Query Processing — kNN

Jianzhong Qi and Rui Zhang

Synonyms

K nearest neighbor query; KNN query.

Definitions

Consider a set of n data objects O =
{01,02,...,0,} and a query object (user)
q. Each object including the query ob-
ject is associated with a d-dimensional
vector representing its coordinate in a
d-dimensional space (d € N). Given a
query parameter k (k € N), the k near-
est neighbor (kNN) query computes a
size-k subset S C O that contains the data
objects that are the nearest to g:

Yo; € S,0j € O\S:dist(q,0;) < dist(q,0})

Here, dist(-) is a function that returns
the distance between two objects. A
variety of distance functions have been
considered in the literature, such as
Euclidean (L) distance, Manhattan

(L1) distance, Chebyshev (L) distance,
spatial network distance, and general
metric distance.

KNN query processing in the spatial
data management context has focused on
2- or 3-dimensional Euclidean space and
spatial network space.

Overview

The rapid growth of location-based ser-
vices (LBS) has accumulated a massive
amount of spatial data such as mapping
data and user trajectories. Popular LBS
such as Google Maps are serving mil-
lions of users who issue queries such
as finding Alice her nearest petrol sta-
tions, which is a typical example of kNN
queries. Most kNN algorithms use spa-
tial indices over the data objects to help
prune the unpromising search space and
obtain high query efficiency. When the
amount of data becomes too large to be
indexed or queried on a single machine,

2

parallelism needs to be exploited to over-
come such limitations. This raises new
challenges of kNN queries in parallel in-
dex management and query processing.

Key Research Findings

We start with a brief review of two clas-
sic kNN algorithms and then focus on
the discussion of recent developments on
kNN algorithms that use parallelism to
manage the growing amount of data.

Traditional KNN Algorithms

The two arguably most popular
kNN query algorithms are the best-
first (Hjaltason and Samet||1995) and the
depth-first (Roussopoulos et all [1995)
algorithms. These two algorithms rely
on an tree index (e.g., R-trees (Guttman
1984)) over the data set O. They traverse
the tree index starting from the tree
root to find data objects nearest to gq.
During the traversal, the distance to the
k" NN among the data objects already
visited is used to facilitate the pruning
of unpromising tree branches that do
not index nearer data objects. When a
tree node N is visited, the best-first al-
gorithm inserts all child nodes of N into
a queue Q prioritized by an estimated
distance between each child node and
g. The next node to be visited is the
one in Q with the smallest estimated
distance to g. The depth-first algorithm
simply visits the first child of each node
before visiting the sibling nodes. While
these two algorithms have shown high
empirical query efficiency due to the
pruning power of the tree indices, they

Jianzhong Qi and Rui Zhang

are difficult to be parallelized because of
the backtracking procedure in traversal.

Parallel KNN Algorithms

Fig. 1 Grid based kNN computation.

Parallel kNN query algorithms that
suit popular parallel computation mod-
els such as MapReduce (Dean and
Ghemawat [2008)) have been developed
to handle data beyond the processing
capability of individual machines. Such
algorithms partition the data space with
a grid (ak.a. tiling, cf. Fig. [I) so that
data objects in different grid cells can
be examined in parallel. A two-stage
procedure is used in query processing.
In the first stage, the cell C, that contains
the query object ¢ is identified, and kNN
is computed over the data objects in C,
(e.g., the 2NNs in Fig. [T] are 03 and 04).
In the second stage, the cells adjacent
to C, are examined to find data objects
that may be nearer to ¢ than the k' NN
already found (e.g, cells Cy, C3, C3, and
Cy4, which are within the circle defined

Query Processing — kNN

by the second NN o4; 03 is found to be
the new second NN). This step may be
repeated over more cells adjacent to the
cells examined, until the nearest data
object in these adjacent cells is farther
away than the k' NN already found.

Hadoop Based kNN algorithms

Hadoop is an open-source implemen-
tation of the MapReduce computation
model. The MapReduce model pro-
cesses a task (a MapReduce job) in
two phases: Map and Reduce. The Map
phase assigns data to different machines
in a cluster, while the Reduce phase
runs computation on each machine.
The data storage component of Hadoop
named Hadoop Distributed File System
(HDFS) is an implementation of the
Google File System (Ghemawat et al
2003). HDFS is optimized for large data
blocks (e.g., 64 MB per block). Hadoop
based kNN algorithms need to design
indices following this block size.

Aji et al (2012) propose a kNN al-
gorithm based on MapReduce with an
assumption that the number of data ob-
jects is relative small and the entire data
set can be replicated to each machine
for query processing. They focus on ef-
ficient processing of a large number of
kNN queries at the same time, which is
done by a single MapReduce job. In the
Map phase, the query objects are parti-
tioned with a grid and assigned to differ-
ent machines according to their grid cell
id. In the Reduce phase, the data set is
replicated to each machine, upon which
a local index (e.g., an R-tree) is built.
The queries are then processed on each
machine independently.

SpatialHadoop (Eldawy and Mokbel
2013)) is a MapReduce framework for

3

spatial query processing. It employs a
two-level index structure that consists of
a global index and a local index. The
global index is built by partitioning the
data space such that every partition can
fit in a block in HDFS. Grid based and
R-tree based indices are implemented in
SpatialHadoop. A grid based index sim-
ply partitions the data space with a uni-
form grid. An R-tree based index creates
an R-tree on a sample of the data set,
where the leaf nodes are used to parti-
tion the data space. Minimum bounding
rectangles (MBR) of the partitions are
stored in the global index which is kept
in the main memory of the master node
of the cluster. A local index is built on
every partition and kept in HDFS. KNN
queries are processed with the two-stage
search space expansion procedure as de-
scribed earlier. First, the partition con-
taining the query object is identified us-
ing the global index, where a kNN query
is computed using the local index. Then,
adjacent partitions are explored until no
more NNs can be found.

AQWA (Aly et all 2015) builds a
global index using the k-d tree (Bentley
19735)) to create the data partitions where
every partition is stored in HDFS as
a block. The k-d tree is stored in the
main memory of the master node. Addi-
tionally, the master node keeps a count
of data objects for each partition. This
enables processing a kNN query with
only one MapReduce job as follows.
The partitions nearest to the query
object ¢ that together contain at least
k objects can be identified from the
k-d tree index and the data counts. The
farthest point of these partitions from
q defines a circle centered at g. Only
partitions within this circle needs to be
fetched for query processing, which can
be done by a single MapReduce job.

4

HBase Based kNN algorithms

HBase is an open-source key-value store
(NoSQL database) built on top of HDFS.
It hides the underlying block storage
from users and hence kNN algorithms
based on it do not have to consider how
to organize the data in blocks.

MD-HBase (Nishimura et al 2011)
is a multidimensional data store built
on HBase. This system stores the
Z-order (Orenstein and Merrett |1984)
value of a data object together with
the data object itself as a key-value
pair in HBase. The key-value pairs are
partitioned by the key range, and every
partition is stored as a region. Data in
HBase is indexed with a BT -tree like
index structure, where the key range
of a region is stored in an index layer
called the META layer. MD-HBase uses
the longest common prefix of the keys
(in the binary form) in a region as the
index key of the region. KNN queries
are processed following a search space
expansion procedure. At start, the region
with an index key that shares the longest
common prefix with the Z-order value
of the query object ¢ is identified, and
an initial kNN answer is computed from
the region. The k' NN found defines a
distance from g where the search should
expand to. This procedure repeats until
no new kNN objects can be found in the
expanded search space.

The KR' index (Hsu et all 2012)
follows a similar kNN query procedure
to that of MD-HBase, but uses an
Rt -tree (Sellis et al||1987) to group the
data objects and Hilbert-order (Lawder
and King/[2001) values of the MBRs of
the tree leaf nodes as index keys.

HGrid (Han and Stroulia|[2013)) uses
another index key formulation, which is
based on a two-level grid structure. The

Jianzhong Qi and Rui Zhang

first level uses a coarse grid where the
grid cells are indexed by the Z-order val-
ues. The second level further partitions
each first-level grid cell with a regular
grid where the cells are indexed by their
row and cell numbers. The key value of
a data object is formed by a concatena-
tion of the index keys of the first and
second level cells that this object locates
at. HGrid has a slightly different ANN
algorithm. The algorithm starts by esti-
mating a region that may contain suffi-
cient data objects to form a kNN answer
based on the data density. Then, an ini-
tial kNN answer is computed from this
region, and the search space expansion
strategy is used to refine the answer.
COWI and CONI (Cahsai et al||2017)
build a quad-tree (Finkel and Bentley
1974) over the data set where the leaf
node numbers are used as the index keys
of the data objects. COWI stores the
non-leaf levels of the quad-tree index
in the memory of a master machine.
The index also contains the number of
data objects in each leaf node, which
is used to help query processing in a
way similar to that of AQWA. CONI
considers the case where the quad-tree is
too large to be held in memory. It stores
the tree as a separate table in HBase. At
query time, the tree index is accessed
first to determine the leaf nodes that
may be relevant for query processing.

Spark Based kNN algorithms

Spark provides an in-memory computa-
tion cluster framework to handle mas-
sive data. A set of data to be processed is
modeled as a resilient distributed dataset
(RDD). RDDs are stored in partitions
across machines in the cluster.

Query Processing — kNN

GeoSpark (Yu et al [2015) encapsu-
lates RDDs with an abstraction named
the spatial resilient distributed dataset
(SRDD) to store spatial data. An SRDD
is partitioned using a uniform grid.
Local indices such as quad-trees may be
created for data objects in the partitions.
KNN query processing on GeoSpark is
done by following the grid based search
space expansion strategy as discussed
earlier.

Simba (Xie et all 2016) uses both
global and local indices. It creates a new
RDD abstraction called the IndexRDD
to store a local index (e.g., an R-tree)
together with the data objects in each
partition, while the partitions are created
by the STR algorithm (Leutenegger
et al|[1997). The global index (e.g., an
R-tree) is created over the partitions
and held in-memory in the master node
for fast query processing. KNN queries
on Simba also follows the search space
expansion strategy, but varies from the
standard procedure slightly by fetching
multiple partitions at start instead of
only the partition containing the query
object. The kK NN from the fetched
partitions is used to define the search
space to be explored next.

Examples of Application

KNN queries have a large variety of
applications in different fields such as
spatio-temporal databases, location-
based services, and data mining, just
to name but a few. In spatial data
management, a typical application is
in digital mapping, e.g., Google Maps,
where kNN queries may be used for
finding the nearest Points-of-Interest
(POI) for query users. A closely related

5

application is in ride-sharing, e.g., Uber,
where kNN queries may be used to find
the nearest cars for car riders. Another
application is in augmented reality
gaming, e.g., Pokémon GO, where kNN
queries may be used to find the nearest
gaming objects of game players.

Future Directions for Research

The techniques discussed above con-
sider stationary data objects whose
locations do not change over time. With
the growing popularity of smart mobile
devices, location-based services for
moving data objects (users) become
prevalent, which call for efficient ANN
algorithms over massive sets of moving
objects (Nutanong et al[2008;|Wang et al
2014; L1 et al|2014, 20165 |Gu et al[2016)
and streaming location data (Koudas
et all 2004). Simply recomputing the
query whenever there is an object loca-
tion update may be infeasible due to the
larger number of objects and updates.
Keeping the query result updated under
such constraints is a challenging task.

KNN queries in higher dimensional
spaces (Jagadish et al|[2005) is another
challenge. As a major application
domain, data mining requires kNN
computation over feature spaces that
may have thousands of dimensions. The
techniques discussed are inapplicable,
because they use spatial indices for
low dimensional spaces. Approximate
kNN algorithms are in need to cope
with the high processing costs in high
dimensional spaces.

6

References

Aji A, Wang F, Saltz JH (2012) Towards build-
ing a high performance spatial query sys-
tem for large scale medical imaging data. In:
Proceedings of the 20th International Con-
ference on Advances in Geographic Infor-
mation Systems (SIGSPATIAL), pp 309-
318

Aly AM, Mahmood AR, Hassan MS, Aref WG,
Ouzzani M, Elmeleegy H, Qadah T (2015)
Agwa: Adaptive query workload aware par-
titioning of big spatial data. Proceedings of
the VLDB Endowment 8(13):2062-2073

Bentley JL (1975) Multidimensional binary
search trees used for associative searching.
Communications of the ACM 18(9):509—
517

Cahsai A, Ntarmos N, Anagnostopoulos C, Tri-
antafillou P (2017) Scaling k-nearest neigh-
bours queries (the right way). In: 2017
IEEE 37th International Conference on Dis-
tributed Computing Systems (ICDCS), pp
1419-1430

Dean J, Ghemawat S (2008) Mapreduce: Sim-
plified data processing on large clusters.
Communications of the ACM 51(1):107—-
113

Eldawy A, Mokbel MF (2013) A demonstra-
tion of spatialhadoop: An efficient mapre-
duce framework for spatial data. Proceed-
ings of the VLDB Endowment 6(12):1230—
1233

Finkel RA, Bentley JL (1974) Quad trees a data
structure for retrieval on composite keys.
Acta Informatica 4(1):1-9

Ghemawat S, Gobioff H, Leung ST (2003) The
google file system. In: Proceedings of the
Nineteenth ACM Symposium on Operating
Systems Principles (SOSP), pp 29-43

Gu Y, Liu G, QiJ, Xu H, Yu G, Zhang R (2016)
The moving K diversified nearest neigh-
bor query. IEEE Transactions on Knowledge
and Data Engineering 28(10):2778-2792

Guttman A (1984) R-trees: A dynamic index
structure for spatial searching. In: Proceed-
ings of the 1984 ACM SIGMOD Interna-
tional Conference on Management of Data
(SIGMOD), pp 47-57

Han D, Stroulia E (2013) Hgrid: A data model
for large geospatial data sets in hbase. In:
2013 IEEE 6th International Conference on
Cloud Computing (CLOUD), pp 910-917

Jianzhong Qi and Rui Zhang

Hjaltason GR, Samet H (1995) Ranking in spa-
tial databases. In: Proceedings of the 4th In-
ternational Symposium on Advances in Spa-
tial Databases (SSD), pp 83-95

Hsu YT, Pan YC, Wei LY, Peng WC, Lee WC
(2012) Key formulation schemes for spatial
index in cloud data managements. In: 2012
IEEE 13th International Conference on Mo-
bile Data Management (MDM), pp 21-26

Jagadish HV, Ooi BC, Tan KL, Yu C, Zhang
R (2005) idistance: An adaptive b+-tree
based indexing method for nearest neighbor
search. ACM Transactions on Database Sys-
tems 30(2):364-397

Koudas N, Ooi BC, Tan KL, Zhang R (2004)
Approximate nn queries on streams with
guaranteed error/performance bounds. In:
Proceedings of the Thirtieth International
Conference on Very Large Data Bases
(VLDB) - Volume 30, pp 804-815

Lawder JK, King PJH (2001) Querying multi-
dimensional data indexed using the hilbert
space-filling curve. SIGMOD Record
30(1):19-24

Leutenegger ST, Lopez MA, Edgington J
(1997) Str: a simple and efficient algorithm
for r-tree packing. In: Proceedings 13th In-
ternational Conference on Data Engineering
(ICDE), pp 497-506

LiC,GuY, QilJ, Yu G, Zhang R, Yi W (2014)
Processing moving knn queries using in-
fluential neighbor sets. Proceedings of the
VLDB Endowment 8(2):113-124

Li C, Gu Y, Qi J, Yu G, Zhang R, Deng Q
(2016) INSQ: an influential neighbor set
based moving knn query processing sys-
tem. In: Proceedings of the 32nd IEEE In-
ternational Conference on Data Engineering
(ICDE), pp 1338-1341

Nishimura S, Das S, Agrawal D, Abbadi
AE (2011) Md-hbase: A scalable multi-
dimensional data infrastructure for location
aware services. In: Proceedings of the 2011
IEEE 12th International Conference on Mo-
bile Data Management (MDM) - Volume
01, pp 7-16

Nutanong S, Zhang R, Tanin E, Kulik L (2008)
The v*-diagram: A query-dependent ap-
proach to moving knn queries. Proceedings
of the VLDB Endowment 1(1):1095-1106

Orenstein JA, Merrett TH (1984) A class of
data structures for associative searching.
In: Proceedings of the 3rd ACM SIGACT-

Query Processing — kNN

SIGMOD Symposium on Principles of
Database Systems (PODS), pp 181-190
Roussopoulos N, Kelley S, Vincent F (1995)
Nearest neighbor queries. In: Proceedings
of the 1995 ACM SIGMOD International
Conference on Management of Data (SIG-
MOD), pp 71-79

Sellis TK, Roussopoulos N, Faloutsos C (1987)
The r+-tree: A dynamic index for multi-
dimensional objects. In: Proceedings of
the 13th International Conference on Very
Large Data Bases (VLDB), pp 507-518

Wang Y, Zhang R, Xu C, Qi J, Gu Y, Yu G
(2014) Continuous visible k nearest neigh-
bor query on moving objects. Information
Systems 44:1-21

Xie D, LiF, Yao B, Li G, Zhou L, Guo M (2016)
Simba: Efficient in-memory spatial analyt-
ics. In: Proceedings of the 2016 SIGMOD

International Conference on Management of
Data (SIGMOD), pp 1071-1085

Yu J, Wu J, Sarwat M (2015) Geospark: a
cluster computing framework for processing
large-scale spatial data. In: Proceedings of
the 23rd SIGSPATIAL International Confer-
ence on Advances in Geographic Informa-
tion Systems (SIGSPATIAL), pp 70:1-70:4

Cross-References

e Indexing
e Query Processing — Comp Geometry
e Query Processing — Joins

	Query Processing – kNN
	Jianzhong Qi and Rui Zhang
	Synonyms
	Definitions
	Overview
	Key Research Findings
	Traditional KNN Algorithms
	Parallel KNN Algorithms

	Examples of Application
	Future Directions for Research
	References
	Cross-References

