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Abstract—Despite claiming to support external memory access,
very few learned indices implement their indices on secondary
storage. It is challenging to extend learned models to secondary
storage while preserving high levels of index performance. In
this paper, we propose a Fast Hybrid Spatial Index with External
Memory Support (FHSIE). Its core idea is to learn a model
which can group spatial objects in a top-down manner with
few parameters. We use a height-balanced hierarchical structure,
which recursively uses simple unsupervised models to group (i.e.,
cluster) spatial objects. We associate the learned structure with a
grid for accurate query processing, and we utilize the relationship
among clusters and grid cells to estimate the grid layout and
optimize grid performance. Extensive experiments on real and
synthetic data sets with more than 200 million points show that
FHSIE is highly efficient and precise no matter where it works,
i.e., in memory or on a disk.

Index Terms—spatial index, learned index, optimized grid
layout, spatial query

I. INTRODUCTION

Spatial indices have become ubiquitous due to an increase
in location-based services, such as digital mapping, the next
Points of Interest (POIs) recommendation, etc. Traditional
approaches like R-trees [1] may incur high storage and query
costs when dealing with large data sets.

Recent studies [2]–[4] propose learned indices that apply
machine learning to construct indices. They formulate an index
structure as a learned function (i.e., an index model) f which
enables mapping the search keys to corresponding physical
positions. To construct learned indices for spatial objects (i.e.,
learned spatial indices), studies [4]–[6] map spatial points to
one-dimensional values which are then indexed with a learned
one-dimensional index. Another study [7] learns the cumula-
tive distribution function (CDF) of the object coordinates in
each dimension respectively to form a learned spatial index.

Generally, learned spatial indices allocate objects to blocks
first, and then they regard the objects’ positions (e.g., block
IDs) as labels to train learned index models. Due to the inher-
ent inaccuracy of supervised machine learning models, query
processing with such learned indices needs to scan the storage
addresses around an area of prediction. These indices may
miss positive objects for window or kNN queries. To alleviate
the inaccuracy problem, RSMI [5] re-labels the objects (i.e.,
allocates the objects according to model prediction) except the
bottom-level, and LISA [4] uses monotonic functions in model
learning. The key disadvantages of these indices are that they

either have inaccuracy prediction at the bottom level which
increases the search range or allocate all objects into the same
subset which incurs high scanning costs for query processing.

Further, most learned spatial indices evaluate their query
algorithms in memory only. LISA [4] puts data blocks on a
hard disk while its learned index models are still in memory.
The in-memory storage limits the index models’ size and
capability which in turn constrains the size of data sets that
can be indexed by the index models.
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Fig. 1: FHSIE index building process overview

Motivated by these limitations, we propose FHSIE. It asso-
ciates a machine learning-based structure with a grid to enable
accurate and fast point and non-point (window and kNN)
queries. FHSIE extends to external memory easily because
of fewer models’ parameters. As Fig. 1 shows, FHSIE adopts
a partitioning model to recursively allocate objects into sub-
data sets, which produces a height-balanced structure. Then,
it splits each bottom-level subset into (one or more) blocks
by the first-dimensional coordinates of the data objects in the
subset. We introduce a simple yet efficient method to estimate
the layout of the grid by fitting the radii of the bottom-level
subsets, which does not require a foreknown query workload
as in existing learned spatial indices [7]–[9]. We then build
many-to-many relationships between cells and bottom-level
subsets for query processing. Note that the grid resolution is
determined by the bounding circles of the bottom-level subsets
which are learned. Thus, our eventual structure is a hybrid
learned and grid-based structure.

Once built, FHSIE processes point queries simply by invok-
ing the models that were learned to allocate objects in subsets
in index building. FHSIE adopts a grid-based method for
window query processing. For kNN queries, FHSIE combines
the point query algorithm and the window query algorithm to
enable efficient query processing.

To move FHSIE onto external memory, we decomposed the
model into three main components: (1) partitioning models of
internal levels, (2) bottom-level partitioning models with block
information (e.g., block IDs and block boundary points), and



(3) cells of the grid. Each internal partitioning model is given
its own block for storing its meta data (e.g., partition center).
Each bottom-level model has a block for storing the meta data
and the data block IDs, plus additional blocks for storing block
boundary points. Each cell stores a list of bottom-level subset
IDs overlapping with the cell, and multiple cells can share a
block if their lists of bottom-level subsets are not too long.

Overall, this paper makes the following contributions:
• We propose an external-memory friendly hybrid spatial

index named FHSIE that works with a grid to learn spatial
partitioning and provide efficient query processing. We
analyze the time benefits and space costs of adding more
levels to help determine the height of the structure.

• We design a simple and efficient grid resolution estimat-
ing algorithm to enhance the query performance of our
grid-based structure.

• We extend FHSIE to external memory to achieve a
scalable structure.

• We design algorithms for point, window and kNN queries
and update processing with FHSIE. Our extensive exper-
iments on real and synthetic data sets, under both in-
memory and external-memory settings, show that FHSIE
can easily index more than 200 million objects.

II. RELATED WORK

We review studies on traditional and learned spatial indices.
Traditional spatial indices: Traditional spatial indices can

be classified into three categories: space-partitioning indices,
data-partitioning indices and mapping-based indices. Space-
partitioning indices recursively partition the data space until
the spatial objects in each region can fit into an index node.
The k-d tree [10] and the quadtree [11] are two classic space-
partitioning indices. Grid-based space partitioning (e.g., Grid
File [12] and its variants [13], [14]) is another simple and
highly effective approach. Data-partitioning indices partition
a data set into subsets such that each subset fits into an
index node. The R-tree [15] and its variants are arguably
the most commonly used data partitioning indices. Mapping-
based indices transform multi-dimensional objects into one-
dimensional values. The mapped values are then indexed using
a one-dimensional index such as the B+-tree [16]. Space-filling
curves that overlay the data space with a grid and associate
each grid cell with a number (i.e., a curve value) are a typical
mapping technique.

Learned spatial indices: Recent studies [6], [8], [17]–
[21] take advantage of machine learning techniques to learn
data/query distribution and optimize the partitioning structures
of traditional spatial indices (e.g., the Qd-tree [17] is an op-
timized version of k-d trees using reinforcement learning), or
they directly predict the storage location of multidimensional
(spatial) objects based on their coordinates. Our study is more
relevant to the second group of studies, i.e., we also use
machine learning techniques to help locate a spatial object
given its coordinates.

The inherent inaccurate nature of prediction-based machine
learning models may result in a large data scan range at query

processing. Besides, existing learned spatial indices [5], [6]
struggle to offer fully accurate query results for non-point (e.g.,
window or kNN) queries, because the search space for a non-
point query is not foreknown and is difficult to define. Prior
studies combine learned methods with additional modules
to address this limitation. For example, LISA [4], Flood [8]
and follow-up studies [7], [9] use grid structures. The issues
with these indices are that they either map spatial objects to
one-dimension values via a fixed grid resolution which may
allocate a large subset of points into a partition or require
known query workloads for index structure optimization. Our
technique avoids such issues by an unsupervised learning
approach to learn data partitions from the data distribution
directly and a grid resolution estimation method to optimize
grid layout based on the cluster radii distribution.

III. FHSIE STRUCTURE

Given a set of n points P = {p1, · · · , pn} in a d-dimensional
space V = [x0

min, x
0
max] × · · · × [xd−1

min, x
d−1
max] ⊆ Rd, where

[xi
min, x

i
max] denotes the data domain in dimension i, we aim

to construct a structure over P for efficient and accuracy point,
window and kNN query processing. For ease of presentation,
we use d = 2 in the following discussion, although our
techniques also apply to any d > 2.

A. Learned Partitioning

FHSIE provides highly efficient and fully accurate queries
and supports external memory-based data storage. To avoid
prediction errors and scanning of multiple data partitions
at query processing, we use unsupervised (i.e., clustering)
models to pack points into subsets (i.e., clusters) based on
their coordinates, although supervised models such as neural
networks (e.g., following RSMI [5]) can also be plugged into
our structure for partition learning.

Clustering model: We use K-means to partition the points
according to their coordinates. The target number of clusters
K1 is determined by the data set size n and the data block
size B which is a system parameter (i.e., K1 = ⌈n/B⌉). This
induces a clustering time complexity of O(T1) = O(ndK1) =
O(nd ⌈n/B⌉), if a single-level data partitioning structure is
constructed, and it suggests a high running time when n is
large. To address this issue, we design a hierarchical structure.

Hierarchical structure: Consider a height-balance struc-
ture where we apply K-Means recursively to partition a data set
with a single K2 value. To obtain n/B bottom-level clusters
with an h-level structure, K2 needs to be h

√
⌈n/B⌉, assuming

that the data points are clustered evenly into the clusters in
each level of the structure. Then, the time complexity to build
such a hierarchical structure is:

O(T2) =

h−1∑
j=0

O(

m∑
i=0

nj
idK2) =

h−1∑
j=0

O(ndK2) = O(hndK2)

(1)
Here, j represents the level number of the hierarchical struc-
ture and i represents the ith partitioning model of the jth level.
Each level has n objects, hence,

∑m
i=0 n

j
idK2 = ndK2. Since

h h
√

⌈n/B⌉ < ⌈n/B⌉ when h > 1, hndK2 = hnd h
√

⌈n/B⌉ <
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Fig. 2: FHSIE index structure.

nd ⌈n/B⌉ = ndK1. This means that using a hierarchical
structure can reduce the index construction cost. However,
the hierarchical structure also has a higher space cost (i.e.,
with extra upper levels in the structure). We aim to make
balance the storage space and the index build time costs by
analyzing the time benefit of adding an extra level to the
structure. In particular, we compute O(T2) for h and h + 1,
denoted by O(T2)h and O(T2)h+1. We heuristically compute
O(T2)h/O(T2)h+1 = (h h

√
⌈n/B⌉)/((h + 1) h+1

√
⌈n/B⌉) and

find the maximum value of h such that (h h
√
⌈n/B⌉)/((h +

1) h+1
√
⌈n/B⌉) = h

h+1 ⌈n/B⌉
1

h(h+1) < 2. We add another level
when the level can bring at least a 2-time speedup for index
building heuristically. The resultant value of h is used as the
target height of our structure.

After choosing the optimal height, we recursively partition
points into subsets until the target height is reached, where
each data point p is then assigned to a bottom-level subset.

The unsupervised models cannot guarantee that each
bottom-level subset fits the size of a data block (i.e., B). When
a bottom-level subset has more than B points, we sort the
points in the subset by their coordinates in the first dimension
and split them into blocks of size B. We record the coordinate
of the first point in the first dimension for each block as the
split point of the block.

Grid: We further associate a regular grid to our structure to
build many-to-many relationships between cells of the grid
(i.e., cells) and bottom-level subsets such that it is more
efficient to find the subsets intersecting with a given query.
For each cell, we maintain a list of bottom-level subsets
overlapping with the cell. Fig. 2 shows the overall structure
of FHSIE.

Overall, each internal node of FHSIE contains a list of
cluster centers (i.e., sub-models’ parameters for locating the
child nodes), while each bottom-level node contains a list of
cluster centers and the corresponding cluster radii. Further, the
IDs and split points of the blocks of each bottom-level cluster
are stored with the bottom-level cluster together with the IDs
of the cells overlapped by each such cluster.

B. Estimating the Optimal Grid Layout

The grid layout has a substantial impact on the query
performance of FHSIE because our window and kNN query
algorithms access the cells that overlap with the query win-
dows and then scan the clusters overlapping with the cells
to compute the final query results. Small cells may require
processing a lot of cells in a query window, while large cells
may each overlaps with many clusters which also can incur
high cluster scanning costs.

We determine the side length of the cell heuristically. We
represent each cluster as a circle. When a cell’s side length
is greater than a cluster’s radius, a cluster can overlap with
at most three cells in one dimension. Hence, we use the radii
of the bottom-level clusters to estimate the side length of the
cells to reduce cluster accesses for query processing. To avoid
the negative impact of extremely large clusters, we set the side
length of the cells, denoted by cw, as the top 5% largest of
cluster radius. Once the cw is determined, we generate the
cells by dividing each dimension of the data space Xw into
θw = ⌊ (Xw

max −Xmin)
w/cw⌋ columns.

Construction cost: Note that FHSIE has three cost com-
ponents. The first is the sub-model training (i.e., partition
learning) which we discussed earlier. Suppose that in training,
at most E epochs (i.e., E K-Means runs) are executed for
each sub-model. The total training time is O(ndh h

√
⌈n/B⌉E).

The second is the sorting cost for all points in each bottom-
level cluster which is bounded by O(n log n). The third is grid
preparation cost. This step needs to scan ⌈n/B⌉ clusters. Thus,
the time cost is O(⌈n/B⌉). Overall, the time cost for FHSIE
construction is O(ndh h

√
⌈n/B⌉E + n log n+ ⌈n/B⌉)

IV. QUERY PROCESSING

This section presents algorithms to process point, window
and kNN queries using our structure.

Point query. Given a query point q, we recursively call
the partitioning models from the root model M0,0 until the
bottom-level model to locate the cluster containing q, denoted
by clsj . Then, we locate the blocks (denoted by lower and
upper bounds of their IDs) of clsj that correspond to the range



that encloses the dimension-0 coordinate of q (i.e., q.coor0,
the coordinate of q in the first dimension), which is done by
a binary search over the split points of clsj . We scan these
blocks (usually only one block), and we return point p in such
blocks if it has the same coordinates as q.

Window query. For window queries, we use the grid struc-
ture of FHSIE to guide the search instead of using the learned
models. This is because the models may not have learned the
query window boundaries and hence cannot accurately predict
the clusters that overlap with a query window.

Given a window query q, as illustrated by the red rectangle
in Fig. 3a, we first compute two bounding points, i.e., the
bottom-left corner ql and the top-right corner qh. Since we use
a regular gird, it is easy to compute the grid cells overlapped
by q, using the coordinates of ql and qh, and the side length of
the cells cw (Section III-B). We store such cells in a list listce
and take all unique clusters from the cells in listce, which
form a list of cluster candidates listcl. Then, for every cluster
candidate cls ∈ listcl, we filter it by the (Euclidean) distance
between its centre cls.c and the query q. There are three
relationships, including non-overlapping, partially overlapping
and enclosing. We (1) ignore the non-overlapping clusters
(cf. circle 1 in Fig. 3a); (2) add all points in enclosing clusters
into the result set S and (3) scan partially overlapping clusters
to identify qualified points and add them into S. (cf. circle 0
in Fig. 3a). We return S as the query result when all clusters
in listcl have been processed.
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Fig. 3: Window and kNN query examples

KNN Query. Our kNN query algorithm combines a point
query with window queries of increasing sizes to compute the
query answer. Given a query point q and a query parameter
k, we first run a point query using q as the query point to fast
initiate a kNN candidate set (i.e., all points in the predicted
block). We take the distance between q and the kth nearest
neighbor in the predicted block as our initial search radius
sr to form a window query centered at q. A boundary case
is when the predicted block contains only one point, which
shares the same coordinates with q. In this case, we estimate
sr by k/n, i.e., sr = (k/n)1/d · (x0max − x0min). We then run
window queries repeatedly and increase the search radius by a
factor of (k/|Ŝ|+ 0.5)1/d iteratively to ensure no false kNN
dismissals (cf. Fig. 3b).

Since our window query algorithm is based on the grid
structure which offers an accurate result, our kNN query
algorithm also returns an accurate result.

V. UPDATE HANDLING

Our FHSIE structure supports insertions and deletions.
Given a point q to be inserted, we first run a point query to
locate the cluster clsj and the block clsj .blockb to host q. If
the block is not full, we simply insert q into the block, and we
update the split point of clsj .blockb if necessary. Otherwise,
we split clsj .blockb into two blocks each containing B/2
points, insert q into one of the two blocks based on its
dimension-0 coordinate, and update the split points of clsj
accordingly. After either case, we need to check if adding q
to clsj has enlarged the radius of the bottom-level cluster. If so,
we update the cluster radius clsj .r and add the cluster to the
cluster lists of the cells overlapping with the enlarged cluster.
During this process, the internal nodes’ parameters would not
be updated.

For point deletion, we run a point query to locate the point
and remove it from its block (and hence cluster). We shrink
the bottom-level cluster radius and update the cluster lists of
the overlapping cells accordingly.

VI. EXTERNAL MEMORY IMPLEMENTATION

We next extend FHSIE to external memory. There are three
main components in FHSIE: (1) internal partitioning models,
(2) bottom-level partitioning models (with cluster and block
information), and (3) cells of the grid. Each component can be
saved as blocks in external memory, such that query algorithms
in Section IV apply directly.

To support updates, in particular, insertions, takes further
consideration. Since the updates mainly impact the bottom-
level clusters, we focus on such clusters and present three
block storage modes for different storage spaces and update
efficiency (Fig. 4).

Internal Sub-models Leaf Nodes Cells Data BlockOverall:

#$%&'%(): Cluster Info Block IDs Split Values

#$%&'%()*: Cluster Info + Begin Block ID + Offset Split Values

#$%&'%+: Cluster Info + Begin Block ID + Offset + Split Values

Fig. 4: FHSIE external memory implementation

FHSIEMx: The first storage mode computes the maximum
number of blocks needed for any bottom-level cluster and
allocates blocks for cluster information (e.g., centers and
radii), block IDs and block split points, respectively. This
storage mode has a high space overhead, but it is insertion
friendly as there are pre-allocated empty blocks.

FHSIEMxC: The second storage mode uses data block offset
values to reduce the storage required for the block IDs. It
stores the first data block ID and an offset value of all data
blocks belonging to the cluster (all such blocks are stored
consecutively). During updates, the offset values need to be
updated after data insertions or deletions.

FHSIET: The third storage mode stores all meta data of a
bottom-level cluster compactly in a few pre-allocated blocks.
Only any remaining space of the pre-allocated blocks is used
to record insertions of new data blocks. This approach has the
smallest index size but suffers from higher update costs.



When a large volume of data needs to be inserted, FHSIEMx
is the best choice. When there are no updates, FHSIET is more
suitable. FHSIEMxC aims to balance the update and storage
costs and may be used for scenarios with a moderate update
frequency. In all three cases, an index overhaul is needed when
the pre-allocated blocks to store the points or data block IDs
are exhausted.

VII. EXPERIMENTS

All experiments are run on a desktop computer with a 3.20
GHz Inter i9 CPU, 64 GB memory, a 512 GB solid-state drive
and a 1 TB SATA hard drive.

Datasets. We use two real-world data sets Tiger [22]
and OSM [23] and synthetic data sets of three different
distributions. Tiger consists of rectangles that represent geo-
graphical features in 18 Eastern states of the USA. We use the
centroid of the rectangles and remove duplicate points, where
16,832,907 points remain in the data set. OSM is extracted
from OpenStreetMap covering the USA. We randomly sample
100 million points to form the data set.

We generate synthetic data sets with up to 256 million points
following Uniform, Normal and Skewed distributions in a
unit square, following HRR [24], [25].

Competitors. We compare FHSIE with the Grid [12], KDB
Tree [26], HRR [24], RSMI [5] and LISA [4]. Except for
RSMI and LISA, other competitors are traditional spatial
indices. RSMI and LISA are two learned spatial indices with
released source code. For Grid, We build a

√
n/B ×

√
n/B

regular grid, allocate points to grid cells, and store them in
blocks of size B.

The traditional indices are implemented in C++. We use
RSMI’s released code based on C++ and PyTorch 1.4. We use
LISA’s released code which is based on Python. We implement
FHSIE in C++ and Python separately to compare with these
baseline methods. We run the algorithms on the CPU.

We first compare using neural networks (following
RSMI [5]) with using K-Means for data partitioning. The
results show that K-Means suits our structure better and yields
lower query times. Hence, we use K-Means in the rest of the
experiments. We set the block size B = 100 by default.

TABLE I: Impact of height
Height h=2 h=3 h=4 h=5
Construction time (s) 4,033 733 350 341
Point query (µs) 1.50 0.29 0.18 0.16

Table I shows that each additional layer brings decreased
benefits as the height of FHSIE increases (on Skewed dataset
under default setting), which is consistent with the analysis
of Section III. Hence, we use the analysis to compute tree
heights, which results in use 3 and 4 when n ≤ 8 million and
n ≥ 16 million, respectively.

Other parameter settings are summarized in Table II where
the default settings are in boldface.

A. Experiment Results

We start with the results under in-memory settings, includ-
ing the index construction times, point, window and kNN

TABLE II: Parameters
Parameter Values
Distribution Uniform, Normal, Skewed
Data set size (million) 2, 4, 8, 16, 32, 64, 128, 256
Query window size (%) 0.01, 0.04, 0.09, 0.16, 0.25
k (for kNN queries) 1, 5, 25, 50, 75
Data insertion ratio (%) 0, 10, 25, 50, 75, 100

query times, and update times. Then, we will show query times
on external memory. Here, due to space limits, we focus on
the results of the indices implemented with C++, i.e., Grid,
KDB, HRR, RSMI and our FHSIE.
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Fig. 5: Index size and construction time vs. distribution

1) Index Size and Construction Time: As Fig. 5a shows, our
FHSIE index has the smallest size across data sets of different
distributions, which attributes to its fewer model parameters
(i.e., just the cluster centres). Both learned indices RSMI and
our FHSIE are slower than the traditional indices to build.
Importantly, FHSIE takes an unsupervised approach which
makes it almost one order of magnitude faster than RSMI
(cf. Fig. 5b).
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2) Point query: We query every data point in a data set and
report the average response time and the number of data block
accesses per query. The strength of FHSIE on point queries
comes from its hierarchical structure and inherent error-free
predictions. It takes only 3 or 4 model invocations and a
binary search to locate the block address. Since the number of
blocks per bottom-level cluster of FHSIE is very small both
on average and in the worst case (e.g., 2.04 and 29 on OSM),
FHSIE achieves the lowest response time and the number of
block accesses as shown in Fig. 6 (e.g., 0.24 µs and 1.01
block accesses vs. 0.78 µs and 1.49 block accesses on OSM
comparing with RSMI).

3) Window query: We generate 1,000 window queries fol-
lowing the distribution of each data set and report the average
query performance. As Fig. 7a shows, FHSIE is also the fastest
for window queries, with at least 1.8 times (0.018ms vs.
0.034ms for FHSIE and Grid on Uniform) and up to 10.94
times speedup (4.39ms vs. 48.01ms for FHSIE and HRR on
OSM). This advantage attributes to the use of a grid structure



to efficiently identify data clusters that overlap with the query
window. Note that FHSIE not only outperforms RSMI but also
offers fully accurate answers as traditional indices do, while
RSMI only offers approximate answers.

Results where we vary the data set size, the query window
size, and the number of data updates as well as on kNN queries
show similarity comparison patterns. Such results are omitted.
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Fig. 7: Window query vs. distribution vs. window size

4) Comparison against LISA: To compare with LISA, we
generate 1,000 window queries for each aspect ratio (i.e., from
0.25 to 4) following the data set distribution, respectively (i.e.,
5,000 window queries in total).

Table III summarizes the results. We see that FHSIE is faster
than LISA on both synthetic and real data. Meanwhile, FHSIE
offers exact query results while LISA may miss a few points.

TABLE III: Window Query Performance against LISA
Skewed OSM

Model Response time (ms) Recall Response time (ms) Recall
LISA 0.26 99.99% 30.75 99.88%
FHSIE 0.17 100% 12.37 100%

5) External Memory Queries: Next, we compare external-
memory based implementation of Grid, KDB, HRR and
FHSIE. RSMI is omitted since it only has an in-memory
implementation. We run experiments with 256 million points.

We consider all three storage modes of FHSIE (Section VI).
Table IV shows the number of blocks taken by FHSIE using
the three storage modes, respectively. In what follows, we use
FHSIEMxC for comparisons with the baselines.

TABLE IV: Storage Consumption on OSM
Storage mode FHSIEMx FHSIEMxC FHSIET
Number of blocks 2,947,198 2,914,430 2,883,518

Index storage costs: As Fig. 8a shows, the storage cost
of FHSIE is consistently smaller than Grid and smaller than
those of KDB on most data sets except for OSM which is
quite skewed, where FHSIE forms more blocks.

Window queries: On external memory, FHSIE performs
similarly to traditional indices for window queries (“WQ”)
under both settings of placing only data blocks on external
memory (“data”) and placing both data and index blocks on
external memory (“full”), as Figs. 8b to 8e show. This is
because FHSIE uses only dimension-0 coordinates to prune
the data blocks in the final pruning step, which suffers in the
number of block accesses compared with using MBRs by the
traditional indices. Since block access on external memory
has a higher cost, the overall query response time of FHSIE
now also gets impacted. However, we argue that FHSIE still
offers competitive performance in this case, which confirms
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Fig. 8: External-memory index performance

the general applicability of FHSIE under both in-memory and
external-memory settings.

Like above, we omit results on the other query settings.

VIII. CONCLUSIONS

We proposed FHSIE – a fast hybrid spatial index with
external memory support. To construct FHSIE, we recursively
invoke clustering models to group spatial objects in a top-down
manner and construct a height-balanced hierarchical structure.
Then, we associate a grid structure to the bottom-level data
clusters, which results in a hybrid learned-and-grid structure
for accurate query processing. We further extend FHSIE to
an external-memory based implementation. Extensive exper-
iments on real and synthetic data sets with more than 200
million points show that FHSIE is highly efficient and precise
no matter where it runs, i.e., in memory or on a disk. It
outperforms state-of-the-art learned spatial indices by up to
an order of magnitude in query times.

Though FHSIE is faster than traditional indices at the query
processing, it is more time-consuming to build. When a large
number of indices needs to be built in a short time, traditional
indices may still be preferable. In the future, we plan to extend
FHSIE to more types of queries, such as continuous spatial
queries [27], e.g., to help report users or points of interest
nearby continuously.
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