
Continuous Maintenance of Range Sum Heat Maps
Jianzhong Qi #1∗∗, Vivek Kumar #2, Rui Zhang #1∗, Egemen Tanin #1, Goce Trajcevski †, Peter Scheuermann ††

School of Computing and Information Systems, The University of Melbourne, Australia
1 {jianzhogn.qi, rui.zhang, etanin}@unimelb.edu.au, 2 vivekk1@student.unimelb.edu.au

† Department of Electrical and Computer Engineering, Iowa State University, USA
gocet25@iastate.edu

†† Department of Electrical Engineering and Computer Science, Northwestern University, USA
peters@eecs.northwestern.edu

Abstract—We study the problem of continuous maintenance of
range sum heat maps over dynamically updating data objects.
The range sum (RS) here refers to the sum of the weights of
the data objects enclosed by a given range (rectangle) R. Range
sum problems are useful in spatio-temporal data analytics and
decision making processes. Recent studies on range sum problems
focus on computing the MaxRS query, which finds a location
to place a rectangle R such that its RS is maximized. In real
applications, knowing only the location with the maximum RS
may be insufficient, because decision making is a multi-factor
process where maximizing the RS may just be one of the factors.
It is also important to gain an overview of the RS distribution
at different locations, so that decisions can be made based on
global knowledge. We therefore propose to compute a range-
sum heat map that visualizes the RS value for every location
in a data space. Considering that data objects may be inserted
into or removed from the data space dynamically, we further
study the continuous maintenance of range-sum heat maps over
dynamically updating data objects. We adapt algorithms to
compute range-sum heat maps and to perform heat map updates.
We build a demo system to showcase the usefulness of range sum
heat maps and the effectiveness of the adapted algorithms.

I. INTRODUCTION

Range sum problems [1], [2] aim to compute the range sum
(RS) that is the sum of the weights of the objects enclosed
by a given range which is usually modeled by a rectangle R.
Such problems have useful applications in spatio-temporal data
analytics. A typical application is to help the decision making
process for resource allocations. For example, a range sum
problem can compute the number of mobile users in the city
CBD as the RS, where the mobile users are the data objects
(each with a weight of 1) and the city CBD is the range R.
This RS can help mobile service providers decide whether
additional base stations are needed to serve the users. As
another example, consider a scenario where the administration
of a national park needs to deploy some supplies (e.g., water
or medicine) for the wild animals in the park due to a drought
or an epidemic. Suppose that the animals are tagged with
sensors and hence their locations are known. Then, a range
sum problem can compute the number of animals (RS) within
a reachable range (R) from the supply deployment location.
This can help decide the volume of supplies to be deployed.

* Corresponding author.
** Part of this work is done when Jianzhong Qi is visiting Northwestern

University, which is supported by the Eshbach Visiting Scholar Fellowship.

o4
o5

o1
o2

o3

o7
o8

o9

o6 o11

o10
s

s'R

r(s')

r(s)

Fig. 1. A range sum problem

Figure 1 illustrates the range sum problem, where o1,
o2, ..., o11 are the data objects (mobile users or animals), and
the solid rectangle at the middle represents the given range R.
There are two objects o4 and o5 inside R. Thus, the RS is 2,
assuming that each data object has a weight of 1.

Recent RS studies [3], [4], [5], [6], [7], [8] have focused on
the maximum range sum (MaxRS) query. The MaxRS query
finds a location to place the centroid of rectangle R such that
its RS is maximized. Allocating resources (e.g., setting up a
base station or deploying supplies) to this location will impact
the most data objects (e.g., mobile users or animals). In Fig. 1,
placing the centroid at the black point s results in a dashed
rectangle r(s) that encloses four data objects o4, o5, o6, and
o10. No other rectangle of the same size can enclose more
data objects. Thus, s is an answer to the MaxRS query.

Knowing only the location with the maximum RS, however,
may be insufficient. Such a location may not be suitable for
setting up a base station or deploying animal supplies due
to various constraints, e.g., being a private property or in the
middle of a river. Further, decision making processes such as
resource allocations involve multiple factors rather than simply
maximizing the RS. Decision makers may want to know the
RS of different locations to make fully informed decisions.

To provide decision makers an overview of the RS at every
location in the data space, we propose to compute a range
sum heat map (RSHM). An RSHM associates each point in
the data space with its RS.

Definition 1 (Range sum heat map): Given a set of points
O where each point oi ∈ O has a weight represented by a
real value oi.w, a rectangular range R, and a two-dimensional
Euclidean data space S, the range sum heat map associates

each point s ∈ S with its range sum, denoted by s.rs:

s.rs =
∑

oi∈O,oi∈r(s)

oi.w

Here, r(s) represents the rectangle centered at s with the same
shape as the given range R.

While there are infinite points in a Euclidean space and
computing the RS for every point may seem difficult, a simple
observation helps overcome this difficulty, i.e., the RS of
nearby points are usually the same. In Fig. 1, the rectangles
r(s) and r(s′) of two nearby points s and s′ both enclose data
objects o4, o5, o6, and o10. Thus, s and s′ have the same RS 4.

Based on this observation, we can divide the data space S
into partitions, each of which is formed by points with the
same RS. We only need to compute an RS for each partition.
Computing an RSHM then becomes a problem of partitioning
S. Figure 2 illustrates an RSHM created by partitioning the
space with some dashed rectangles. The gray partition, for
example, is formed by points with the same RS of 4. A range R
centered at any point s in this partition (e.g., the solid rectangle
r(s)) encloses four objects o4, o5, o6, and o10.

Each dashed rectangle used for the partitioning is centered at
a data object oi and has the same shape as R. Such a rectangle
is called the Minkowski rectangle (MR) of oi, denoted by mri.
Any point s enclosed by mri can count oi into its RS because a
rectangle r(s) centered at s must also enclose oi. For example,
point s in Fig. 2 is enclosed by mr4, mr5, mr6, and mr10.
The four corresponding data objects are enclosed by r(s).

Given an RSHM, a decision maker can easily examine the
potential impact of allocating resources (e.g., setting up base
stations or supply points) to different partitions. This allows
allocating resources in a more flexible way to avoid unviable
locations. The heat map can also help choose locations in
multiple partitions that together have a large aggregate impact
rather than a single location with the maximum RS.

We further consider data insertions and deletions for dy-
namic application scenarios. For example, mobile users may be
active from time to time; and animal tracking sensors may be
switched on and off to conserve battery power. To handle such
scenarios, we propose to maintain an RSHM continuously over
dynamically updating data points. We focus on data insertions
and deletions. A location update of a data point can be handled
by deleting the data point and re-inserting the data point with
a new location. We call this problem the continuous range sum
heat map maintenance (CRSHMM) problem.

Definition 2 (CRSHMM problem): The continuous range
sum heat map maintenance problem computes, at every time
point from the request being issued until deactivated, the range
sum heat map for an Euclidean data space S over a set of data
points O with dynamic insertions and deletions.

The CRSHMM problem offers a dynamic partitioning of the
data space and visualization of the RS of different partitions.
This can be used to support real-time resource allocation
applications. For example, an online computer game server
may compute an RSHM on its game map space using the
players as the data points. This can guide the deployment of

o4
o5

o1
o2

o3

o7
o8

o9

o6 o11

o10
s

mr10

mr5

mr4

mr6

r(s)

o12

mr12

Fig. 2. A range sum heat map
gaming objects (e.g., non-player characters) to locations with
large RS so that more players can interact with them. As the
players may get online and offline frequently, maintaining an
RSHM continuously is important for such applications.

Several studies consider RS computation over streaming
data [4], [5], [8] or moving objects [7]. These studies focus
on continuous MaxRS query maintenance. Branch and bound
techniques are proposed to prune unpromising regions that
cannot produce the maximum RS. Such techniques are inap-
plicable for the CRSHMM problem because the entire data
space is of interest in this problem.

We propose an algorithm for efficient RSHM maintenance.
The key idea of the algorithm is to only perform local updates
to the partitions with data updates rather than recomputing the
entire heat map. Take Fig. 2 as an example. If a new data
point o12 is inserted, only those partitions that overlap with
the MR of o12, mr12, will be affected and need to be updated.
Similarly, if a data point, e.g., o4, is deleted, only the range
sums of the partitions enclosed by mr4 need to be reduced by
the weight of o4. We build a spatial index over the partitions
for fast retrieval of the partitions affected by a data update.

To summarize, this paper makes the following contributions:
1) We propose the problems of computing range sum heat

maps and continuously maintaining such heat maps over
data objects with dynamic insertions and deletions.

2) We adapt algorithms from related studies for efficient
range sum heat map computation and maintenance.

3) We build a demo system to showcase the usefulness of
the proposed problems and the effectiveness of the heat
map computation and maintenance algorithms.

The rest of the paper is organized as follows. Section II
discusses how to maintain an RSHM continuously. Section III
details the demo system. Section IV concludes the paper.

II. CONTINUOUS HEAT MAP MAINTENANCE

We start with computing range sum heat maps and then
discuss how to maintain them with data updates.

A. Range Sum Heat Map Computation

To compute an RSHM, we need to compute all the partitions
formed by the intersections of the MRs of the data points. A
basic observation here is that the partitions must have a rectan-
gular shape, as intersections of rectangles are still rectangles.
The gray rectangular partition in Fig. 2, for example, is the
intersection of four MRs mr4, mr5, mr6, and mr10.

o4

o5

o1

o2

o3

o7

o8
o9

o6 o11

o10

mr7-

mr1+

mr3-

mr1-

mr7+

mr3+

l

l'

mr8

S-

S+

Fig. 3. Range sum heat map computation

Based on this observation and previous studies [5], [7], [8],
[9] on range sum problems, we impose an order over the
checking of MR intersections using a plane-sweep algorithm.
The aim is to reduce the number of possible intersections
to be checked. As shown in Fig. 3, the key idea of the
algorithm is to use a vertical line l to sweep through the
data space. As l moves, we store the MRs reached by it
in a set M . Every time the line reaches (or leaves) an
MR, we compute the intersections among the MRs stored
in M . In the figure, l sweeps from the left to the right. It
now reaches mr8. The set M contains mr1, mr3, and mr7.
To compute the MR intersections, we sort the y-coordinates
of the MRs in M . This yields a list of coordinates L =
〈S−,mr7−,mr3−,mr7+,mr1−,mr3+,mr1+, S+〉. Here, S−
(mri−) and S+ (mri+) represent the lower and upper y-
coordinates of the data space S (mri), respectively. Every
pair of adjacent y-coordinates in L (e.g., mr7− and mr3−)
form the lower and upper y-coordinates of a partition. The
current x-coordinate of l serves as the upper x-coordinate of
the partition, while the x-coordinate of l when it reached (or
left) the preceding MR (mr1) serves as the lower x-coordinate
(cf. l′). A scan over L generates all partitions at l. The RS
of the partitions are computed during the scan. Starting from
the first pair of adjacent y-coordinates, we add (subtract) the
weight of the corresponding object oi to (from) the RS every
time we reach the lower (upper) y-coordinate of an MR mri.
For example, when we reach mr7−, we add the weight of
o7 to the RS. Any partition created afterwards includes this
weight in its RS until mr7+ is reached.

After generating the partitions, we also add (remove) the
MR just reached (left) by l to (from) M , e.g., mr8 in Fig. 3.

We note that a similar algorithm has been proposed for
computing regions with the same number of reverse nearest
neighbors [10]. The RSHM algorithm described above can be
seen as a simplified version of that algorithm.

B. Heat Map Maintenance

When there are data updates, we observe that not the entire
heat map needs recomputation. A data point oi inserted into
or removed from the data space only impacts the RS of the
partitions overlapped by the MR mri of oi.

We perform local updates to the RSHM instead of full
recomputations. We build a spatial index over the partitions
to help identify the partitions impacted by a data update. We

10
-1

10
0

10
1

10
2

10
3

50 100 500 1000 5000

R
e

s
p
o

n
s
e

 t
im

e
 (

s
)

Number of data insertions

Full
Local

Fig. 4. Effect of the number of data insertions

use the R-tree, although other spatial indices may be used
as well. At each time point, we group the MRs of the data
points that have been updated together and join them with the
R-tree T over the partitions. Once the partitions overlapping
these MRs are identified, we update them as follows. For
the partitions overlapping MRs of inserted points, we run
the RSHM computation algorithm described above over the
partitions together with the MRs to gain new partitions. For
the partitions overlapping MRs of deleted points, we simply
subtract the weights of the corresponding points from their RS.

We run experiments to compare the efficiency of the
proposed local update algorithm with a straightforward full
recomputation algorithm. We implement both algorithms in-
memory using Java. The experiments are run on a 64-bit
Window 10 machine with an Intel Core i7 2.60Hz CPU and
8GB memory. The R-tree on the partitions has a fan-out of 50.

We generate 5,000 data points randomly distributed in a
1,000 × 1,000 space. We use a 20 × 20 range R. We first
compute a heat map over these 5,000 data points. This takes
59.84 seconds. To test the efficiency of the heat map update
algorithms, we vary the number of data points to be inserted
from 50 to 5,000. These data points also follow a random
distribution. We report the response time of the two algorithms
in Fig. 4. We see that the proposed local update algorithm (de-
noted by local) outperforms the full recomputation algorithm
(denoted by full) for the different numbers of data insertions
tested. When the number of insertions is small, e.g., 50, the
proposed algorithm is more than two orders of magnitude
faster than the baseline algorithm (note the logarithmic scale).
We also conduct experiments to vary the number of data dele-
tions, the number of initial data points, the data distribution,
and the range size. The local update algorithm outperforms the
full recomputation algorithm consistently in these experiments.
We omit the figures due to the page limit.

III. DEMONSTRATION

Next, we build a demo system to demonstrate the useful-
ness of RSHM and the effectiveness of the proposed RSHM
maintenance algorithm. As shown in Fig. 5, the demo system
consists of a canvas and a control panel alongside.

The canvas is used to draw the heat map, where the data
space is partitioned by the MRs of the data points. Each
partition has a different gray scale color to denote its RS. We
use a weight of 1 for each data point to keep the demo system
succinct, but it is straightforward to add varying weights. Data
points can be added by clicking on the canvas or removed
by right-clicking the points. When a data point is added

Fig. 5. The demo system

or removed, the proposed local update algorithm is called
to update the heat map. In this figure, we use the map of
the city of Melbourne as the background. Maps from other
cities or a blank background can be used as well. At the top
of the demo system, we allow bulk-loading data points that
we generate and data points collected from OpenStreetMap
(https://www.openstreetmap.org) data dumps.

The control panel supports an alternative way of adding or
removing data points based on coordinates. It also supports
setting the size of the query range R.

To demonstrate the usefulness an RSHM, we simulate a
scenario where a number of drones are to be deployed for
traffic surveillance at intersections. We load intersection points
from the OpenStreetMap data. We then add drones and set
their flying trajectories in the canvas. To maximize the number
of traffic intersections that are monitored by the drones, we can
set the trajectories of the drones such that they pass as many
darker regions (i.e., partitions with larger RS) as possible. In
Fig. 6, we simulate 10 drones flying in the canvas, each can
monitor a range of 100 × 100. We set the trajectories of the
drones to pass mainly the darker regions. As highlighted by
the red dots, most of the intersections are under surveillance.
Without the heat map, it is more difficult to design trajectories
for the drones to cover most intersections at the same time.

IV. CONCLUSION

We studied continuous maintenance of range sum heat maps
over dynamically updating data points. This problem provides
a visualization of the range sums at different locations in
the data space, which helps decision making processes such
as resource allocations. We adapted algorithms from related
studies for range sum heat map computation. We further
proposed an algorithm that used local update for efficient
continuous maintenance of range sum heat maps with data
updates. Our experimental results showed that the proposed
heat map maintenance algorithm consistently outperformed a
baseline algorithm that recomputes the entire heat map. Our
demo system showcased the usefulness of the range sum heat
maps and the effectiveness of the proposed algorithm.

Fig. 6. A traffic surveillance scenario

For future work, an even more dynamic version of the demo
system enabling fast continuous updates could be built and
accommodated with our algorithms and data structures based
on ideas from [11]. Computing heat maps for objects with non-
zero extends would also be an interesting direction to explore.

ACKNOWLEDGMENT

This work is supported by Australian Research Council
(ARC) Future Fellowships Project FT120100832 and Discov-
ery Projects DP130104587 and DP180102050, The University
of Melbourne Early Career Researcher Grant (Project Number:
603049), NSF Grants III 1213038 and CNS 1646107, ONR
Grant N00014-14-10215, and HERE Grant 30046005.

REFERENCES

[1] Y. Tao and D. Papadias, “Historical spatio-temporal aggregation,” ACM
Trans. Inf. Syst., vol. 23, no. 1, pp. 61–102, 2005.

[2] H.-J. Cho and C.-W. Chung, “Indexing range sum queries in spatio-
temporal databases,” Inf. Softw. Technol., vol. 49, no. 4, pp. 324–331,
2007.

[3] D.-W. Choi, C.-W. Chung, and Y. Tao, “Maximizing range sum in
external memory,” ACM Trans. Database Syst., vol. 39, no. 3, pp. 21:1–
21:44, 2014.

[4] D. Amagata and T. Hara, “Monitoring maxrs in spatial data streams,”
in EDBT, 2016, pp. 317–328.

[5] D. Amagata and T. Hara, “A general framework for maxrs and maxcrs
monitoring in spatial data streams,” ACM Trans. Spatial Algorithms
Syst., vol. 3, no. 1, pp. 1:1–1:34, 2017.

[6] Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, X. Cheng, and P. Chen,
“Rotating maxrs queries,” Inf. Sci., vol. 305, no. C, pp. 110–129, 2015.

[7] M. M. Hussain, K. A. Islam, G. Trajcevski, and M. E. Ali, “Towards
efficient maintenance of continuous maxrs query for trajectories,” in
EDBT, 2017, pp. 402–413.

[8] M. I. Mostafiz, S. M. F. Mahmud, M. M. Hussain, M. E. Ali, and
G. Trajcevski, “Class-based conditional maxrs query in spatial data
streams,” in SSDBM, 2017, pp. 13:1–13:12.

[9] “A unified algorithm for finding maximum and minimum object en-
closing rectangles and cuboids,” Computers and Mathematics with
Applications, vol. 29, no. 8, pp. 45–61, 1995.

[10] Y. Sun, R. Zhang, A. Y. Xue, J. Qi, and X. Du, “Reverse nearest neighbor
heat maps: A tool for influence exploration,” in ICDE, 2016, pp. 966–
977.

[11] E. Tanin, R. Beigel, and B. Shneiderman, “Design and evaluation of in-
cremental data structures and algorithms for dynamic query interfaces,”
in IEEE Symposium on Information Visualization, 1997, pp. 81–86.

