I: Dataset Statistics

Dataset #users #POI visits #trips ~ POIs/trip
Edinburgh 82,060 33,944 5,028 6.75
Glasgow 29,019 11,434 2,227 5.3
Osaka 392,420 7,747 1,115 6.95
Toronto 157,505 39,419 6,057 6.51

Impact of co-occurring POIs. Directly investigating
the impact of co-occurring POIs on one POI is non-
trivial due to the large number of possible permutations
of co-occurring POIs. Thus, we investigate this impact
by its symmetric form: the impact of one POI on its
co-occurring POIs. Thus, for each dataset, we perform a
hypothesis test as follows. We randomly sample 50% of
the trips. From the sampled dataset, we compute an |L|-
dimensional distribution named the global occurrence
distribution, where L is the set of all POISs in the dataset,
and dimension ¢ represents the normalized frequency of
POI I; occurring in the sampled trips. Then for each
POI [, we compute an (|]£| — 1)-dimensional distribution
named the conditional occurrence distribution, where

dimension ¢ represents the normalized frequency of POI
l; occurring together with ! in the same trip. For each
POI [, we perform a chi-square two sample test between
its conditional occurrence distribution and the global
occurrence distribution, where the null hypothesis is that
“the conditional occurrence distribution conforms the
same underlying distribution with the global occurrence
distribution” and the significance level is 0.05. Note that
we remove the dimension corresponding to the occur-
rence frequency of [in the global occurrence distribution.
If the hypothesis is rejected, we say that POI [is an
influential POI (has influence on its co-occurring POIs).
We generate 100 sample datasets and report the ratio of
influential POIs among all POIs in each run. Figure 2a
shows the result, where the rectangles denote the 25
percentile, median, and 75 percentile of the result ratios.
On average, influential POIs take up as least 70.3%
(Glasgow) and up to 87.5% (Toronto) of all POIs, which
confirms the impact of co-occurring POIs.

1.0F 10F
o ==

0.8 == === | Sos| - $$$

2 == ° i

TO0.6 TO06 |

e 2

04| Loat

02t 02t

Edin. Glas. Osak.Toro. Edin. Glas. Osak.Toro.
City City
(a) Impacted POI pairs (b) Impacted users
Fig. 2: Observations on POI check-ins

Impact of POI popularity. For each city, we ran-
domly split its dataset into two subsets, each of which
consists of the POI visits of half of the users. We use
one of the subsets as a historical dataset and the other
subset as a testing dataset. Let |£| be the number of
POIs. We compute two |L|-dimensional distributions,
named historical occurrence distribution and testing oc-
currence distribution, from the two datasets respectively.
Dimension ¢ of the two distributions represents the
occurring frequency of POI [; in historical dataset and
testing dataset, respectively. We compute the Kendall-
rank correlation of the two distributions. A higher cor-
relation value indicates that the POl-ranks in the two
datasets are more similar, which means that more popular
POIs in the historical dataset are more likely to be
visited in the testing dataset. We report the Kendall-
rank correlation value of the two distributions in 100
runs of the procedure above (with random selection for
dataset splitting). As Fig. 2b shows, all datasets have
Kendall correlations beyond 0.7, which demonstrates the
importance of POI popularity.

TABLE II: Frequently Used Symbols

Symbol Description

R a set of check-in records

L a set of POIs

u a set of users
l a POI
u a user

a trip of user u

1 the latent vector of [

u the latent vector of u

the latent vector of the co-occurring POIs of [

Joint impact of co-occurring POIs and POI popu-
larity. The empirical study above confirms the impact of
co-occurring POIs and the impact of POI popularity. A
side observation when comparing Fig. 2a and Fig. 2b
is that these factors have a joint impact rather than
independent one. In general, for the cities where co-
occurring POIs have a greater impact, POI popularity
has a less impact (e.g., Edinburgh), and vice versa (e.g.,
Osaka). This brings a challenge on designing a model
that can learn the impact of the factors jointly and
can adapt to the different levels of joint impact across
different datasets.

IV. PROBLEM FORMULATION

We aim to learn a context-aware POI embedding such
that POIs co-occurring more frequently are closer in
the embedded space. We map POIs and users to this
embedded space and make trip recommendations based
on their closeness in the embedded space.

To learn such an embedding, we use a POI check-
in dataset R (e.g., the datasets summarized in Table I).
Each check-in record r € R is a 3-tuple (u,l,t), where
u denotes the check-in user, ! denotes the POI, and ¢
denotes the check-in time.

POI visit. Let U/ be the set of all users and L be the set
of all POIs in the check-in records in R. We merge a user
u’s consecutive check-ins at the same POI [into a POI
visit v* = (u,l, t,,tq), where t, and t; represent the
times of the first and the last (consecutive) check-ins at
I by u. With a slight abuse of terminology, we use a POI
visit v* and the corresponding POI [interchangeably as
long as the context is clear.

User profile and preferences. POI visits of user u
within a certain time period (e.g., a day) form a historical
trip of w, denoted as s = (v}, v},...,vj5). All
historical trips of user u form the profile of u, denoted
as S" = {s{, sy, ..., |5 }. We learn the POI and user
embeddings from the set S of all historical trips of all

users in U, i.e., S = ST US*2 U...US¥u, and use the
learned user embedding to represent user preferences.

TripRec query. To showcase the effectiveness of our
POI embedding, we apply it to a trip recommendation
problem [14]. Given a query user ug, this problem aims
to recommend a trip ¢ formed by an ordered sequence of
POIs: tr = (1,12, ..., lj), such that the value of a user
satisfaction function is maximized. We propose a novel
user satisfaction function denoted by S(ug, tr) which is
detailed in Section VI. Intuitively, each recommended
POI makes a contribution to S(ug, tr), and the contribu-
tion is larger when the POI suits u,’s preference better.
We use a time budget ¢, to cap the number of POIs in ¢r.
The time cost of tr, denoted by tc(tr), must not exceed
tq. The time cost tc(tr) is the sum of the visiting time
at every POI I; € tr, denoted as tc,(l;), and the transit
time between every two consecutive POIs [;,1; 11 € tr,
denoted as teg (15, liq1):

[tr| [tr|—1
te(tr) = Ztcv(li) + Z tee(liy i) €))
i=1 i=1

We derive the visiting time tc,(l;) as the average
time of POI visits at [;. The transit time tc:(l;,1;41)
depends on the transportation mode (e.g., by walk or
car), which is orthogonal to our study. Without loss of
generality and following previous studies [8], [14], [26],
we assume transit by walk and derive tc:(l;,1;41) as the
road network shortest path distance between I; and ;11
divided by an average walking speed of 4 km/h. Other
transit time models can also be used. Following [3], [14],
[26], we also require /1 and [}, to be at a given starting
POI [/, and a given ending POI [.. We call such a trip
recommendation problem the TripRec query:

Definition 1 (TripRec Query): A TripRec query q is
represented by a 4-tuple ¢ = (ug,t4,1s,le). Given a
query user u,, a query time budget ¢,, a starting POI
ls, and an ending POI [., the TripRec query finds a
trip tr = (l1,1l2, ..., l}¢r|) that maximizes S(ug,tr) and
satisfies: (i) te(tr) < tg, (i) 11 =I5, and (iii) L) = le.

V. LEARNING A CONTEXT-AWARE POI EMBEDDING

Consider a POI [;, a user u, and a historical trip s of u
that contains /;. The popularity of /;, the user u, and the
other POIs co-occurring in s together form a context of
l;. Our POI embedding is computed from such contexts,
and hence is named a context-aware POI embedding.
We first discuss how to learn a POI embedding such
that POIs co-occurring more frequently are closer in the
embedded space in Section V-A. We further incorporate
user preferences and POI popularities into the embedding
in Sections V-B and V-C. We present an algorithm for
model parameter learning in Section V-D,

A. Learning POI Co-Occurrences

Given a POI [;, we call another POI [; a co-occurring
POI of [;, if l; appears in the same trip as ;. The
conditional probability p(l;|l;), i.e., the probability of
a trip containing I; given that [; is in the trip, models
the co-occurrence relationship of I; over I;.

The Markov model is a straightforward solution to
learn p(l;|l;). This model assumes that the transit prob-
ability of each POI pair is independent from any other
POIs, leading to a total |£|? probabilities to be learned.
However, the real-world POI check-in datasets are too
sparse to learn these probabilities accurately. Some POI
transistions may be rare or not observed at all. To
overcome the data sparsity problem and capture the co-
occurrence relationships POIs, we propose a model to
learn p(l;]c(l;)) instead of p(l;|l;), where c(l;) represents
the set of co-occurring POIs of ;. Our model is inspired
by the Word2vec model [18]. The Word2vec model
embeds words into a vector space where each word is
placed in close proximity with its context words. Given
an occurrence of word w in a large text corpus, each
word that occurs within a pre-defined distance to w
is regarded as a context word of w. This pre-defined
distance forms a context window around a word. In our
problem, we can view a POI as a “word”, a historical
trip as a “context window”, the historical trips of a user
as a “document”, and all historical trips of all the users
as a “text corpus”. Then, we can learn a POI embedding
based on the probability distribution of the co-occurring
POIs.

Specifically, we use the architecture of continuous
bag-of-words (CBOW) [17], which predicts the rarget
word given its context, to compute the POI embed-
ding. The computation works as follows. Given a POI
l; € L, we map [; into a latent d-dimensional real
space R? where d is a system parameter, d < |L£|. The
mapped POI, i.e., the POI embedding, is a d-dimensional
vector 1;. When computing the embeddings, we treat
each historical trip as a context window: given [; in a
historical trip s, we treat [; as the target POI and all
other POIs in s as its co-occurring POIs c(l;]s), i.e.,
c(l;|s) = {I|l € s\ {l;}}. In the rest of the paper, we
abbreviate ¢(l;|s) as ¢(l;) as long as the context is clear.

Let sim(l;,1;) be the co-occurrence similarity be-
tween two POIs [; and [;. We compute sim(l;,(;) as
the dot product of the embeddings of I/; and [;:

sim(li, lj) = li . lj (2)
Similarly, the co-occurrence similarity between a POI

l; and its set of co-occurring POIs ¢(l;), denoted as
sim(l;, ¢(l;)), is computed as:

sim(li, c(l;)) =1 - (L) 3)

Here, c(l;) is computed as an aggregate vector of
the embeddings of the POIs in ¢(l;). We follow Henry
et al. [10] and aggregate the embeddings by summing
them up in each dimension independently. Other ag-
gregate functions (e.g., [25]) can also be used. Then,
the probability of observing [; given ¢(l;) is derived
by applying the softmax function on the co-occurrence
similarity sim(l;, c(l;)):

esim(lise(li) elire(li)
p(lile(ls)) = 7)) ~ Zem) ©)
Here, Z(c(Li)) = > e, el) s a normalization

term.

B. Incorporating User Preferences

Next, we incorporate user preferences into our model.
We model a user’s preferences towards the POIs as her
“co-occurrence” with the POlIs, i.e., a user u; is also
projected to a d-dimensional embedding space where
she is closer to the POIs that she is more likely to
visit (i.e., “co-occur”). Specifically, the co-occurrence
similarity between a POI [; and a user u; is computed
as:

sim(li, Uj) = li - uj (5)

Thus, the preference of u; over [; can be seen as the
probability p(I;|u;) of observing I; given u; in the space.
After applying the softmax function over sim(l;,u;),
p(liluj) can be computed as:

plilu;) = —— (6)

Here, Z(u;) = >, €™ is a normalization term.

To integrate user preferences with POI co-occurrence
relationships, we unify the POI embedding space and the
user embedding space into a single embedding space.
In this unified embedding space, the POI-POI proximity
reflects POI co-occurrence relationships and the user-
POI proximity reflects user preferences. Intuitively, we
treat each user u; as a “pseudo-POI”. If user u; visits
POI [;, then u; (a pseudo-POI) serves as a co-occurring
POI of /;. Thus, the joint impact of user preferences and
POI co-occurrences can be modeled by combining the
pseudo POI and the actual co-occurring POIs. Given a set
of co-occurring POIs ¢(I;) and a user u;, the probability
of observing /; can be written as:

elir(uy+e(ly))

pllilelta)sws) = 7o =iy

(N

Here, vectors u; and c(l;) are summed up in each
dimension, while Z(uj + c(;)) = >, e" (Wt js
a normalization term.

C. Incorporating POI Popularity

We further derive p(l;) which represents the popularity
of [;. Existing studies represent the popularity of a POI
as the normalized visit frequency at the POI [8], [14],
[15]. This simple approach relies on a strong assumption
that POI popularity is linearly proportional to the number
of POI visits, which may not hold since popularity may
not be the only reason for visiting a POL

Instead of counting POI visit frequency, we propose
to learn the POI popularity jointly with the impact of
co-occurring POIs and user preferences. Specifically, we
add a dimension to the unified POI and user embedding
space, i.e., we embed the POIs to an R space. This
extra dimension represents the latent popularity of a POI,
and the embedding learned for this space is our context-
aware POI embedding.

For a POI [;, its embedding now becomes 1; & [;.p
where & is a concatenation operator and /;.p is the latent
popularity. The probability p(l;) is computed by applying
the softmax function over [;.p:

&

p(li) = Siee®

Integrating with the POI contextual relationships and
user preferences, the final probability of oberving I;
given u; and ¢(I;) can be represented as:

. | eli(uj+e(li))+;.p
PRI) = 7l ¥ ey + 1)
Here, Z(uj + c(l;) +1i.p) = 3 ;o p el (Wite@d+lr js o
normalization term.

li-p

®)

©)

D. Parameter Learning

We adopt the Bayesian Pairwise Ranking (BPR) ap-
proach [21] to learn the embeddings of POIs and users.
The learning process aims to maximize the posterior of
the observations:

6= argmaxH H H H P(>ucqy 1©)p(©) (10)
© ucUsveHvIEsul gsu

Here, © represents the system parameters to be learned
(i.e., user and POI vectors) and P(>, ;) |©) represents
the pairwise margin between the probabilities of observ-
ing I and observing !’ given u and c(l). Maximizing the
above objective function equals to maximizing its log-
likelihood function. In addition, we add a regularization
term to avoid overfitting. Thus, the above equation can
be rewritten as follows:

6= argmaxz Z Z Z logo(l ce(D+1-u+lp
© uEUsHEHUIESU] ¢su
—1c()—1 u- z’.p) —Ael> an

Here, o(-) is the sigmoid function and o(2) = =
We use stochastic gradient descent (SGD) to solve the

optimization problem. Given a trip s* of user u, we

obtain |s*| observations in the form of (u,s*,l,c(l)),
where [€ s“. For each observation, let I’ be a POI that
does not appear in s*. Then, we update © along the
ascending gradient direction:

0
0+ 0+ n%(logo(z) - Allel?)

Here, 7 represents the learning rate and z =1-c¢(l) +1-
u+lp—1-c(l) =1 -u—1"p represents the distance
between the observed POI and a non-observed POI ['.

12)

VI. TRiP RECOMMENDATION

To showcase the capability of our context-aware POI
embedding to capture the latent POI features, we apply
it to the TripRec query as defined in Section IV. Let
T be the set of feasible trips that satisfy the query
hard constraints. The problem then becomes selecting
the trip ¢tr € 7T that is most preferred by u,. The
strategy that guides trip selection plays a critical role in
recommendation quality. We propose the context-aware
trip quality (CTQ) score to guide trip selection. Then,
we reduce TripRec to an optimization problem of finding
the feasible trip with the highest CTQ score.

Context-aware trip quality score. Given a trip tr,
we derive its CTQ score, denoted as S (uq, tr), as a joint
score of the closeness of ¢r w.r.t. two types of contexts:
(1) a fixed context that is defined by the query hard
constraints; and (2) a dynamic context that is defined
by the recommended POIs in ¢r.

To compute the closeness between tr and the fixed
context of query ¢, we derive the latent representation q
of ¢ as an aggregation (e.g., summation) of the vectors
ug, ls, and le. The closeness between ¢ and a POI [,
denoted as clo(g,l), is computed as the probability of
observing [given ¢:

clo(g,1) =

etd

e
Then closeness between ¢ and tr, denoted as clo(g, tr),
is the sum of clo(q, 1) for every [€ tr.

The closeness of ¢r w.r.t. the dynamic context is
computed as the sum of the pairwise normalized co-
occurrence similarity between any two POls [; and [;
in ¢r, denoted as nsim(l;,1;):

nsim(l;, 1) = eli‘li/z Z A

1 UL

13)

(14)

Overall, the CTQ score S(ug,tr) is computed as:

|tr|—1 al |tr|—2 |tr|—1

Z Z el * ; J;I Zszize”’

(15)
Here, we have omitted /; and [j;,. This is because all
feasible trips share the same [; and [|;,| which are the
given starting and ending POIs [; and [, in the query.

S(ug,tr) =

Problem reduction. We construct a directed graph
G = (V, E), where each vertex v; € V represents POI
l; € £ and each edge e_i;» € E represents the transit from
v; to v;. We assign profits to the vertices and edges. The
profit of vertex v;, denoted as f(v;), is computed as
f(vi) = clo(q,1;). The profit of an edge &, denoted
as f(&7), is computed as f(&;;) = nsim(l;,l;). For
ease of discussion, we use vy and v}y to represent the
query starting and ending POIs [, and [., respectively.
We set the profits of v; and V|y| as Zero, since they are
included in every feasible trip. We further add costs to
the edges to represent the trip cost. The cost of edge
€i;, denoted as tc(e;)), is the sum of the transit time
cost between /; and [; and the visiting time cost of [;,
ie., te(e) = teo(ly) + tey(li,).

Based on the formulation above, recommending a trip
for query ¢ can be seen as a variant of the orienteering
problem [9] which finds a path that collects the most
profits in G’ while costs no more than a given budget ¢,.
We thus reduce the TripRec problem to the following
constrained optimization problem:

v v [V]=2|V]|-1
max Zzzvz]f(Z Z Ti Ty - e”
i=1 j=1 i=2 j=i+l
v V]
st @ Y su=a=1, (b)Y zyy =z =1
i=1 =

Vi-1 V|
(C) tc'u Ul + Z qu . ezg X tq
Jj=

D2<p < |V Vie V]

) pi—p;j +1< (‘V|—1)(1—xij)7 Vi, j € [2,\V|]
4 4
®) Zwij = Zl‘kz =z; <1, Vie[2,|V]|-1]
j= =1
’ (16)
Here, x;; and x; are boolean indicators: x;; = 1 if

edge e_i;» is selected, and x; = 1 if vertex v; is selected.
Conditions (a) and (b) restrict the trip to start from vy
and end at vjy|. Condition (c) denotes the time budget
constraint. Conditions (d) and (e) are adapted from [19],
where p; denotes the position of v; in the trip. They
ensure no cycles in the trip. Condition (f) restricts to
visit any selected POI once.

A. The C-ILP Algorithm

A common approach for the orienteering problems is
the integer linear programming (ILP) algorithm [3], [14].
However, ILP does not apply directly to our problem.
This is because the second term in our objective function
in Equation 16, .., Y105 SV, 4y s - (&), is
nonlinear. In what follows, we transform Equation 16 to
a linear form such that the ILP algorithm [3], [14] can

be applied to solve our problem. Such an algorithm finds

the exact optimal trip for TripRec. We denote it as the
C-ILP algorithm for ease of discussion.

Our transformation replaces the vertex indicators x;
and x; in Equation 16 with a new indicator xgj, where
x’ij = 1 if both v; and v; are selected (not necessarily
adjacent). We further impose ¢ < j in :cgi to reduce the
total number of such indicators by half. This does not

affect the correctness of the optimization since z}; = 27;.
Then, Equation 16 is rewritten as follows.
Vv \4 V]- V]— —
max VL SV @ f(oy) + VLIV al - @)
V] V]
st @ Y zu=1, (b)Y zyy =1
=1 =1
V] V]
(0 > iy = ww <1, Vie[2,|V] 1]
j=1 k=1
VI VI
@ @y =Y > @ik Tym, Vi, j € [2,[V]—1],i < j
k=1m=1
(a7

Here, Conditions (c) to (e) are listed in Equation 16
(omitted due to the page limit). Conditions (a), (b), and
(f) are the same as those of Equation 16 except that the
vertex indicators (x;) are removed. Condition (g) defines
the relationships between x;; and xgj: if a trip includes
a vertex v;, it must contain an edge starting from v; (or
an edge ending at v; if v; = v)y). Thus, for any two
vertices v; and vy, x;j equals to 1 if the solution trip
contains one edge starting from v; and another from v;.

Using LE;J we transform our objective function into a
linear form. Condition (g) is still non-linear (note x;x -
Z;m). We replace it with three linear constraints:

V]
zi; <Y wia,Vij €2,V = 1)i<j
k=1
V]
ol <@k, Vi, j € [2,|V]—1],i < j
k=1
VI v
B2 D> (@i wm) — 1,Vij € [2,|V] = 1], < j
k=1m=1

(18)

To show the correctness of the above transformation,
assume two vertices v; and v;. We consider two cases:
(i) At least one vertex (e.g., v;) is not included in the
optimal trip; and (ii) Both vertices are in the optimal
trip. Condition (g) in Equation 17 ensures that miJ =0
in Case (i) and mjj =1 in Case (ii). We next show that
this is also guaranteed by Equation 18. For Case (i), we
have Z‘k‘;’l x;. = 0, which leads to m;j < 0 according
to the first constraint in Equation 18. Since xg‘] € [0,1],
we have z}. = 0. For Case (ii), we have Z‘kv:l T =1
and EL‘QI Zjm = 1. According to the third constraint
in Equation 18, we have x}. > 1. Since z}. € [0,1],

1y = 1]
we have x;j = 1. Combining the two cases, we show

that the above transformation retains the constraints of
Condition (g).

Algorithm complexity. There are 2 - |E| boolean
variables in C-ILP, where |E| represents the number
of edges in G. To compute the solution, the Ipsolve
algorithm [1] first finds a trip without considering the
integer constraints, which can be done in O(|E]) time.
Then it refines the trip to find the optimal integral
solution. The algorithm uses branch-and-bound to guide
the search process. It may need to explore all possible
combinations in the worst case, which leads to a worst-
case time complexity of O(2/71).

B. The C-ALNS Algorithm

The C-ILP algorithm finds the trip with the highest
CTQ score. However, the underlying integer linear pro-
gram algorithm may incur a non-trivial running time as
shown by the complexity analysis above.

To avoid the high running time of C-ILP, we propose
a heuristic algorithm named C-ALNS based on adaptive
large neighborhood search (ALNS) [22]. ALNS is a
meta-algorithm to generate heuristic solutions. It starts
with an initial solution (a trip in our problem) and then
improves the solution iteratively by applying a destroy
and a build operator in each iteration. The destroy oper-
ator randomly removes a subset of the elements (POlIs)
from the current solution. The build operator inserts
new elements into the solution to form a new solution.
Different destroy/build operators use different heuristics
to select the elements to remove/insert. Executing a pair
of destroy and build operators can be viewed as a move
to explore a neighborhood of the current solution. The
aim of the exploration is to find a solution with a higher
objective function value.

As summarized in Algorithm 1, our C-ALNS algo-
rithm adapts the ALNS framework as follows: (i) C-
ALNS consists of multiple (run,,,) ALNS runs (Lines 3).
The best trip of all runs and its CTQ score are stored as
trope and S(ug, tropt). The best trip within a single run is
stored as ¢r,_qp:. The algorithm initializes a solution pool
‘P (detailed in Section VI-B1) before running ALNS,
where a trip from the solution pool is randomly selected
to serve as the initial solution of each run of ALNS
. (i) C-ALNS uses multiple pairs of destroy operators
D and build operators B to enable random selections
of the operators to be used ALNS (detailed in Sec-
tion VI-B2). (iii) C-ALNS uses a Simulated Annealing
(SA) strategy to avoid falling in local optimum (detailed
in Section VI-B3).

1) The Solution Pool: We maintain a subset of feasi-
ble trips in the solution pool P, where each trip tr; is
stored with its CTQ score as a tuple: (tr;, S(ugq, tr;)). At

Algorithm 1: C-ALNS

input : POI Graph G, Query q = (uq, s, le, tq)
output: Optimal trip trop¢

1 tropt < 0, S(uq, tropt) < —oo,run < 0;

2 initialize the solution pool P;

3 while run < run,, do

4 tr < RandomSelect(P);

5 trr_opt + tr;

6 temp < T,

7 initialize the weights D and B;

8 itr < 0;

9 while itr < itr,, do

10 {d, b} < RandSelect(D, B);

1 tr’ « Apply(ir, d);

12 tr' + Apply(tr,b);

13 if S(ug,tr') > S(ug,tr) or 2V <
8:17]?(S(uq,tr;l:ni(uq,tr))) then

14 tr < tr';

15 if S(uq,trr_opt) < S(ug,tr) then

16 L trr_opt < tr;

17 temp < temp X 0,

18 update the weights of D and B;

19 if S(ug,tropt) < S(uq,trr_opt) then

20 L tropt < trr_opt;

21 update P;

22 return tropt

the beginning of each ALNS run, we select a trip from
the solution pool P and use it as the initial trip for the
run. The probability of selecting a trip ¢r; is computed
as p(tr;) = S(ug,tri)/ > 1 ep S(ug, tr). At the end of
each run, we insert the tuple (tr,_ope, S(Uq, t7r_opt)) into
P, where tr,_gp; is the best trip accepted in this run.
We initialize the solution pool with three initial trips
generated by a low-cost heuristic based algorithm. This
algorithm first creates a trip with two vertices v; and
vjy| corresponding to the starting and ending POIs [,
and [. of the query. Then, it iteratively inserts a new
vertex into the trip until the time budge is reached. To
choose the next vertex to be added, we use the following
three different strategies, yielding the three initial trips:

o Choose the vertex v that adds the highest profit to
maximize fX(v) = S(ug,tr')—S(uy, tr), where tr
is the current trip and ¢r’ is the trip after adding v.

o Choose the vertex v that adds the least time cost to

minimize tcf (v), where t£ (v) = te(tr’) — te(tr).

o Choose the most cost-effective vertex v that maxi-

mizes f1(v)/t(v).

2) The Destroy and Build Operators: We maintain a
set of destroy and build operators as follow.

Destroy operator. Given a trip ¢r and a removal
fraction parameter p € [0, 1], a destroy operator removes
[p- (|tr] — 2)] vertices from tr. We use four destroy
operators with different removal strategies:

Random. This operator randomly selects [p-([tr|—2)]
vertices to be removed.

Least profit reduction. This operator selects [p-(|tr|—
2)] vertices with the least profit reduction: f, (v) =
S(ug,tr) — S(ug,tr’), where tr’ represents the trip
after v is removed from ¢r. We add randomness to
this operator. Given the list of vertices in #r sorted in
ascending order of their profits, we compute the next
vertex to be removed as (zV(®1)¥"?(|tr| —2). Here, x is
a random value generated from the Uniform distribution
U(0,1) and the parameter ¢ is a system parameter that
represents the extent of randomness imposed on this
operator. A larger value of ¢ leads to less randomness.

Most cost reduction. This operator selects [p - (|tr] —
2)] vertices with the largest cost reduction: ¢, (v). We
also randomize this operator in the same way as the least
profit reduction operator.

Shaw removal. This operator implements the Shaw
removal [22]. It randomly selects a vertex v in tr
and removes [p - (|tr| — 2)] vertices with the smallest
distances to v. We also randomize this operator as we
do above.

Build operator. The build operator adds vertices to
tr until the time budget is reached. We use four build
operators as follows.

Most profit increment. This operator iteratively inserts
an unvisited vertex that adds the most profit.

Least cost increment. This operator iteratively inserts
an unvisited vertex that adds the least time cost.

Most POI similarity. This operator randomly selects a
vertex v; in tr. Then, it sorts the unvisited vertices by
their distances to v; in our POI embedding space. The
unvisited vertices nearest to v; are added to tr.

Highest potential. This operator iteratively inserts an
unvisited vertex v; that, together with another unvisited
vertex v;, adds the most profit while the two vertices do
not exceed the time budget.

Operator choosing. We use a roulette-wheel scheme
to select the operators to be applied. Specifically, we
associate a weight w to each destroy or build operator,
which represents its performance in previous iterations
to increase the CTQ score. The probability of selecting
an operator o; equals to its normalized weight (e.g.,
ojw/ Y cpow if o; is a destroy operator). At the
beginning of each ALNS run, we initialize the weight of
each operator to be 1. After each iteration in a run, we
score the applied operators based on their performances.
We consider four scenarios: (i) a new global best trip
tropt is found; (ii) a new local best trip within the run
is found; (iii) a local best trip within the run is found
but it is not new; and (iv) the new trip is worse than
the previous trip but is accepted by the Simulated An-

nealing scheme. We assign different scores for different
scenarios. The operator scoring scheme is represented
as a vector T = (my, w2, T3, T4, T5), where each element
corresponds to a scenario, e.g., m; represents the score
for Scenario (i), and 75 corresponds to any scenario not
listed above. We require 7, > mo > w3 > M4 > Ts.
Given an operator o;, its current weight o;.w and its
score o;.m, we update the weight of o; as o;.w <
k-o;w~+ (1 — K) - 0;.w. Here, k is a system parameter
controlling the weight of the scoring action.

3) Simulated Annealing: We adapt the simulated an-
nealing (SA) technique to avoid local optima. Specifi-
cally, at the beginning of each ALNS run, we initialize
a temperature temp to a pre-defined value 7. After
every iteration, a new trip ¢’ is generated from a
previous trip tr. If S(ug,tr’) < S(ug,tr), we do not
discard tr’ immediately. Instead, we further test whether
S(ug,tr') — S(ug,tr) > —temp x logx where z is a
random value generated from the Uniform distribution
U(0,1) (Algorithm 1, Line 13). If yes, we still replace ¢r
with tr’. We gradually reduce the possibility of keeping
a worse new trip by decreasing the value of temp
after each iteration by a pre-defined cooling factor 6
(Algorithm 1, Line 17).

Algorithm complexity. C-ALNS has run,, ALNS
runs, where each run applies ¢tr,, pairs of destroy-
build operators. To apply a detroy operator, the algo-
rithm needs to perform |¢r,,,| comparisons to choose
the vertices to remove. To apply a build operator, the
algorithm needs to perform |V| comparisons to choose
the vertices to add. Here, [trq,4| represents the average
length of feasible trips and |V| represents the number of
vertices in G. Thus, the time complexity of C-ALNS is
O(runy, - itry, - (|trevg| +1V1))-

VII. EXPERIMENTS

We evaluate the effectiveness and efficiency of the
proposed algorithms empirically in this section. We im-
plement the algorithms in Java. We run the experiments
on a 64-bit Windows machine with 24 GB memory and
a 3.4 GHz Intel Core 17-4770 CPU.

A. Settings

We use four real-world POI check-in datasets from
Flickr (cf. Section III). We perform leave-one-out cross-
validation on the datasets. In particular, we use a trip of a
user u with at least three POIs as a testing trip tr*. We
use u as the query user, the starting and ending POIs
of tr* as the query starting and ending POIs, and the
time cost of ¢r* as the query time budget. We use all
the other trips in the dataset for training to obtain the
context-aware embeddings for the POIs and users.

10

Let tr be a trip recommended by an algorithm and
tr* be the ground truth. We evaluate the algorithms with
three metrics: (i) Recall — the percentage of the POIs in
tr* that are also in tr, (ii) Precision — the percentage
of the POIs in ¢r that are also in ¢r*, (iii) Fy-score —
the harmonic mean of Precision and Recall. We exclude
the starting and ending POIs when computing these
three metrics. To keep consistency with two baseline
algorithms [3], [14], we further report three metrics
denoted as Recall*, Precision®, and F7j-score. These
metrics are counterparts of Recall, Precision, and F;-
score, but they include the starting and ending POIs in
the computation.

We test both our algorithms C-ILP (Section VI-A) and
C-ALNS (Section VI-B). They use the same context-
aware POI embeddings as described in Section V. We
learn a 13-dimensional embedding with a learning rate
of 0.0005 and a regularization term parameter A of 0.02.
For C-ALNS, we set the removal fraction p as 0.2, the
operator scoring vector 7 as (10, 5,3, 1, 0), the SA initial
temperature as 0.3, and the cooling factor as 0.9995.

Baseline algorithms. We compare with six base-
line algorithms, namely Random, Pop, MF, PersTour,
POIRank and its variant M-POIRank. Random, Pop,
and MF use the same trip generation procedure: they
repeatedly add an unvisited POI to the recommended
trip until the query time budget exhausts. However, they
use different strategies to choose the next POI to visit.
Random chooses the next POI randomly. Pop chooses
the next POI with the highest popularity (computed by
normalized visit frequency) among all unvisited POIs.
MF chooses the next POI with the highest preference
score (computed by matrix factorization [23]). Pers-
Tour [14] recommends the trip that meets the time budget
and has the highest sum of POI scores. The POI score of
a POI [is the weighted sum of its popularity and user
interest score, where the popularity is computed with
the same method as in Pop, and the user interest score is
derived from the query user’s previous visiting durations
at POIs with the same category as [. We use a weight of
0.5, which is reported to be optimal [14]. POIRank [3]
resembles PersTour but differs in how the POI score is
computed. It represents each POI as a feature vector of
five dimensions: POI category, neighborhood, popularity,
visit counts, and visit duration (cf. Section II-B). It
computes the POI score of each POI using rankSVM
with linear kernel and L2 loss [13]. We further test its
variant M-POIRank where a weighted transition score
is added to the POI score. Given a pair of POlIs, their
transition score is modeled using the Markov model that
factorizes the transit probability between the two POIs
as the product of the transit probabilities between the

TABLE III: Performance Comparison in Recall, Precision, and F;-score

City Edin. Glas. Osak. Toro.
Algorithm Rec. Pre. Fq Rec. Pre. Fy Rec. Pre. F, Rec. Pre. Fq
Random 0052 0079 0060 | 0071 0092 0078 | 0057 0074 0063 | 0.045 0.060 0.050
Pop 0195 0238 0209 | 0.104 0128 0.112 | 0.110 0138 0.121 | 0.114 0.148 0.125
MF 0242 0229 0233 | 0310 0308 0307 | 0195 0.173 0.I81 | 0408 0410 0407
PersTour 0455 0418 0430 | 0589 0571 0577 | 0406 0384 0392 | 0431 0422 0425
POIRank 0326 0326 0326 | 0408 0408 0408 | 0367 0367 0367 | 0389 0389 0.389
M-POIRank 0318 0318 0318 | 0387 0387 0387 | 0328 0328 0328 | 0379 0379 0379
C-ILP (proposed) 0.555 0.527 0538 | 0.659 0.646 0.651 | 0497 0492 0494 | 0.618 0.601 0.608
C-ALNS (proposed) | 0.554 0527 0537 | 0.657 0.645 0.649 | 0496 0491 0493 | 0.616 0.598 0.607
TABLE IV: Performance Comparison in Recall*, Precision®, and Fj-score
City Edin. Glas. Osak. Toro.
Algorithm Rec™. Pre™. Fi Rec™. Pre™. Fi Rec™. Pre™. Fi Rec™. Pre™. Fi
Pers Tour 0740 0.633 0.671 | 0826 0.782 0.798 | 0.759 0.662 0.699 | 0.779 0.706 0.732
POIRank 0700 0700 0700 | 0768 0768 0768 | 0.745 0745 0745 | 0754 0754 0754
M-POIRank 0697 0.697 0697 | 0762 0762 0762 | 0.732 0732 0732 | 0751 0751 0751
C-ILP (proposed) 0792 0754 0769 | 0.864 0.844 0.853 | 0.793 0740 0763 | 0.842 0.800 0.818
C-ALNS (proposed) | 0.792 0752 0768 | 0862 0.843 0.852 | 0.792 0739 0762 | 0.841 0798 0815
10 —— 1 T —
Rand — C-ILP-Pop —
five POI features of the two POls. 107 ¢ p— bty e —
Overall performance. We summarize the results in gwi' POl o | 08 CHILE-Sep
Tables III and IV (Random, Pop, and MF are uncom- S0 C-ALNS 18 06
.. E10*t g
petitive and are omitted in Table IV due to space limit). S0t | g
L . u B
We highlight the best result in bold and the second 21021 | =0
. . . = N N
best result in ifalics. We see that both C-ILP and C- “ol b \ | 02
. . . N N -
ALNS consistently outperform the baseline algorithms. 10° | i § §
. . -1 \ [
- 10 0
C-ILP outperforms PersTour, the baseline W?th the best Edin. Glas. Osak Toro. Edin. Glas. Osak Toro.
performance, by 25%, 13%, 26%, and 43% in F;-score City City
on the datasets Edinburgh, Glasgow, Osaka, and Toronto, (2) C-ILP vs. C-ALNS (b) Tmpact of factors
respectively. C-ALNS has slightly lower scores than . i —
those of C-ILP, but the difference is very small (0.002 Fig. 3: Comparisons among proposed algorithms
. - . 1 1
on average). This confirms the capability of our heuristic Pop C—— MF
. . . . C-ILP-Pop &=z PersTour BXZ2R
algorithm C-ALNS to generate high quality trips. 08 1 08| C-ILP-Pre
We compare the running times of C-ILP and C-ALNS]
. . . £ 0.6 18 06
in Figure 3a. For completeness, we also include the g 7
running times of Random, Pop, and PersTour, but omit 04 0.4
those of MF and POIRank as they resemble that of
PersTour. C-ALNS outperforms C-ILP and PersTour by 02 I 02 I
orders of magnitude (note the logarithmic scale). The 0 BLH |8 0 ;
average running times of C-ILP and PersTour are 104 ms Edin. Glas.Osak.Toro. Edin. Glas.Osak.Toro.
. . Cit Cit
and 2.5 x 10% ms, respectively, while that of C-ALNS o T . ; Y
. a) POI popularit User preferences
is only around 300 ms, 600 ms, 60 ms, and 100 ms (@) POL popularity ®) P

for the four datasets, respectively. Compared with C-
ILP, C-ALNS reaches almost the same F;-score while
reducing the running time by up to 99.4%. Compared
with PersTour, C-ALNS obtains up to 43% improvement
in Fy-score while reducing the running time by up to
97.6%. Random and Pop have the smallest running times
but also very low trip quality as shown in Table III.

Fig. 4: Impact of model learning capability

learns POI popularities and jointly learns POI popular-
ities and user preferences, respectively. Fig. 3b shows
a comparison among C-ILP-Pop, C-ILP-Pref, and C-
ILP. We see that the F;-score increases as the POI
embeddings incorporate more factors. This confirms the

impact of the three factors. Moreover, we see that on
B. Results

the Edinburgh and Toronto datasets where POIs have
Impact of different factors. To investigate the con- more diverse POI co-occurrences (cf. Section III), the

tributions of POI popularities, user preferences, and improvement of C-ILP (with co-occurring POIs in the
co-occurring POIs in our embeddings, we implement embeddings) over C-ILP-Pref is more significant. This
two variants of C-ILP, namely, C-ILP-Pop and C-ILP- demonstrates the effectiveness of our model to learn the
Pref. These two variants use POI embeddings that only POI co-occurrences. We also implement an algorithm

11

that separately learns the impact of POI popularities,
user preferences, and co-occurring POIs, denoted as C-
ILP-Sep. The algorithm considers equal contribution of
the three factors to recommend trips. We see that C-ILP
outperforms C-ILP-Sep consistently. This confirms the
superiority of joint learning in our algorithm.

Impact of model learning capability. To further show
that our proposed POI embedding model has a better
learning capability, we compare C-ILP-Pop with Pop in
Fig. 4a, since these two algorithms only consider POI
popularity. Similarly, we compare C-ILP-Pref with the
baseline algorithms that considers user preferences, i.e.,
MF and PersTour, in Fig. 4b. In both figures, our models
produce trips with higher F;-scores, which confirms the
higher learning capability of our models.

VIII. CONCLUSIONS

We proposed a context-aware model for POI em-
bedding. This model jointly learns the impact of POI
popularities, co-occurring POIs, and user preferences
over the probability of a POI being visited in a trip.
To showcase the effectiveness of this model, we applied
it to a trip recommendation problem named TripRec.
We proposed two algorithms for TripRec based on the
learned embeddings. The first algorithm, C-ILP, finds the
exact optimal trip by solving TripRec as an integer linear
programming problem. The second algorithm, C-ALNS,
finds a heuristically optimal trip but with a much higher
efficiency based on the adaptive large neighborhood
search technique. We performed extensive experiments
on real datasets. The results showed that the proposed
algorithms using our context-aware POI embeddings
consistently outperform state-of-the-art algorithms in trip
recommendation quality, and the advantage is up to 43%
in Fj-score. C-ALNS reduces the running time for trip
recommendation by 99.4% comparing with C-ILP while
retaining almost the same trip recommendation quality,
i.e., only 0.2% lower in F;-score.

ACKNOWLEDGEMENT

This work is partially supported by Australian Re-
search Council Discovery Project DP180103332.

REFERENCES

[1] M. Berkelaar, K. Eikland, P. Notebaert, et al. Ipsolve: Open
source (mixed-integer) linear programming system. Eindhoven
U. of Technology, 2004.

I. Brilhante, J. A. Macedo, F. M. Nardini, R. Perego, and
C. Renso. Where shall we go today?: planning touristic tours
with tripbuilder. In CIKM, pages 757-762, 2013.

D. Chen, C. S. Ong, and L. Xie. Learning points and routes to
recommend trajectories. In CIKM, pages 2227-2232, 2016.

[2]

[3]

12

[4]

[5]

[6]

[7]
[8]

[9]
[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

A.-J. Cheng, Y.-Y. Chen, Y.-T. Huang, W. H. Hsu, and H.-Y. M.
Liao. Personalized travel recommendation by mining people
attributes from community-contributed photos. In ACM MM,
pages 83-92, 2011.

C. Cheng, H. Yang, I. King, and M. R. Lyu. Fused matrix
factorization with geographical and social influence in location-
based social networks. In AAAI, pages 17-23, 2012.

S. Feng, X. Li, Y. Zeng, G. Cong, Y. M. Chee, and Q. Yuan.
Personalized ranking metric embedding for next new poi recom-
mendation. In IJCAI, pages 2069-2075, 2015.

Y. Ge, Q. Liu, H. Xiong, A. Tuzhilin, and J. Chen. Cost-aware
travel tour recommendation. In SIGKDD, pages 983-991, 2011.
A. Gionis, T. Lappas, K. Pelechrinis, and E. Terzi. Customized
tour recommendations in urban areas. In WSDM, pages 313-322,
2014.

B. L. Golden, L. Levy, and R. Vohra. The orienteering problem.
Naval Research Logistics, 34(3):307-318, 1987.

S. Henry, C. Cuffy, and B. T. McInnes. Vector representations of
multi-word terms for semantic relatedness. Journal of Biomedical
Informatics, 77:111-119, 2018.

H.-P. Hsieh and C.-T. Li. Mining and planning time-aware routes
from check-in data. In CIKM, pages 481-490, 2014.

T. Kurashima, T. Iwata, G. Irie, and K. Fujimura. Travel route
recommendation using geotags in photo sharing sites. In CIKM,
pages 579-588, 2010.

C.-P. Lee and C.-J. Lin. Large-scale linear ranksvm. Neural
Computation, 26(4):781-817, 2014.

K. H. Lim, J. Chan, C. Leckie, and S. Karunasekera. Personalized
tour recommendation based on user interests and points of
interest visit durations. In IJCAI, pages 1778-1784, 2015.

Q. Liu, Y. Ge, Z. Li, E. Chen, and H. Xiong. Personalized travel
package recommendation. In /CDM, pages 407-416, 2011.

X. Liu, Y. Liu, and X. Li. Exploring the context of locations for
personalized location recommendations. In IJCAI, pages 1188—
1194, 2016.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean.
Distributed representations of words and phrases and their com-
positionality. In NIPS, pages 3111-3119, 2013.

C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer pro-
gramming formulation of traveling salesman problems. JACM,
7(4):326-329, 1960.

V. Rakesh, N. Jadhav, A. Kotov, and C. K. Reddy. Probabilistic
social sequential model for tour recommendation. In WSDM,
pages 631-640, 2017.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In
UAI, pages 452461, 2009.

S. Ropke and D. Pisinger. An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows.
Transportation Science, 40(4):455-472, 2006.

R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix
factorization using markov chain monte carlo. In ICML, pages
880-887, 2008.

B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni,
D. Poland, D. Borth, and L.-J. Li. Yfcc100m: the new data in
multimedia research. Communications of the ACM, 59(2):64-73,
2016.

P. Wang, J. Guo, Y. Lan, J. Xu, S. Wan, and X. Cheng. Learning
hierarchical representation model for nextbasket recommenda-
tion. In SIGIR, pages 403—412, 2015.

X. Wang, C. Leckie, J. Chan, K. H. Lim, and T. Vaithi-
anathan. Improving personalized trip recommendation by avoid-
ing crowds. In CIKM, pages 25-34, 2016.

C. Zhang, H. Liang, K. Wang, and J. Sun. Personalized trip
recommendation with poi availability and uncertain traveling
time. In CIKM, pages 911-920, 2015.

