
Parallel Skyline Processing Using Space Pruning on GPU
Chuanwen Li

College of Computer Science and Engineering

Northeastern University, China

lichuanwen@mail.neu.edu.cn

Yu Gu

College of Computer Science and Engineering

Northeastern University, China

guyu@mail.neu.edu.cn

Jianzhong Qi

School of Computing and Information Systems

The University of Melbourne, Australia

jianzhong.qi@unimelb.edu.au

Ge Yu

College of Computer Science and Engineering

Northeastern University, China

yuge@mail.neu.edu.cn

ABSTRACT
Skyline computation is an essential database operation that has

many applications in multi-criteria decision making scenarios such

as recommender systems. Existing algorithms have focused on

checking point domination, which lack efficiency over large datasets.

We propose a grid-based structure that enables grid cell domination

checks. We show that only a small constant number of cells need to

be checked which is independent from the number of data points.

Our structure also enables parallel processing. We thus obtain a

highly efficient parallel skyline algorithm named SkyCell, taking

advantage of the parallelization power of graphics processing units.

Experimental results confirm the effectiveness and efficiency of

SkyCell – it outperforms state-of-the-art algorithms consistently

and by up to over two orders of magnitude in the computation time.

CCS CONCEPTS
• Information systems→ Location based services; • Comput-
ing methodologies→ Parallel computing methodologies.

KEYWORDS
skyline, parallel computing, spatial query, GPU

ACM Reference Format:
Chuanwen Li, Yu Gu, Jianzhong Qi, and Ge Yu. 2022. Parallel Skyline Pro-

cessing Using Space Pruning on GPU. In Proceedings of the 31st ACM Inter-
national Conference on Information and Knowledge Management (CIKM ’22),
October 17–21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
The skyline query is an essential query in multi-criteria decision

making applications such as recommender systems and business

management (e.g., to compute the Pareto frontier) [3, 6, 9, 13, 20, 32].
It retrieves data points that are not dominated by any other points in
a dataset. Suppose each point has d attributes. A point pi dominates

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00

https://doi.org/10.1145/XXXXXX.XXXXXX

Table 1: A Restaurant Recommendation Example

Restaurant Average Cost Distance Rating Rank

r1 $12 9 km 3

r2 $8 3 km 2

r3 $10 17 km 4

r4 $26 8 km 1

another point pj if pi is better than pj in at least one attribute and is

as good as pj in all other attributes. The “better than” relationship

is often quantified as having a smaller attribute value. Consider

recommending restaurants to a user. In Table 1, there are four

restaurants each with three attributes: average cost per person,

distance to the user, and rating rank (1 is the top rank). Restaurants

r1 and r3 are dominated by r2, as they are more expensive, farther

away, and rated lower. Neither r2 nor r4 is dominated. They are the

skyline points, which can be used for recommendation.

In recent years, the rapid growth of online services has accu-

mulated a large volume of data and a large user base which brings

new challenges to skyline queries. Computing skyline queries to

make recommendations from such large item sets requires highly

efficient query algorithms, especially when the computation needs

to be done online based on users’ different search requirements

and contextual features such as location, financial capacity, and

personal preferences. Existing algorithms suffer in efficiency for

such application scenarios. The state-of-the-art sequential skyline

algorithm [20] takes 5 seconds (amortized) to process a skyline

query on just 2 million 5-dimensional points (cf. Section 6), fail-

ing to reach the two-second response time requirement [22]. More

efficient algorithms are in need, which is addressed in this paper.

On-going efforts [3, 4, 12, 21, 30, 36] have beenmade to parallelize

skyline computation. Graphics processing units (GPU) are used for

their strong parallelization capability. Existing algorithms mostly

fall into two groups: sorting-based and partitioning-based [38]. How-
ever, algorithms in both groups are facing difficulties when paral-

lelized. Most GPU-powered sorting-based skyline algorithms [2, 8]

are adaptations of their sequential counterparts. These algorithms

also check all points to grow the skyline buffer, which hinders their

efficiency. The state-of-the-art sorting-based algorithm [20] turns

back to sequential processing. This algorithm, however, requires

expensive pre-computations and may suffer when there are up-

dates. Partitioning-based algorithms have recursive partitioning

procedures [17, 18, 25, 34] or tree-like structures to reduce point

domination checks [3]. They are intrinsically difficult for GPU pro-

cessing. To avoid such issues, the state-of-the-art partitioning-based

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

skyline algorithm uses GPU with a grid partition [3]. It partitions

each dimension into 16 segments regardless of the dataset size,

which cannot fully exploit the GPU throughput and may cause

branch divergence of GPU warps. Branch divergence occurs when

some threads in a warp (which often consists of 32 threads) idle

and wait for the other threads in the same warp to execute different

conditional branches. This negatively impacts the GPU utility and

computation efficiency.

A key limitation in the existing algorithms is that they mostly

check for point domination to identify the skyline points. Although

some approaches claim to use region-based pruning, their regions

are still defined by points (cf. Section 7). These approaches lack

efficiency as the number of data points becomes large. For example,

computing the skyline points from an OpenStreetMap dataset of 1.6

billion points takes some 10 seconds even with the state-of-the-art

GPU-based parallel algorithm [3] (cf. Section 6). This hinders user

experience for online skyline queries as discussed above. We aim

to achieve sub-second query times even on such large datasets.

We observe that the data space can be partitioned into regions

such that domination checks can be performed among the regions.

This enables pruning by regions without examining the points in

each region. We show that only a small constant number of (non-

dominated) regions contain skyline points. We thus propose an

efficient algorithm to compute such regions and hence the skyline

points, which scales much better with the dataset size.

We adopt a space pruning idea, which partition the data space

with a regular grid and check for domination between the grid cells

based on their relative position. Intuitively, the cells with smaller

coordinates dominate those with larger ones. We show that only

cells that are not dominated contain skyline points. Such cells are

named the candidate cells.
We prove that the number of candidate cells is bounded by the

data dimensionality and the grid granularity, and it is independent
of the dataset size. We further show that a candidate cell can be

partitioned recursively to form smaller candidate cells (in grids

of larger granularities). As the grid granularity increases, each

candidate cell becomes smaller, and the portion of the space covered

by candidate cells decreases monotonically. For an 8 × 8 grid in

2-dimensional Euclidean space, there are 15 candidate cells (i.e.,

23% of the 64 cells). When the granularity reaches 32 × 32, there

are only 63 candidate cells (i.e., 6.2% of the 1,024 cells).

Based on these key properties, we proposed a cell-based skyline
algorithm named SkyCell that progressively computes the candi-

date cells in grids with increasing granularities, until each candidate

cell contains only a small number of points. From the resultant cells,

skyline points can be computed efficiently with existing point dom-

ination based algorithms (e.g., sort-first skyline [9]).

SkyCell processes each candidate cell independently. This offers

an important opportunity to improve the algorithm efficiency with

parallelization.We thus further propose a parallel SkyCell algorithm

using GPU. To take full advantage of the parallelization power of

GPU, we carefully design our algorithm to avoid warp divergence,

and we arrange the data to promote coalesced memory access. We

thus achieve a highly efficient algorithm that outperforms state-of-

the-art parallel skyline algorithms by up to two orders of magnitude.

In summary, we make the following contributions:

• We propose a novel approach for skyline computation based

on grid partitioning and candidate cells. By using cell domina-

tion checks, our approach significantly reduces the number

of domination checks and has a much better scalability.

• We derive a theoretical bound on the number of candidate

cells to be examined. We further show how such cells can be

recursively partitioned to yield smaller cells without missing

any skyline points. Based on these, we propose a skyline

algorithm named SkyCell.

• Since candidate cells can be computed independently, we fur-

ther propose a parallel SkyCell algorithm, taking full advan-

tage of GPU parallelization. Our algorithms do not require

any pre-computation and hence are robust to data updates.

• We perform cost analysis and extensive experiments. The

results confirm the superiority of our algorithm over the

state-of-the-art skyline algorithms, which reduces the query

times by over an order of magnitude in many cases.

2 MULTI-LAYER GRID PARTITIONING
We start with a problem statement and our core data structure.

Problem statement. Given a set P = {p1,p2, . . . ,pn } of n
points ind-dimensional (d > 1) Euclidean space, we aim to compute

the subset S ⊂ P of all skyline points in P, i.e., the skyline set of P.
Below, we define skyline points and key concepts.

Skyline points are defined based on point domination. Let p[k]
be the coordinate of a point p in dimension k .

Definition 1. (Point domination) We say that a point pi dom-

inates another point pj , denoted by pi ≺ pj , if ∀k ∈ [0,d),pi [k] ≤
pj [k] and ∃l ∈ [0,d),pi [l] < pj [l].

Definition 2. (Skyline point) We call pi ∈ P a skyline point

of P if pi is not dominated by any other point pj ∈ P, i.e., ∄pj ∈
P,pj ≺ pi .

We check for domination between space partitions to enable

fast search space pruning. If a partition is dominated, all points

inside can be pruned. Next, we describe our structure to enable this

partition-based pruning.

2.1 Proposed Grid Structure
We consider the space as a d-dimensional unit hyper-cube and

partition it with a multi-layer grid. The top grid layer (Layer 0) has

the coarsest granularity (i.e., the entire data space is a cell), while

the bottom layer (Layer ρ, where ρ is a system parameter) has the

finest granularity. Each layer is a regular grid, with 2
i ·d cells in

Layer i . In Fig. 1, d = 2, and we have 2
0×2 = 1 to 2

4×2 = 256 cells

for Layers 0 to 4. Each layer has the same unit size. Layer 4 has

been zoomed in for better visibility.

Let the set of cells in Layer i be Ci . A cell c = Ci [cld−1, . . . , cl0]
is indexed by its column numbers, i.e., it is at columns cld−1, . . . , cl0
in dimensions d − 1, . . . , 0, respectively. We use c[k] to denote the

index (column number) of c in dimension k : c[k] = clk . In Fig. 1,

cell c = C4[10, 1] in Layer 4 is at column 10 in dimension 1 (the

vertical dimension) and column 1 in dimension 0 (the horizontal

dimension), i.e., c[1] = 10 and c[0] = 1.

Parallel Skyline Processing Using Space Pruning on GPU CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

∗

∗
•
• •

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•
•

•

•

•

∗
Layer 0

∗

∗

∗

Layer 1

∗

∗
∗

∗

Layer 2

∗

∗
∗∗
∗
∗

Layer 3

C3[5, 0]

∗

∗

∗ ∗ ∗

∗

∗ ∗

•
• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Layer 4

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15cl0 =

=

cl1C4[1, 6]

C4[4, 6]

C4[4, 4]

C4[2, 1]

C4[14, 4]

C4[10, 1]

Λ0 = C4[−1, 15]

Λ1

Figure 1: Example of multi-layered data space partitioning
(the black points denote data points)

Since we consider points in a unit hyper-cube [0, 1)d , in Layer i ,
the cell c to which point p belongs is calculated by:

c = Ci [⌊p[d − 1] · 2
i ⌋, . . . , ⌊p[0] · 2i ⌋]. (1)

For example, in Fig. 1, pointp = (0.63, 0.08) belongs to cellC3[⌊0.63×
2
3⌋, ⌊0.08×23⌋] = C3[5, 0] in Layer 3 and cell C4[⌊0.63×2

4⌋, ⌊0.08×

2
4⌋] = C4[10, 1] in Layer 4.

2.2 Candidate Cells
Our skyline algorithm only needs to consider a subset of the grid

cells in each layer, which are named the candidate cells and are

defined based on the cell domination relationship.

Cell domination. In what follows, when multiple cells are used,
they refer to cells of the same layer, unless otherwise stated.

Definition 3. (Cell domination) We say that cell ci dominates

cell c j , denoted by ci ≺ c j , if ci is not empty (i.e., enclosing points in
P), and the index of ci is less than that of c j in each dimension:

c , ∅ ∧ ∀k ∈ [0,d), ci [k] < c j [k] (2)

We say that ci partially dominates c j , denoted by ci ⪯ c j , if ci is not
empty, the index of ci equals to that of c j in at least one dimension,
and the index of ci is less than that of c j in all other dimensions:

c , ∅ ∧ ∀k ∈ [0,d), ci [k] ≤ c j [k] ∧ ∃k ∈ [0,d), ci [k] = c j [k] (3)

We say ci ≾ c j if ci dominates or partially dominates c j :

ci ≾ c j ⇐⇒ ci ≺ c j ∨ ci ⪯ c j (4)

By definition, a cell partially dominates itself, i. e., c ≾ c , and the

“≾” relationship is transitive:

Lemma 1. If ci ≾ c j and c j ≾ ck , then ci ≾ ck .

Proof. Straightforward based on Definition 3. □

By domination, there are three types of cells in each layer.

(1) Dominated cells – cells that are dominated by some other cells,

e.g., C4[14, 4] in Fig. 1 is dominated by C4[10, 1] which is non-empty

(the dot in the cell represents a data point).

(2) Irrelevant cells – cells that are neither dominated nor partially

dominated, and do not dominate other cells, e.g., C4[2, 1] in Fig. 1.

These are empty cells with small column numbers. Note that irrele-

vant cells are all empty, but empty cells are not all irrelevant (i.e.,

empty cells may also be dominated cells).

(3) Candidate cells – cells that do not belong to the two types

above, e.g., C4[10, 1] in Fig. 1.

No skyline points can be found from any cell c j dominated by

another cell ci , since points in ci must dominate those in c j . Thus,
we can only find skyline points from the candidate cells.

Key cells.Next, we define candidate cells formally, starting with

a special subset of cells called the key cells.

Definition 4. (Key cell) We call a non-empty cell that is neither
dominated nor partially dominated by any other cell a key cell.

We denote the set of all key cells in layer i asKCi . In Fig. 1, cells

marked by a “∗” are the key cells. Analogically, in a 2D scenario,

think of each grid layer (e.g., layer 4) as a beach image where the

empty cells at the bottom-left corner are pixels of the water. Then,

the key cells are the pixels of the vertices of the beach line.

Any cell that is either empty or dominated by a key cell (cf. white

cells in Fig. 1) cannot contain skyline points, and it is not a candidate

cell. The remaining non-key cells each must be partially dominated

by some key cell. We denote the set of cells partially dominated by

a key cell c but not dominated by other key cells as PDC (c).

PDC (c) =
{
c ′ ��� c ⪯ c ′ ∧ ∄c ′′ ∈ KC, c ′′ ≺ c ′

}
. (5)

We call a cell in PDC (c) a partially dominated cell of c . In Fig. 1, the
gray cells in the same row or column of a key cell are those partially

dominated by the key cell. Such a cell may be partially dominated

by multiple key cells, but this will not impact discussions below.

Candidate cells. Continue with the beach image analogy. The

set of all partially dominated cells, together with all the key cells,

form the beach line, which are the candidate cells.

Definition 5. (Candidate cell) The set of candidate cells of the
i-th layer, denoted by CCi , contains and only contains the key cells
in KCi and their partially dominated cells. Formally,

CCi = KCi ∪
⋃

c ∈K Ci

PDC (c). (6)

Next, we detail our skyline algorithm based on candidate cells.

3 THE SKYCELL ALGORITHM
Our skyline query algorithm named SkyCell is based on the fol-

lowing observation. All candidate cells of Layer i + 1, i.e., CCi+1,
can be generated from the set of candidate cells of Layer i , i.e., CCi .

Intuitively, each cell in Layer i is partitioned evenly into 2
d
cells

in Layer i + 1. As Fig. 1 shows, Layer 0 has only 1 cell, which is

partitioned into 2
d = 2

2 = 4 cells in Layer 1. If a cell c j is dominated

by another cell ck in Layer i , any cell in Layer i + 1 resulted from

partitioning c j must still be dominated by some cell resulted from

partitioning ck . Thus, only non-fully dominated cells (i.e., the can-

didate cells CCi) in Layer i can yield candidate cells in Layer i + 1.
In Fig. 1, the dotted cells in any layer all come from partitioning of

the gray cell in the previous layer, and all the candidate (gray) cells

are dotted, e.g., the three gray cells at the top-left corner of Layer 2

come from the top-left gray cell of Layer 1.

Based the observation above, our SkyCell algorithm starts from

CC0 which is just C0, i.e., a single cell containing the unit hyper-

cube data space. It then iteratively computes CCi+1 from CCi .

When i increases, the area covered by candidate cells shrinks (cf.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

the gray area from Layer 0 to Layer 3 in Fig. 1), since some of the

cells in Layer i + 1 resulted from partitioning a candidate cell in

Layer i may become dominated and do not qualify to be candidate

cells any more. The number of points covered by the candidate cells,

which are skyline candidates as discussed earlier, also decreases. In

an extreme case, we can terminate SkyCell when every candidate

cell contains at most one point, to minimize the number of skyline

candidates. However, this may lead to too many grid layers and

candidate cells to be computed which can be expensive. To balance

the workload of candidate cell computation and final skyline point

checking, we terminate when i reaches ρ which is a partition ratio
parameter and will be chosen empirically.

Algorithm 1: SkyCell
input : Dataset P
output : Skyline set S

1 Compute Cρ to C0 from P

2 R0 ← C0[0, . . . , 0]

3 for i = 0 to ρ − 1 do
4 Ri+1 ←ShrinkKeyCells(P, i , Ri , Ci+1)
5 return RefineSkyline(P, Rρ)

The algorithm.We summarize SkyCell in Algorithm 1. SkyCell

first computes a ρ-layer grid partitioning over dataset P (Line 1).

We store the points in an array and sort them according to the

Layer-ρ cells to which they belong. Any cell ordering can be used,

e.g., the Z-order [19]. We just require points from the same cell to

occupy a consecutive segment of the array. Then, for each Layer-ρ
cell, we record the starting and ending array indices of the points

in the cell. An empty cell has the same starting and ending array

indices. This constructs Cρ of our grid structure.

We construct Cρ−1 from Cρ . For each cell c ∈ Cρ−1, we record
whether it is non-empty (i.e., encloses data points), which will be

used for key cell testing later. This is done by a simple scan over the

starting and ending array indices (which can be calculated easily) of

the cells in Cρ resulted from partitioning c . Similarly, we construct

the other layers from Cρ−2 back to C0 (Line 1).

Then, we compute a set Ri of cells of interest for each Layer i
based on the observation outlined above with a sub-procedure

named ShrinkKeyCells (Lines 2 to 4, detailed later; we call it

ShrinkKeyCells because we compute the key cells as the media

to compute the candidate cells.). For our parallel algorithm, Ri
contains key cells and candidate cells (Ri = {K Ci ,CCi }). Here, as

mentioned above, C0 has only one cell (i.e., the entire data space),

which is used as KC0 and CC0.

When Rρ is computed, KCρ is also computed. We use KCρ
to compute CCρ using a procedure similar to ShrinkKeyCells
that computes candidate cells from key cells (details omitted for

succinctness). We then compute and return the skyline points from

points in CCρ as the result. As points from candidate cells partially

dominated by different key cells do not dominate each other, the

set of candidate cells partially dominated by different key cells can

be processed in parallel. We use the sort-first skyline [9] algorithm
to compute skyline points in each set (other algorithms may also

apply). These steps are summarized in RefineSkyline (Line 5).
In the skyline point computation step, a cell may be partially

dominated by more than one key cell. A point in such a cell c is

Algorithm 2: ShrinkKeyCells (Parallel)
input : Dataset P, current layer number i , CCi , K Ci , Cδ+1
output : Candidate cells CCi+1, key cells K Ci+1

1 Assign sub_cell (CCi) to pointers o and u for nodes in T [0]

2 form = 0 to d − 2 do
3 Reorder T [0] by rotation-m
4 if m , 0 then
5 for j = 0 to |sub_cell(CCi) | par-do
6 T [0, j].u ← T [0, j].l
7 for j = 1 to T .h do
8 for k = 0 to 2

T .h−j − 1 par-do
9 T [j, k].u ← dom2 (T [j − 1, 2k].u, T [j − 1, 2k + 1].u)
10 for j = T .h to 0 do
11 for k = 0 to 2

T .h−j − 1 par-do
12 if k = 0 then
13 T [j, k].l ← T [j, 0].u
14 else if k is odd then
15 T [j, k].l ← T [j + 1, (k − 1)/2].l
16 else
17 T [j, k].l ← dom2 (T [j + 1, k/2 − 1].l, T [j, k].u)
18 CCi+1←{T [0, j].o���T [0, j].l ⪯T [0, j].o, 0≤ j< |sub_cell (CCi) | }

19 K Ci+1←{T [0, j].o���T [0, j].l =T [0, j].o, 0≤ j< |sub_cell (CCi) | }
20 return CCi+1, K Ci+1

a skyline point only if it is not dominated in any of the sets of

partially dominated cells that contain c .

4 THE SHRINKKEYCELLS ALGORITHM
Next, we focus on our parallel ShrinkKeyCells algorithm (our

sequential ShrinkKeyCells algorithm is omitted due to space limit

and will be released as part of a technical report). The algorithm

takes CCi and KCi as the input. It generates sub_cell (CCi) and
then compares the cells, to find those not dominated by other cells

and those not partially dominated by other cells. This yields the

candidate cells CCi+1 and the key cells KCi+1, respectively. We

parallelize the cell comparison with a tournament-style procedure.

Cell preparation. To generate cells in sub_cell (CCi), we parti-
tion each cell in CCi into 2

d
cells by an even partitioning in each

dimension. Here, we do not prune the cells. We number the gen-

erated cells by their enumeration order (ascending). In Fig. 2a, the

dotted cells denote the cells in sub_cell (CC2) in Layer 3 (cf. Fig. 1).

The number in cell denotes the cell number.
To compare the cells in sub_cell (CCi) and identify those in

CCi+1 and KCi+1, we construct an auxiliary binary tree T . In

this tree, each non-leaf node has two pointers u and l to point to

the cells. Each leaf node has three pointers o, u, and l . We initialize

both o and u of each leaf node (from left to right) to point to a cell

in sub_cell (CCi), in ascending order of the cell numbers. Fig. 2b

shows such a tree for Fig. 2a. Every tree node (a circle) has two

numbers. The upper (and lower) number represents the cell num-

ber of the cell pointed to by u (and l). At start, only the upper half

(pointer u) of the leaf nodes are labeled with cell numbers from 0

to 27 (o points to the same cell as u does and is not plotted). The

rest of the nodes and pointers are computed later. The tree levels

are numbered bottom-up, i.e., the leaf level is Level 0, i.e., T [0].

Parallel Skyline Processing Using Space Pruning on GPU CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

Note that T is a complete binary tree of |sub_cell (CCi) | =
2
d |CCi | leaf nodes. As Corollary 1 (Section 5.1) will show, the

number of candidate cells in each layer is bounded. Thus, the num-

ber of leaf nodes and the tree height T .h can be computed directly,

and T is implemented as an array for fast parallel access.

Algorithm 2 summarizes parallel ShrinkKeyCells, where Line 1
corresponds to the cell preparation above. Note that we carefully

parallelize the algorithm to fully utilize the numerous cores of GPU.

Cell domination. Next, we construct the upper levels of T ,

during which cells in sub_cell (CCi) are checked for domination.

We first update pointer u for the tree nodes bottom up (Lines 7 to 9).

At tree level j (j starts at 1, i.e., parent nodes of the leaf nodes), let
the k-th node be T [j,k]. Its pointer u, T [j,k].u, will point to one

of the two cells pointed to by the u pointers of its two child nodes:

T [j,k].u = dom2 (T [j − 1, 2k].u,T [j − 1, 2k + 1].u)

Function dom2 (·) checks for 2-domination (‘≾2’) between the cells

pointed to by T [j − 1, 2k].u and T [j − 1, 2k + 1].u.

Definition 6. Given two cells c1 and c2, if c1 k-dominates c2,
denoted by c1 ≾k c2, then c1 ≾ c2 and ∀j ∈ [k,d − 1], c1[j] = c2[j].
Recall that ‘≾’ denotes dominate or partially dominate.

Intuitively, k-domination checks for domination (or partial dom-

ination, same below) in the lower k dimensions. We use dom2 (·) to
check for two dimensions each time, and we rotate the dimensions

such that all dimensions will be checked (Lines 2 and 3). In each

rotation, dimension k becomes dimension k − 1 for k > 0, while

dimension 0 becomes the new dimension d − 1 (nodes in T [0] is

also reordered by the new column indices of the cells). A total of

d − 1 rotations are needed for d dimensions. We only check for two

dimensions each time to guarantee correctness.

Function dom2 (T [j − 1, 2k].u,T [j − 1, 2k + 1].u) returns T [j −
1, 2k].u if it points to a cell that 2-dominates the cell pointed to

by T [j − 1, 2k + 1].u. Otherwise, it returns T [j − 1, 2k + 1].u. In
Fig. 2, T [1, 0].u = T [0, 1].u, i.e., pointer u of the left-most level-1

node should point to cell 1, because cell 0 is empty and it does

not 2-dominate cell 1. As another example, T [2, 1].u is 7 instead

of 4 since T [1, 2].u = 4 does not 2-dominates T [1, 3].u = 7. The

function is computed for every adjacent pair of nodes in parallel,

as denoted by par-do in the algorithm.

Computing the u pointers bottom up pushes the cells that domi-

nate more cells to higher levels (e.g., the root node points to cell

20 which partially dominates 7 cells, Lines 4 to 9). Such cells may

dominate more than just the cells in adjacent nodes. Next, we run

a top-down procedure to check for domination between such cells

and the cells in non-adjacent nodes, with the help of the l pointers
(Lines 10 to 17). At tree level j (j starts at T .h), pointer l of the k-th
node is updated according to whether k is 0, odd, or even (detailed

by Lemma 5).

After the l pointers are updated, in them-th rotation, for each

node N ∈ T [0], N .l points to a cell c that (m + 2)-dominates the

cell pointed to by N .o, while c is not dominated by others (detailed

in Lemma 5). After d − 1 rotations, for each node N ∈ T [0], N .l
points to the cell that dominates or partially dominates the cell

pointed to by N .o (if there exists such a cell). The cell pointed to

by N .o is a candidate cell if N .l , N .o (Line 18), and a key cell

otherwise (Line 19, e.g., cells 1, 12, 17, and 20 in Fig. 2).

GPU-based implementation. Line 3 of the algorithm reorders

T [0] by rotation-m. Since the rotation procedure is predefined, it

can be parallelized by assigning each entry in T [0] a thread. As the

new position of each entry can be calculated directly, no locking is

required. After each rotation, the reads and writes between Lines 4

and 17 all access adjacent memory addresses and hence follow the

coalesced memory access pattern for optimal GPU utility.

The operations at Lines 18 and 19 need a special treatment. This

is because, when we check T [0] in parallel, we cannot determine

the exact position of each entry found. Therefore, we need to run

Lines 18 and 19 twice. First, we check T [0] to decide the entries to

be added into CCi+1 or KCi+1. We compute a parallel prefix-sum

on these entries to assign each a proper position. Then, we write

the results into CCi+1 and KCi+1 in parallel.

Correctness. Next, we prove the algorithm correctness. We use

o, l , and u to refer to the cells pointed to by them. Our proof is built

on the following four lemmas.

Lemma 2. Given two cells c ′ and c , if c ′ ≾ c , then c ′ ≾ µi (c
′, c),∀0 <

i < d , where µi (c ′, c) is a cell with µi (c
′, c)[j] = c ′[j],∀0 ≤ j < i

and µi (c
′, c)[j] = c[j],∀i ≤ j < d .

Proof. Straightforward based on Definition 3. □

We define setsO (N) and L(N) for node N :O (N) contains o cells
in the leaf nodes of the subtree rooted at N ; L(N) includes O (N)
and all o cells in the leaf nodes preceding the subtree rooted at N .

O (T [j,k]) =

2
j (k+1)−1⋃
i=2jk

{T [0, i].o}

L(T [j,k]) =

2
j (k+1)−1⋃
i=0

{T [0, i].o}

For example,O (T [2, 1]) = {c4, c5, c6, c7} andL(T [2, 1]) = {c0, . . . , c7}.
Given a list of cells C , we define β (C,k) as the cell that satisfies

the following conditions:

(1) β (C,k) belongs to C;
(2) β (C,k) k-dominates the last cell of C; and
(3) β (C,k) is not k-dominated by any other cell in C .

Here, “the last cell” is defined by sorting the cells in C by their

column indices in ascending order with the current rotation of the

dimensions. For example, if C = {c0, c1, c2, c3} in Fig. 2, the last cell

is c3, and β (C, 2) is c1.
These definitions help show a property of the o cells for dimen-

sion rotation (iteration)m = 0.

Lemma 3. In Algorithm 2, at the end of the iteration form = 0,
each node T [j,k] satisfies T [j,k].u = β (O (T [j,k]), 2).

Proof. We omit the proof due to space limit. This will be re-

leased as part of a technical report. □

We also show a property of the l cells of the leaf nodes for

dimension rotation (iteration)m = 0.

Lemma 4. In Algorithm 2, at the end of the iteration form = 0,
each node T [j,k] satisfies T [j,k].l = β (L(T [j,k]), 2).

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

0 1 2 3 4 5

6 7 8 9 10 11

12 13

14 15

16 17 18 19

20 21 22 23

24 25

26 27

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Layer 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0

0

1

1

2

1

3

1

4

1

5

1

6

6

7

1

8

1

9

1

10

1

11

1

12

12

13

12

14

12

15

12

16

16

17

17

18

17

19

17

20

20

21

20

22

20

23

20

24

20

25

20

26

20

27

20
0

1 12 17 20

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1

1

3

1

4

1

7

1

9

1

11

1

12

12

14

12

17

17

19

17

20

20

23

20

25

20

26

20

2

0 1 2 3 4 5 6 7

1

1

7

1

11

1

12

12

17

17

20

20

26

20

3

0 1 2 3

1

1

12

12

20

20

26

20

4

0 1

12

12

20

20

5

0

20

20
T [2, 1].u = 7, T [2, 1].l = 1

(a) (b)

Figure 2: Example of parallel ShrinkKeyCells

Proof. At Line 10, for j = T .h, there is only one nodeT [T .h, 0],
andO (T [T .h, 0]) = L(T [T .h, 0]). LetT [T .h,k].l = T [T .h,k].u
for the only value k = 0 at Line 13. Then, T [j,k].l = L(T [j,k]).

When nodes T [j, ·].l satisfy the lemma, nodes T [j − 1, ·].l also
satisfy the lemma, with three cases of k :

(1) k = 0:O (T [j − 1,k]) = L(T [j − 1,k]), we set T [j − 1,k].l =
T [j−1,k].u. Since T [j−1,k].u is β (O (T [j−1,k]), 2), T [j−1,k].l
is β (L(T [j − 1,k]), 2).

(2) k being odd: In this case, T [j − 1,k] is the right child of

T [j, (k − 1)/2]. Then, L(T [j − 1,k]) = L(T [j, (k − 1)/2]). Thus, we
can simply set T [j − 1,k].l = T [j, (k − 1)/2].l .

(3) k being even: In this case, L(T [j − 1,k]) = L(T [j,k/2− 1]) ∪
O (T [j − 1,k]). We set T [j − 1,k].l = dom2 (T [j,k/2 − 1].l ,T [j −
1,k].u). This satisfies the three conditions in a way similar to the

two cases in Lemma 3. We omit the details for conciseness. □

We generalize the results to later iterations form ≥ 0.

Lemma 5. In Algorithm 2, after them-th iteration (Lines 3 to 17),
for each leaf node N , N .l = β (L(N),m + 2).

Proof. The lemma holds whenm = 0. Suppose that the lemma

holds whenm = α . We prove that it also holds whenm = α + 1.
Let N (c) be the leaf node where N .o = c . After the α-th iteration,

for any cell c that is (α + 3)-dominated, N (c).l is the cell that

(α + 2)-dominates c and is not dominated by any other cell. Further,

N (c).l[α + 2] = c[α + 2]. Then, we know that, if N (c).l is not
dominated by other cells, then N (c).l (α + 3)-dominates c . If N (c).l
is (α + 3)-dominated by another cell c ′, i.e., c ′ ≾α+3 N (c).l , after
the α-th iteration, N (cµ).l is now c ′, where cµ = µα+2 (c

′,N (c).l)
(see Lemma 2 for definition of µ). This can be proven as c ′ satisfies
the three conditions. Under rotation α + 1, cµ is positioned before c .
Then, after the (α+1)-th iteration,N (c).l will be replaced atN (cµ).l ,
which is c ′. Thus, N .l = β (L(N),α + 3) = β (L(N),m + 2). □

Now we show the algorithm correctness with Theorem 1.

Theorem 1. At the end of Algorithm 2, T [0,k].o is a candidate
cell if and only if T [0,k].l ⪯ T [0,k].o, and it is a key cell if and
only if T [0,k].l = T [0,k].o.

Proof. By Lemma 5, at the end of the algorithm, for each leaf

node N , N .l is β (L(N),d), which is the cell that dominates or par-

tially dominates cell N .o or is N .o. When a cell is partially domi-

nated but not dominated by others, it is a candidate cell. When a cell

is neither dominated nor partially dominated, it is a key cell. □

5 COST ANALYSIS
A core step in our algorithm is to compute the candidate cells of a ρ-
layer grid structure. We derive a bound on the number of candidate

cells for each layer in Section 5.1, based on which we derive our

algorithm costs in Section 5.2.

5.1 Bounding the Number of Candidate Cells
We first define two supporting concepts: auxiliary key cells and aux-
iliary candidate cells. We then show a one-on-one mapping between

the auxiliary candidate cells and the candidate cells. Finally, we

derive a bound on the number of candidate cells through counting

the number of auxiliary candidate cells.

Auxiliary key cells. To ensure no false dismissals of skyline

points, the candidate cells must cover the data space in each di-

mension. To derive the number of candidate cells, we use a set of

auxiliary candidate cells that covers each dimension. The number of

such cells can be derived easily, and we can establish an one-on-one

mapping between them and the candidate cells. We use auxiliary

key cells to simplify the description of auxiliary candidate cells.

To define auxiliary key cells, we first add d auxiliary points into
the d-dimensional dataset P. The i-th auxiliary point, λi , satisfies
λi [i] = 1 and λi [j] = 0 for all 0 ≤ j < d , j , i . If d = 3, then

λ0 = (0, 0, 1), λ1 = (0, 1, 0), and λ2 = (1, 0, 0). Here, [i] counts from
0 and from right to left, and 1 (and 0) denotes a number infinitely

close but less than 1 (and 0).

The auxiliary points are skyline points. However, they will not

impact the skyline points ofP. This is because our data points fall in

[0, 1)d . The auxiliary points will not dominate or be dominated by

any point in [0, 1)d (including the origin), as they have coordinate

1 in some dimension and coordinate 0 in all other dimensions.

The auxiliary points create d additional key cells outside each

grid layer. They are the auxiliary key cells, e.g., the light-gray cells

outside each layer in Fig. 1 (Λ0 and Λ1 for Layer 4).

Auxiliary candidate cells. The cells partially dominated by

any auxiliary key cell are the auxiliary candidate cells.

Definition 7. (Auxiliary candidate cell) The set of auxiliary

candidate cells of the i-th layer, denoted by ACi , is formed by the
cells partially dominated by some auxiliary key cell.

In Fig. 1, the cells labeled by “◦” are the auxiliary candidate cells

of Layer 4. Such cells occupy the “top” column in each dimension.

Lemma 6. In the layer-i grid of a d-dimensional space,

ACi =
{
c ∈ Ci

��� c[j] = 2
i − 1, j ∈ [0,d)

}
(7)

Parallel Skyline Processing Using Space Pruning on GPU CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

Proof. Let Λj be the auxiliary key cell corresponding to auxil-

iary point λj with coordinate 1 in dimension j and 0 in the other

dimensions. By Equation 1, Λj [j] = 2
i − 1 and Λj [k] = −1, ∀k ,

j, 0 ≤ k < d . In Fig. 1, the bottom-right light-gray cell of Layer 4 is

Λ0 = C4[−1, 15]. By Definition 3, any cell c , Λj and c[j] = Λj [j]

is partially dominated by Λj , i.e., PDC (Λj) =
{
c ��� c[j] = 2

i − 1
}
.

In Fig. 1, the cells in the column of Λ0 form PDC (Λj). Combining

PDC (Λj) for all j ∈ [0,d), we obtain Equation 7. □

Mapping between auxiliary candidate cells and candidate
cells.We show a one-on-one mapping between the auxiliary candi-

date cells and the candidate cells in a grid layer. This help yield the

number of candidate cells in each layer, as the number of auxiliary

candidate cells can be derived from Equation 7.

Theorem 2. In Layer i , there is a bijection between the set of
candidate cells CCi and the set of auxiliary candidate cells ACi .

Proof. We omit the proof due to space limit. This will be re-

leased as part of a technical report. □

Number of candidate cells. Given Lemma 6 and Theorem 2,

we compute the number of candidate cells, which is a function of i
and d , and is independent of the dataset size.

Corollary 1. In a d-dimension space, the number of candidate
cells in Layer i , denoted by |CCi |, satisfies:

|CCi | =

d−1∑
j=0

(2i − 1) j · 2i (d−1−j) (8)

Proof. We omit the proof due to space limit. This will be re-

leased as part of a technical report. □

In Fig. 1, the numbers of candidate cells in Layers 0 to 4 (d = 2)

are 1, 3, 7, 15 and 31, which conform to the corollary.

The candidate cells in different layers further satisfy the follow-

ing corollary.

Corollary 2. Given i > j, the volume (or area if d = 2) covered
by the cells in CCi must be smaller than that by the cells in CC j .

Proof. Intuitively, this is because candidate cells of a higher

layer are all covered by those of a lower layer (cf. Fig. 1).

Recall that the number of candidate cells in Layer i is
∑d−1
k=0 (2

i −

1)k · 2i (d−1−k) . This is the sum of a geometric sequence, which

adds up to 2
i ·d − (2i − 1)d . In this layer, the data space is parti-

tioned into 2
i ·d

cells, where each cell has volume (or area) 1/2i ·d .

Thus, the candidate cells in CCi cover a volume (or area) ofVi =(
2
i ·d − (2i − 1)d

)
/2i ·d = 1− (2i −1)d/2i ·d . Similarly, we can write

out the volume (or area)Vj covered by the cells in CC j (by replac-

ing every i with j). By basic arithmetic, we can showVi −Vj < 0.

Thus, the volume covered by the cells in CCi is smaller than that

by CC j . We omit the detailed calculation for conciseness. □

5.2 Algorithm Costs
We show both the time and space costs of our algorithm.

Time costs. For SkyCell (Algorithm 1), sorting n points takes

O (n logn) time. Constructing grid layers Cρ to C0 takes O (2
ρ ·d)

time, where 2
ρ ·d

is the number of cells in Cρ .

In Algorithm 2, trees Tu and Tl are updated d − 1 times, each tak-

ing a logarithmic time to the number of candidate cells. Therefore,

the algorithm time complexity is:

O
(
(d − 1)

∑ρ−1
i=0 log

∑d−1
j=0 (2

i − 1) j2i (d−1−j)
)

= O
(
ρ · d · log 2ρ ·d

)
= O (ρ2 · d2)

(9)

Since there are only a few points (mostly skyline points) in each

candidate cell in CCρ , and the cells can be processed in parallel,

RefineSkyline has roughly a quadratic time to the number of

points in each cell. Each cell is expected to contain n/2ρ ·d points,

and RefineSkyline takes O (n2/22ρ ·d) time.

Overall, when ρ = (logn)/d (i.e., the maximum ρ value given n
uniformly distributed points), the time complexity of our algorithms

are O
(
log

2 n
)
.

Space costs. Our grid take O (2ρ ·d) space. ShrinkKeyCells

stores

∑log |CCρ |

i=1 |CCρ |/2
i
cells for the tree, where

|CCρ | =

d−1∑
j=0

(2ρ − 1) j2ρ (d−1−j) ,

yielding an O (ρ · d · 2ρ ·d) cost. When ρ = (logn)/d , the space

complexity of our parallel algorithm is O (n logn).
For comparison, the state-of-the-art skyline algorithm [20] takes

O (n4 logn) time and O (n2d+1) space. Its computation is mostly

spent on constructing an index to support dynamic skyline queries.

In contrast, we can answer dynamic skyline queries by simply

changing the origin point of the queries with little additional cost.

6 EXPERIMENTAL EVALUATION
We compare with three state-of-the-art algorithms, Skyline Dia-
gram (SD) [20], Hybrid [7] and SkyAlign [3].

6.1 Settings
We implement all algorithms with C++ and CUDA 11.6 (source

code will be released on GitHub). We use a 64-bit machine with 32

GB memory, a 2.1 GHz Intel Xeon Silver 4110 CPU (8 cores), and

an Nvidia Quadro RTX6000 GPU (4,608 cores and 24 GB memory).

Datasets.We obtain 3.2 billion data points (d = 2) from Open-

StreetMap [26] to form a real dataset, denoted by “OSM”. We create

subsets by random sampling for experiments on dataset cardinality.

We further synthesize higher-dimensional real datasets by using

randomly sampled coordinates from the first two dimensions as

coordinates in the higher dimensions. We also generate synthetic

data using a commonly used dataset generator [6] following pre-

vious studies [3, 7, 20]. The datasets generated include Indepen-
dent, Anti-correlated, and Correlated, where the coordinates of
a point in different dimensions are independent, anti-correlated, and

correlated, respectively.We vary the data dimensionalityd ∈ [1, 10],
and dataset cardinality n ∈ {1, 2, . . . , 32} × 108. By default, we set

d = 4 and n = 4× 108. We run each experiment 10 times and report

the average algorithm running times.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

6.2 Results
We first study the impact of the partition ratio ρ in Section 6.2.1, to

help choose its value for the later experiments. Then, we study the

performance of the parallel algorithms in Sections 6.2.2.

10 -2

10 -1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12

C
a

n
d

id
a

te
 c

e
ll

ra
ti
o

 (
%

)

ρ

2D
3D
4D

5D
6D
7D

8D
9D
10D

(a) The ratio of candidate cells vs. ρ

10
1

10
2

2 3 4 5 6 7

T
im

e
 (

m
s
)

ρ

1B
2B
3B
4B

5B
6B
7B
8B

(b) Time for ShrinkKeyCells

10
2

10
3

10
4

10
5

2 3 4 5 6 7

T
im

e
 (

m
s
)

ρ

1B
2B
3B
4B

5B
6B
7B
8B

(c) Time for RefineSkyline

10
2

10
3

10
4

10
5

2 3 4 5 6 7

T
im

e
 (

m
s
)

ρ

1B
2B
3B
4B

5B
6B
7B
8B

(d) Overall running time

Figure 3: The impact of partition ratio ρ

6.2.1 Impact of Partition Ratio. Fig. 3a shows the ratio of Layer ρ
(in our multi-layer grid) being covered by candidate cells, as com-

puted by Corollary 1, for ρ ∈ [1, 12] and d ∈ [2, 10]. Note that this
ratio depends only on the layer number and d , and is independent

from the dataset cardinality and distribution. We can see that the

ratio of the space covered by the candidate cells decreases expo-

nentially (note the logarithmic scale) with the increase of ρ. When

d = 2, the candidate cells cover less than 1% of the space at ρ = 7,

and this ratio further drops to 0.01% at ρ = 12. When d = 10, we

still just need ρ = 10 so that the candidate cells only cover 1% of

the data space. These results verify that our SkyCell algorithm can

quickly prune a large portion of the data space (and hence the data

points) from consideration with grids of only a few layers.

We further show in Fig. 3 the overall algorithm running time,

the time for key cell shrinking, and the time for refinement (skyline

point computation), as ρ varies from 2 to 7 over Independent data

with 1 billion (“1B”) to 8 billion (“8B”) points (for parallel SkyCell

and d = 4). As ρ increases, the time for key cell shrinking increases

(Fig. 3b), while that for skyline point computation decreases (Fig. 3c),

which are both expected. Their combined effect (Fig. 3d), is an

optimal overall running time at ρ = 6. Also, as n increases, grids

with a larger resolution (i.e., larger ρ) help prune more points from

further checking. Thus, the curve of 8B drops faster than that of 1B

with the increase of ρ. The algorithm performance on other settings

shows a similar pattern. We thus use ρ = 6 as the default value.

6.2.2 Performance of Parallel SkyCell. We show the comparison

results of the algorithms in Figs. 4 to 6. The lines show the running

times and bars show the sizes of the output skyline points.

Impact of dataset cardinalityn.We see that the algorithm running

times increase with n (Figs. 4). Our SkyCell algorithm outperforms

SD and Hybrid consistently on both synthetic and real data. Its

running times are more stable (under 1,000 ms) across datasets of

102

103

104

105

1 2 4 8 16 32
102

103

104

T
im

e
(m

s)

O
ut

pu
t S

iz
e

Cardinality, ×108

Size
SkyAlign

Hybrid
SkyCell

(a) Independent

101

102

103

104

105

106

1 2 4 8 16 32
102

103

104

105

T
im

e
(m

s)

O
ut

pu
t S

iz
e

Cardinality, ×108

Size
SkyAlign

Hybrid
SkyCell

(b) Anti-correlated

102

103

1 2 4 8 16 32
102

103

104

T
im

e
(m

s)

O
ut

pu
t S

iz
e

Cardinality, ×108

Size
SkyAlign

Hybrid
SkyCell

(c) Correlated

102

103

104

1 2 4 8 16 32
102

103

104

T
im

e
(m

s)

O
ut

pu
t S

iz
e

Cardinality, ×108

Size
SkyAlign

Hybrid
SkyCell

(d) OSM

Figure 4: Performance of SkyCell vs. n

different distributions. This is because its cell-based pruning strat-

egy is more robust against the data distribution. On Independent

and Anti-correlated data, in general, SkyCell outperforms SD and

Hybrid by one and two orders of magnitude (up to 60 and 700 times),

respectively. On Correlated data, SD and Hybrid become closer to

(but still worse than) SkyCell. There are fewer skyline points on

such data (e.g., 4,203 skyline points among 32×108 data points), and

many data points can be pruned by a skyline point, which benefit

the point-based algorithms SD and Hybrid. Even in this extreme

case, SkyCell runs the fastest. It computes the skyline points from

32 × 10
8
points in just about 0.6 seconds. On OSM, SkyCell outper-

forms SD and Hybrid by 6 and 27 times when n = 32 × 108, and it

again finishes in under a second. These confirm the scalability of

our SkyCell algorithm.

10
2

10
3

10
4

10
5

2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
)

Dimensionality

SkyAlign
Hybrid

SkyCell

(a) Independent

10
2

10
3

10
4

10
5

10
6

10
7

2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
)

Dimensionality

SkyAlign
Hybrid

SkyCell

(b) Anti-Correlated

10
2

10
3

2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
)

Dimensionality

SkyAlign
Hybrid

SkyCell

(c) Correlated

10
2

10
3

10
4

10
5

2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
)

Dimensionality

SkyAlign
Hybrid

SkyCell

(d) OSM

Figure 5: Performance of SkyCell vs. d

Impact of data dimensionality d . In Fig. 5, we vary d from 2 to

10. The algorithm running times increase with d in general, while

Parallel Skyline Processing Using Space Pruning on GPU CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

Hybrid has a fluctuation which is also observed in its original pro-

posal [7]. SkyCell again is the fastest on all datasets. When d = 10,

comparing with Hybrid, SkyCell reduces the running time by 82%,

97%, 62%, and 96% on the Independent, Anti-correlated, Correlated,

and OSM data, respectively. When comparing with SkyAlign, these

numbers become 38%, 67%, 44%, and 79%, respectively.

Note that we reduce the value of ρ to 5, 4, 4, 3, 3 for d =
6, 7, 8, 9, 10, respectively, for that the number of cells grows with d
while many of the cells are empty. The decreasing ρ values slow

down the growth in the number of cells and reduces the number of

empty cells to be considered separately (although the number of

non-empty cells still grows with d and so are the algorithm running

times). The resultant grid at the lowest level has 2
30

cells when

d = 10. This contributes to the performance gains of SkyCell over

the competitors as d grows larger.

Impact of number of threads. In Fig. 6, we test the capability

of SkyCell to exploit the parallel power of GPU by running the

algorithm on datasets of different cardinality and dimensionality

while varying the number of threads used on the GPU from 1k to 4k.

We use ∆(xk, yk) to denote the time saved when running SkyCell

on xk threads comparing with that on yk threads. We see that,

given fixed dataset cardinality and dimensionality, the running

time of SkyCell decreases significantly with the increase in the

number of threads. This confirms the capability of SkyCell to take

full advantage of the parallel processing power of GPU.

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

1 2 4 8 16 32

T
im

e
 (

m
s
)

(a) Cardinality, ×10
8

4000
3000

2000
1000

10
2

10
3

2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
)

(b) Dimensionality

4000
3000

2000
1000

Figure 6: Performance of SkyCell vs. number ofGPU threads

7 RELATEDWORK
The skyline query was first studied in computational geometry and

was called the maxima [16]. It was later introduced to the database

community and was extensively studied [6, 10, 11, 14, 15, 29].

The state-of-the-art Skyline diagram (SD) [20] pre-computes a

Voronoi-like diagram. Query points in the same cell of the dia-

gram have the same skyline points, which are pre-computed. When

processing a skyline query, SD only needs to locate the cell that

encloses the query point to fetch the query answer. This algorithm

is query efficient but may suffer in pre-computation and storage

costs when there are many skyline points. We compare with it in

our experiments.

The balanced pivot selection (BPS) [18] algorithm selects a pivot –

the point with the smallest normalized attribute values – to split the

data space into incomparable regions. Points in different incompara-

ble regions do not dominate each other. Each region is further split

recursively Points are assigned to regions by comparing against

the pivots, and they are only checked for domination in their as-

signed regions. As each pivot is selected depending on previous

pivot selections, one is hard to perform multiple pivot selection at

the same time. Hence BPS does not fit in parallel scenarios.

We next focus on parallel skyline algorithms [1, 5, 13, 30, 35, 37]

as they are more relevant. The GPU-based Nested Loop (GNL) [8]

algorithm is a parallel extension of the block-nested-loop sequential

algorithm [6]. It assigns a thread for each point and checks the point

with all other points in parallel. GPGPU Skyline (GGS) [2] sorts the
points by the Manhattan norm. It then runs domination checks

in multiple iterations. In each iteration, GGS uses the top-ranked

unchecked points as the skyline buffer and compares them against

the other points in parallel.

SkyAlign [3] is a GPU-based algorithm that uses a global, static

partitioning scheme. It uses controlled branching to exploit transi-

tive relationships between points and can avoid some point domi-

nation checks. It does not use region-based domination checks, and

it has a fixed number of partitions regardless of the dataset size,

which cannot make full use of the GPU throughput and may cause

branch divergence of GPU warps. Spatial-GPU [30] uses multi-level

independent regions to filter candidate points. In different indepen-

dent regions, skyline queries are evaluated in parallel. Thus, this

method can be run in parallel with GPU or MapReduce. However,

this method is designed for a special type of skyline queries called

the spatial skyline. Its solution cannot be easily extended to general

skyline queries.

New skyline variants are emerging. For example, Yang et al. [31]

study G-Skyline, which returns a group of points based on group
dominance. Mouratidis et al. [23] combine skylinewith top-k queries,
to provide personalized, output size controllable, and preference

specification flexible results. It would be interesting future work to

adapt our techniques for these problems. A few other studies use

MapReduce [24, 28, 33]. They focus on workload balancing among

the worker machines.

The main difference between the studies above and ours is that

they focus on point domination checks, while we partition the

space and check domination between the partitions, thus yielding

significantly fewer domination checks and higher efficiency. Note

that cell domination in our work checks the relationships between

cells, i.e., we use cells to prune cells in each layer. In comparison,

existing works [19, 27] use points to prune regions. Our cell dom-

ination is more efficient as the number of cells is much smaller

than the number of points, and cell domination checks suit parallel

processing as they do not overlap.

ACKNOWLEDGEMENT
This work is supported by the National Nature Science Foundation

of China (61872071, 62072083), the Fundamental Research Funds

of the Central Universities (N2216017, N2116010), and the CCF-

Huawei Innovation Research Plan.

8 CONCLUSIONS
We studied skyline queries and proposed a grid structure that en-

ables grid cell domination computation for search space pruning.

We showed that only a small constant number of cells need to be

examined, which is independent of the dataset cardinality, yielding

highly efficient skyline computation. Our structure also enables par-

allel computation. We thus proposed a parallel skyline algorithm,

taking advantage of the parallelization power of GPUs. Our cost

analysis and experiments confirm the efficiency of the proposed

algorithms. Our parallel algorithm outperforms state-of-the-art

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

skyline algorithms consistently and by up to over two orders of

magnitude in the algorithm response time.

REFERENCES
[1] Wolf-Tilo Balke, Ulrich Güntzer, and Jason Xin Zheng. 2004. Efficient distributed

skylining for web information systems. In EDBT. 256–273.
[2] Kenneth S. Bøgh, Ira Assent, and Matteo Magnani. 2013. Efficient GPU-based

skyline computation. In International Workshop on Data Management on New
Hardware. 1–6.

[3] Kenneth S. Bøgh, Sean Chester, and Ira Assent. 2015. Work-efficient parallel

skyline computation for the GPU. Proceedings of the VLDB Endowment 8, 9 (2015),
962–973.

[4] Kenneth S. Bøgh, Sean Chester, and Ira Assent. 2016. SkyAlign: A portable,

work-efficient skyline algorithm for multicore and GPU architectures. The VLDB
Journal 25, 6 (2016), 817–841.

[5] Kenneth S. Bøgh, Sean Chester, Darius Šidlauskas, and Ira Assent. 2017. Tem-

plate skycube algorithms for heterogeneous parallelism on multicore and GPU

architectures. In SIGMOD. 447–462.
[6] Stephan Borzsony, Donald Kossmann, and Konrad Stocker. 2001. The skyline

operator. In ICDE. 421–430.
[7] Sean Chester, Darius Šidlauskas, Ira Assent, and Kenneth S. Bøgh. 2015. Scalable

parallelization of skyline computation for multi-core processors. In ICDE. 1083–
1094.

[8] Wonik Choi, Ling Liu, and Boseon Yu. 2012. Multi-criteria decision making with

skyline computation. In IEEE International Conference on Information Reuse &
Integration. 316–323.

[9] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. 2003. Skyline

with presorting. In ICDE. 717–719.
[10] Katja Hose and Akrivi Vlachou. 2012. A survey of skyline processing in highly

distributed environments. The VLDB Journal 21, 3 (2012), 359–384.
[11] Zhiyong Huang, Christian S. Jensen, Hua Lu, and Beng Chin Ooi. 2006. Skyline

queries against mobile lightweight devices in MANETs. In ICDE. 66–66.
[12] Md. Saiful Islam, Wenny Rahayu, Chengfei Liu, Tarique Anwar, and Bela Stantic.

2017. Computing influence of a product through uncertain reverse skyline. In

SSDBM. 1–12.

[13] Henning Köhler, Jing Yang, and Xiaofang Zhou. 2011. Efficient parallel skyline

processing using hyperplane projections. In SIGMOD. 85–96.
[14] Donald Kossmann, Frank Ramsak, and Steffen Rost. 2002. Shooting stars in the

sky: An online algorithm for skyline queries. In VLDB. 275–286.
[15] R. D. Kulkarni and B. F. Momin. 2019. Skyline computation for big data. In Data

Science and Big Data Analytics. 267–276.
[16] Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P. Preparata. 1975. On finding

the maxima of a set of vectors. J. ACM 22, 4 (1975), 469–476.

[17] Guanling Lee and Ying-Hao Lee. 2017. An efficient method of computing the

k-dominant skyline efficiently by partition value. In International Conference on
Information Management. 416–420.

[18] Jongwuk Lee and Seung-Won Hwang. 2014. Scalable skyline computation using

a balanced pivot selection technique. Information Systems 39 (2014), 1–21.

[19] Ken C. K. Lee, Baihua Zheng, Huajing Li, andWang-Chien Lee. 2007. Approaching

the skyline in Z order. In VLDB. 279–290.
[20] Jinfei Liu, Juncheng Yang, Li Xiong, Jian Pei, and Jun Luo. 2018. Skyline diagram:

Finding the Voronoi counterpart for skyline queries. In ICDE. 653–664.
[21] Zekri Lougmiri. 2017. A new progressive method for computing skyline queries.

Journal of Information Technology Research 10, 3 (2017), 1–21.

[22] Robert B. Miller. 1968. Response time in man-computer conversational transac-

tions. In The December 9-11, 1968, Fall Joint Computer Conference, Part I. 267–277.
[23] Kyriakos Mouratidis, Keming Li, and Bo Tang. 2021. Marrying top-k with skyline

queries: Relaxing the preference input while producing output of controllable

size. In SIGMOD. 1317–1330.
[24] Kasper Mullesgaard, Jens Laurits Pederseny, Hua Lu, and Yongluan Zhou. 2014.

Efficient skyline computation in MapReduce. In EDBT. 37–48.
[25] Aziz Nasridinov, Jong-Hyeok Choi, and Young-Ho Park. 2017. A two-phase data

space partitioning for efficient skyline computation. Cluster Computing 20, 4

(2017), 3617–3628.

[26] OpenStreetMap. 2021. https://www.openstreetmap.org/

[27] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2005. Progressive

skyline computation in database systems. ACM Transactions on Database Systems
30, 1 (2005), 41–82.

[28] Yoonjae Park, Jun-Ki Min, and Kyuseok Shim. 2013. Parallel computation of

skyline and reverse skyline queries using MapReduce. Proceedings of the VLDB
Endowment 6, 14 (2013), 2002–2013.

[29] Kian-Lee Tan, Pin-Kwang Eng, Beng Chin Ooi, et al. 2001. Efficient progressive

skyline computation. In VLDB. 301–310.
[30] Wenlu Wang, Ji Zhang, Min-Te Sun, and Wei-Shinn Ku. 2019. A scalable spatial

skyline evaluation system utilizing parallel independent region groups. The
VLDB Journal 28, 1 (2019), 73–98.

[31] Zhibang Yang, Xu Zhou, Kenli Li, Yunjun Gao, and Keqin Li. 2021. Progressive

approaches to flexible group skyline queries. Knowledge and Information Systems
63, 6 (2021), 1471–1496.

[32] Wenhui Yu, Jinfei Liu, Jian Pei, Li Xiong, Xu Chen, and Zheng Qin. 2020. Efficient

contour computation of group-based skyline. IEEE Transactions on Knowledge
and Data Engineering 32, 7 (2020), 1317–1332.

[33] Ji Zhang, Xunfei Jiang, Wei-Shinn Ku, and Xiao Qin. 2015. Efficient parallel

skyline evaluation usingMapReduce. IEEE Transactions on Parallel and Distributed
Systems 27, 7 (2015), 1996–2009.

[34] Shiming Zhang, Nikos Mamoulis, and David W. Cheung. 2009. Scalable skyline

computation using object-based space partitioning. In SIGMOD. 483–494.
[35] Haoyang Zhu, Peidong Zhu, Xiaoyong Li, Qiang Liu, and Peng Xun. 2017. Paral-

lelization of skyline probability computation over uncertain preferences. Con-
currency and Computation: Practice and Experience 29, 18 (2017), e4201.

[36] Vasileios Zois. 2019. Complex query operators on modern parallel architectures.
Ph. D. Dissertation. UC Riverside.

[37] Vasileios Zois, Divya Gupta, Vassilis J Tsotras, Walid A Najjar, and Jean-Francois

Roy. 2018. Massively parallel skyline computation for processing-in-memory

architectures. In International Conference on Parallel Architectures and Compilation
Techniques. 1–12.

[38] Lei Zou, Lei Chen, Jeffrey Xu Yu, and Yansheng Lu. 2008. A novel spectral coding

in a large graph database. In EDBT. 181–192.

https://www.openstreetmap.org/

	Abstract
	1 Introduction
	2 Multi-layer Grid Partitioning
	2.1 Proposed Grid Structure
	2.2 Candidate Cells

	3 The SkyCell Algorithm
	4 The ShrinkKeyCells Algorithm
	5 Cost Analysis
	5.1 Bounding the Number of Candidate Cells
	5.2 Algorithm Costs

	6 Experimental Evaluation
	6.1 Settings
	6.2 Results

	7 Related Work
	8 Conclusions
	References

