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Abstract
Multi-document summarization (MDS) aims to generate a
summary for a number of related documents. We propose
HGSUM — an MDS model that extends an encoder-decoder
architecture to incorporate a heterogeneous graph to repre-
sent different semantic units (e.g., words and sentences) of the
documents. This contrasts with existing MDS models which
do not consider different edge types of graphs and as such do
not capture the diversity of relationships in the documents.
To preserve only key information and relationships of the
documents in the heterogeneous graph, HGSUM uses graph
pooling to compress the input graph. And to guide HGSUM
to learn the compression, we introduce an additional objec-
tive that maximizes the similarity between the compressed
graph and the graph constructed from the ground-truth sum-
mary during training. HGSUM is trained end-to-end with
the graph similarity and standard cross-entropy objectives.
Experimental results over MULTI-NEWS, WCEP-100, and
ARXIV show that HGSUM outperforms state-of-the-art MDS
models. The code for our model and experiments is available
at: https://github.com/oaimli/HGSum.

Introduction
Multi-document summarization (MDS) aims to automati-
cally generate a concise and informative summary for a clus-
ter of topically related source documents (Ma et al. 2020;
Radev, Hovy, and McKeown 2002). It has a wide range
of applications such as creating news digests (Fabbri et al.
2019), product review summaries (Gerani et al. 2014), and
summaries for scientific literature (Moro et al. 2022; Ot-
makhova et al. 2022). Our work targets abstractive MDS,
which generates summaries with words that do not necessar-
ily come from the source documents, resembling the sum-
marization process of human beings.

State-of-the-art text summarization models use pre-
trained language models (PLMs) including both general-
purpose PLMs for text generation (Beltagy, Peters, and Co-
han 2020; Lewis et al. 2020) and PLMs designed for text
summarization (Zhang et al. 2020a; Xiao et al. 2022). When
applied to the abstractive MDS task, these models take a
flat concatenation of the (multiple) source documents, which
may not capture cross-document relationships such as con-
tradiction, redundancy, or complementary information very
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Figure 1: The structure of the heterogeneous graph given
three documents in a document cluster: The orange triangles
denote document nodes d, the blue quadrates denote sen-
tence nodes s, the green circles denote word nodes w, and
the line (or curve) segments between nodes denote edges. A
detailed description of the graph is in the Preliminaries.

well (Radev 2000). Ma et al. (2020) argue that explicit mod-
eling of cross-document relationships can potentially im-
prove the quality of summaries. Following this, several re-
cent studies (Li et al. 2020; Jin, Wang, and Wan 2020; Cui
and Hu 2021) explore graphs to model source documents to
improve abstractive MDS. However, these graphs are homo-
geneous in that the nodes or edges are not distinguished for
different semantic units (e.g., words, sentences, and para-
graphs) in the encoding process. This means these MDS
models cannot capture the diverse cross-document relation-
ships among different types of semantic units.

In this paper, we propose HGSUM — an MDS model
that extends an encoder-decoder architecture to incorporate
a heterogeneous graph to better capture the interaction be-
tween different semantic units in the documents. HGSUM’s
heterogeneous graph has different types of nodes and edges
to model words, sentences, and documents, as shown in Fig-
ure 1. To facilitate HGSUM to learn cross-document re-
lationships, we construct edges between sentences across
documents based on the similarity of their sentence embed-
dings. We also explore compressing the graph with graph
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pooling to preserve only salient information (i.e., nodes and
edges) that is helpful for summarization, before feeding sig-
nals from the compressed graph to the text decoder to gener-
ate the final summary. To guide HGSUM to learn this com-
pression, we introduce an auxiliary objective that maximizes
the similarity between the compressed graph and the graph
derived from the ground-truth summary, in addition to the
standard cross-entropy objective during training.

There are several challenges that we face. First, it is
non-trivial to encode heterogeneous graphs with existing
graph neural networks, as different types of nodes and edges
should not be processed by the same function. To address
this challenge, we propose multi-channel graph attention
networks to encode heterogeneous graphs. Second, there
are few graph compression or pooling methods proposed
for heterogeneous graphs. Inspired by Lee, Lee, and Kang
(2019), we introduce a compression method based on self-
attentions to condense the heterogeneous graph. One nov-
elty of our method is that it uses soft masking so that it does
not break the differentiability of the network, allowing us to
train HGSUM in an end-to-end manner.

To summarize, our contributions are given as follows:
• We propose HGSUM, an MDS model that extends

the encoder-decoder architecture to incorporate a com-
pressed graph to model the input documents. The graph
is a heterogeneous graph that captures the diversity of
semantic relationships in the documents, and it is com-
pressed with a pooling method that helps preserve the
most salient information for summarization.

• HGSUM is trained with two objectives that maximize
the likelihood of generating the ground-truth summary
and the similarity between the compressed graph and the
graph constructed from the ground-truth summary.

• Experimental results over multiple datasets show that
HGSUM outperforms state-of-the-art MDS models.

Preliminaries
Given a set of m related source documents D =
{d0, d1, . . . , dm} (i.e., a document cluster), our aim is to
generate a text summary ẑ = ŵ0, ŵ1, . . . , ŵT (composed
of T words) that captures the essence of the source docu-
ments. As mentioned earlier, we generate the summary in
an abstractive fashion, i.e., words in the generated summary
can be words that are not found in the source documents.
The generation of each word in the summary is modeled as:

p(ẑ|D) =
T∏

i=0

p(ŵi|D, ŵ0, ŵ1, . . . , ˆwi−1) (1)

As heterogeneous graphs explicitly represent relation-
ships among different semantic units (documents, sentences,
and words), we construct a heterogeneous graph to represent
a cluster of documents. We next explain how we construct
the heterogeneous graph.

Heterogeneous Graph Construction
We denote the heterogeneous graph constructed to represent
a cluster of documents as G = 〈V, E〉, where V represents

the set of nodes in the graph, and E the set of edges. As the
example in Figure 1 shows, there are three types of nodes
and six types of edges in G. Specifically, V = Vd ∪ Vs ∪
Vw, where Vd is a set of document nodes: every document
in the cluster corresponds to a node in Vd (orange triangles
in Figure 1); Vs is a set of sentence nodes: every sentence in
the documents corresponds to a node in Vs (blue quadrates
in Figure 1); and Vt is a set of word nodes1: every word
in the sentences corresponds to a node in Vw (green circles
in Figure 1).

We next define the edges, which are all undirected:

• The sets Ewe and Ewo contain edges between word nodes
(dash and dot lines between word nodes in Figure 1).
Every edge in Ewe connects two nodes corresponding to
noun words (identified based on a dependency parser2).3
The weight of an edge for a word pair in Ewe is the cosine
similarity of their embeddings. We use GloVe (Penning-
ton, Socher, and Manning 2014) as the static word em-
beddings in this work. Edges in Ewo, on the other hand,
connect the nodes corresponding to every adjacent word
pairs in a sentence. All edges in Ewo have a weight of 1.0.

• The set Ess contains edges that connect every pair of sen-
tences (dot lines between sentence nodes in Figure 1).
The weight of an edge for a pair of sentences is the co-
sine similarity of their pre-trained sentence embeddings.
We use Sentence-BERT (Reimers and Gurevych 2019) to
compute the sentence embeddings, which is pre-trained
based on the natural language inference task (Bowman
et al. 2015).

• The set Edd contains edges between document nodes (dot
lines between document nodes in Figure 1). Every doc-
ument is connected to all other documents in the cluster,
and their edges are weighted using their n-gram overlap
in terms of the average F1 value of ROUGE-1, ROUGE-
2, and ROUGE-L (Lin and Hovy 2003).

• The sets Eds and Est contain edges that connect a doc-
ument with its sentences (solid lines between docu-
ment nodes and sentence nodes in Figure 1) and edges
that connect a sentence with its words (solid lines be-
tween sentence nodes and words nodes in Figure 1).
These edges are designed to preserve the hierarchical
document-sentence and sentence-word structures. All the
edge weights in these sets are set to 1.0.

To summarize, we have E = Ewe ∪ Ewo ∪ Ess ∪ Edd ∪
Eds∪Esw. These edges collectively create a connected graph
over all three types of nodes (words, sentences, and doc-
uments). Note that the choice of pre-trained word/sentence
embeddings is flexible in our architecture, and in future work
it would be interesting to explore other pre-trained embed-
dings.

1Technically, these are subword nodes since we use subword
tokenization, although most nodes map to full words in practice.

2https://spacy.io/
3Note that nodes that do not map to a full word will not have

this type of edge, since they cannot be a noun.
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Figure 2: The HGSUM architecture: There are four main components: (1) text encoder (initialised using PRIMERA weights);
(2) graph encoder; (3) graph compressor; and (4) text decoder (initialised using PRIMERA weights).

The HGSUM Model
At its core, HGSUM extends a text encoder-decoder ar-
chitecture (PRIMERA; Xiao et al. (2022)) to incorporate
information from a compressed heterogeneous graph de-
rived from the input source documents, as presented in Fig-
ure 2. HGSUM has four main components: (1) text encoder
(initialized using PRIMERA weights), (2) graph encoder,
(3) graph compressor, and (4) text decoder (initialized us-
ing PRIMERA weights).

During training, we first generate two heterogeneous
graphs GD and Gz based on the input source documents D
and the ground-truth summary z, respectively, following the
graph construction procedure described in the previous sec-
tion. The text of input source documentsD and ground-truth
summary z is processed by the text encoder to obtain contex-
tual word embeddings QD and Qz , respectively. These con-
textual word embeddings are then used by the graph encoder
as the initial node embeddings of GD and Gz , respectively.
After processed by the graph encoder, we have the graph
encodings Q′D and Q′z respectively for the source docu-
ments and the ground-truth summary.4 The graph encoding
of the source documents (Q′D) will be further processed by
the graph compressor to produce compressed graph encod-
ing Qp, and this will be used by the text decoder to gen-
erate the final summary ẑ. To train HGSUM, we minimize
the cross entropy between the ground-truth summary z and
generated summary ẑ and maximize the similarity between
the compressed graph encoding (Qp) and ground-truth sum-
mary graph encoding (Q′z).

Once the model is trained, we only use the text and graph
encoders to encode the input source documents, the graph
compressor to compress the document graph, and the text
decoder to decode the summary, without using any ground-
truth summary as input. We next detail these components.

4By graph encoding we mean the collective node embeddings
in the graph.

Text Encoder
The text encoder follows the encoder architecture of
PRIMERA — which uses the sparse attention of long-
former (Beltagy, Peters, and Cohan 2020) to accommodate
long text input — and is initialized with PRIMERA weights:

QD = longformer(D) (2)
Qz = longformer(z) (3)

The text encoder takes as input a concatenated string con-
taining all the words from the documents, and it produces
contextualized embeddings for these words as the output
(QD for source documents and Qz for the ground-truth
summary). Note that we use special delimiters 〈sent-sep〉
and 〈doc-sep〉 to mark sentence and document boundaries,
which allows us to extract sentence and document embed-
dings that we use as the initial sentence and document node
embeddings in the graph encoder.

Graph Encoder
The graph encoder is responsible for learning node embed-
dings for the document graph GD and the ground-truth sum-
mary graph Gz . We explain how the graph encoder works for
the document graph below, but the same principle works for
processing the ground-truth summary graph.

Node embeddings for the heterogeneous graph GD rep-
resent the words, sentences, and documents, and they are
initialized using the contextual embeddings learned from
the text encoder (QD). As standard graph neural networks
(GNNs) based on message passing cannot be applied to
the heterogeneous graphs directly, we propose multi-channel
graph attention networks (MGAT) inspired by graph atten-
tion networks (GAT; Velickovic et al. (2018)) to encode the
heterogeneous graph.

Similar to GAT, MGAT is a multi-layer graph network.
Intuitively, in each layer, MGAT aggregates embeddings of
different channels (i.e., edge types) for each node. The com-



putation of the l-th layer of MGAT is given as follows:

h
(l+1)
i = UH

(l)
i (4)

H
(l)
i =

∥∥C
c=1

h
(l),c
i (5)

where h
(l+1)
i is the output embedding of node i in the l-th

layer, ‖ is the concatenation operation, C is the number of
channels (which equals to the number of edge types in the
heterogeneous graph, six in our case), and U is the shared
transformation matrix for different nodes. Intuitively, h(l),c

i
represents the embedding of node i in the c-th channel at
the l-th layer, and H

(l)
i is the concatenation of node embed-

dings from all channels for node i in the l-th layer. Note that
the input node embeddings of the first layer of any chan-
nel are the output contextual embeddings (words, sentences,
and documents) of the text encoder, i.e., h(0)

i = qi where
qi ∈ QD. The graph encoding, Q′D, consists of all updated
node embeddings from the final layer, i.e., Q′D =

∥∥
i
h
(L)
i .

To compute h
(l),c
i in each channel:

h
(l),c
i =

∥∥M
m=1

σ
( ∑

j∈N c
i

αm,c
ij Wm,ch

(l),c
j

)
(6)

where M is the number of attention heads. We can now see
that h(l),c

i is the concatenated representation of M indepen-
dent attention heads with different weight matrices Wm,c

and normalized attention weights αm,c
ij , with the latter com-

puted as follows:

αm,c=
ij

exp(dm,c
ij )∑

k∈N c
i
exp(dm,c

ik )
(7)

where N c
i denotes the set of nodes connected to node i by

an edge of type c. The attention coefficient dm,c
ij represents

the correlation between nodes, and is learned as follows:

dm,c
ij = σ

(
eij ·w>m,c[W

m,ch
(l),c
i ‖Wm,ch

(l),c
j ]

)
(8)

where eij is the edge weight between node i and node j
(defined in the Preliminaries section).

To summarize, MGAT computes node embeddings by at-
tending to neighbouring nodes just like GAT, but it does
this for each edge type independently and then concatenates
them together to produce the final node embeddings, and it
repeats this for multiple layers/iterations to learn higher or-
der connections. We note that HGSUM has only one graph
encoder, which is used to process both the source document
graph GD to produce Q′D and the ground-truth summary
graph Gz to produce Q′z .

Graph Compressor
Given GD and Q′D from the graph encoder, the graph com-
pressor aims to “compress” the graph by selecting a subset
of salient nodes and edges. Here we focus on filtering the
sentence nodes, because we want to identify key sentences
that help generate the summary. After the compression, all
selected sentence nodes and their linked word and document
nodes represent the compressed graph and their embeddings
will be used by the text decoder for summary generation.

The graph compressor is inspired by Lee, Lee, and Kang
(2019), and it works by computing the attention scores
for all sentence nodes, filtering out nodes with the lowest
scores, and then masking the rest using their attention scores.
Firstly, attention scores of the sentence nodes are calculated
based on the updated node embeddings from our proposed
graph encoder MGAT(QD,GD):

t = softmax(MGAT(QD,GD) · r) (9)

where r is the only trainable parameter of the graph com-
pressor which transforms the updated node embedding into a
scalar. Then, based on these scores, we select sentence nodes
with the highest scores:

Is = top-k(t, k,GD) (10)
I = extend(Is,GD) (11)

where top-k is a function that selects top-ranked sentence
nodes in GD based on t, k ∈ (0, 1] is a hyper-parameter that
determines the ratio of sentence nodes to be kept, Is is the
set of selected sentence nodes, and extend is a function that
extends the selected sentence nodes in Is to include word
and document nodes that they link to (and so I includes
word, sentence and document nodes). Lastly, we mask all
the selected nodes using their attention scores, producing the
encoding of the compressed graph, Qp:

Qp =
∥∥I
i
q′i × ti, q

′
i ∈ Q′D. (12)

Text Decoder
The text decoder follows the same architecture as a decoder
Transformer (which uses masked attention to prevent atten-
tion to future words), is initialized with PRIMERA weights,
and takes Qp as input to generate the summary:

ẑ = transformer(Qp) (13)

Note that the node embeddings in Qp retain the original
word index in the source documents D, and as such po-
sitional embeddings are added to them following standard
transformer architecture.

Multi-Task Training
HGSUM is trained with two objectives: maximizing the like-
lihood of generating the ground-truth summary z and the
graph similarity between the compressed graph encoding
Qp and ground-truth summary graph encoding Q′z .

To maximize the likelihood of generating the ground-truth
summary, we minimize the cross entropy over the ground-
truth summary and the generated summary with conven-
tional teacher forcing.

Lce = −
1

T

T∑
i=1

wi log ŵi (14)

where wi is the i-th word in the ground-truth summary,
while ŵi is the i-th word in the generated summary.

To maximize the graph similarity, we compute the cosine
similarity of the average node embeddings from the com-
pressed graph and the ground-truth summary graph:

Lgs = − sim(avg(Qp), avg(Q
′
z)) (15)



Dataset #c #d/c #w/d #w/s
MULTI-NEWS 56,216 2.79 690.97 241.61

WCEP-100 10,200 63.38 439.24 30.53
ARXIV 215,913 5.63 978.17 251.07

Table 1: Dataset statistics. “c” = cluster; “d” = document;
“w” = word; and “s” = summary. “#” denotes “the number
of” and “/” denotes “in each”.

Model #parameters Len-in Len-out
PEGASUS 568M 1,024 512

LED 459M 16,384 512
PRIMERA 447M 4,096 512

MGSum 129M 2,000 400
GraphSum 463M 4,050 300

HGSUM 501M 4,096 512

Table 2: Model parameter sizes. Len-in and Len-out denote
the maximum lengths of the model input and the model out-
put, respectively.

The final loss function of HGSUM is the sum of Lce and
Lgs weighted by hyper-parameter β ∈ (0, 1).

L = βLce + (1− β)Lgs (16)

Experiments
We test our proposed model HGSUM and compare it
against state-of-the-art abstractive MDS models over several
datasets. We also report the results of an ablation study to
show the effectiveness of the components of HGSUM.

Experimental Setup
Datasets We use MULTI-NEWS (Fabbri et al. 2019),
WCEP-100 (Ghalandari et al. 2020), and ARXIV (Cohan
et al. 2018) as benchmark English datasets. These datasets
come from different domains including news, Wikipedia,
and scientific domains. MULTI-NEWS contains clusters of
news articles plus a summary corresponding to each clus-
ter written by professional editors. WCEP-100 contains
human-written summaries of different news events from
Wikipedia. In ARXIV, each cluster corresponds to a research
paper in the scientific domain, where the paper abstract is
used as the summary, while sections of the paper are used
as the source documents in each cluster. Table 1 summarizes
statistics of these datasets.

Competitors We compare our model with two groups of
state-of-the-art abstractive MDS models: PLM-based and
graph-based. (1) The PLM-based models include PEGA-
SUS (Zhang et al. 2020a), LED (Beltagy, Peters, and Co-
han 2020), and PRIMERA (Xiao et al. 2022). LED is a
general-purpose PLM that introduces the longformer archi-
tecture which uses sparse self-attention to allow it to pro-
cess much longer input than previous models. LED is pre-
trained by reconstructing documents from their corrupted

input in the same way as BART (Lewis et al. 2020). In con-
trast, PEGASUS and PRIMERA are pre-trained models de-
signed for summarization (the former for single-document
and the latter multi-document summarization). Specifically,
PEGASUS is pre-trained by generating pseudo summaries
for documents, where the pseudo summaries are composed
of gap sentences extracted from a document based on
ROUGE scores. PRIMERA is similarly pre-trained to gen-
erate pseudo summaries, but their pseudo summaries are ex-
tracted based on the salience of entities which correspond
to their document frequency. For these PLM-based models,
we take their off-the-shelf models and fine-tune them on our
datasets. We follow the standard approach where we con-
catenate documents from the same cluster to form a long
and flat input string. (2) For the graph-based models, we
compare against MGSum (Jin, Wang, and Wan 2020)5 and
GraphSum (Li et al. 2020)6. To model cross-document re-
lationships in MDS, MGSum (Jin, Wang, and Wan 2020)
uses a three-level hierarchical graph to represent source doc-
uments, including different levels of nodes (documents, sen-
tences, and words). It learns semantics with a multi-level
interaction network. Although there are different types of
nodes in this hierarchical graph, all of its edges are of the
same type (i.e., it is a homogeneous graph).7 GraphSum (Li
et al. 2020) uses a similarity graph over paragraphs to cap-
ture cross-document relationships, and it uses pre-trained
RoBERTa (Liu et al. 2019) as its encoder. Just like MGSum,
its graph is homogeneous.

Implementation Details For the PLMs, we use the large
version of the models which roughly have the same num-
ber of parameters (Table 2).8 For the graph-based models,
we use open-source code from the original authors and train
them on our datasets, following their recommended hyper-
parameters and configurations. As Table 2 shows, most mod-
els are trained to generate a maximum length of 512 sub-
words (“Len-out”) for the summary (exception: MGSum
and GraphSum where we follow the original output length).
Note though that the maximum input lengths (“Len-in”) of
these models range from 1K-16K subwords, depending on
the architecture of their encoder.

For HGSUM, the text encoder and decoder are initialized
with PRIMERA weights. To alleviate overfitting, we apply
label smoothing during training with a smoothing factor of
0.1. We use beam search decoding with beam width 5 to
generate the summary. The hyper-parameter β is set to 0.5
to balance two loss functions. All other hyper-parameters are
tuned based on the development set.

All experiments are run on Intel(R) Xeon(R) Gold 6326
CPU @ 2.90GHz with NVIDIA Tesla A100 GPU (40G).

Overall Results
We report the average F1 of ROUGE-1 (R-1), ROUGE-2 (R-
2) and ROUGE-L (R-L) (Lin and Hovy 2003). Note that we

5https://github.com/zhongxia96/MGSum
6https://github.com/PaddlePaddle/Research/tree/master/NLP
7For fair comparison we use the abstractive variant of MGSum.
8PLM-based models are implemented using the HuggingFace

library: https://huggingface.co/



Model MULTI-NEWS WCEP-100 ARXIV
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

PEGASUS 47.70 18.36 43.62 42.43 17.33 32.35 44.21 16.95 38.87
LED 47.68 19.72 43.83 43.05 20.94 34.99 46.50 18.96 41.87

PRIMERA 49.40 20.51 45.35 43.11 21.85 35.89 47.24 20.24 42.61
MGSum 45.63 16.71 40.92 38.88 14.22 23.37 40.58 11.22 29.93

GraphSum 45.71 17.12 41.99 39.56 14.38 29.41 42.98 16.55 37.01
HGSUM (our model) 50.64† 21.69† 45.90† 44.21† 21.81 36.21† 49.32† 21.30† 44.50†

Performance gain +2.51% +5.75% +1.21% +2.55% -0.18% +0.89% +4.40% +5.24% +4.44%

Table 3: Model performance on summarizing MULTI-NEWS, WCEP-100, and ARXIV in terms of F1 of ROUGE scores. The
best performance results are in boldface, while the second best is underlined. †: significantly better than others (p-value < 0.05).

Doc 1 . . . Parents are risking their babies’ health
because of a surge in the popularity of
swaddling . . .

Doc 2 There has been a recent resurgence of
swaddling because of . . .

Doc 3 . . . Swaddling babies is on the rise: Add
it to the long list of mixed messages new
parents get about infant care . . .

Generated
summary

The trend of swaddling babies is on the
rise, but an orthopaedic surgeon . . . is
warning parents against the practice.

Table 4: An example of a generated summary in MULTI-
NEWS by HGSUM.

use the summary-level R-L,9 and each summary is split into
sentences using NLTK10.

Table 3 reports the performance of all models over all
datasets. HGSUM outperforms most of the benchmark sys-
tems, demonstrating the effectiveness of incorporating a
compressed heterogeneous graph for text summarization. In-
terestingly, the PLMs (PEGASUS, LED, PRIMERA, and
HGSUM) also seem to be consistently better than graph-
based models (MGSum and GraphSum). This shows that
using graph-based document representations does not nec-
essarily lead to better MDS results, thus confirming the ad-
vantage of our heterogeneous graph-based model design.
We give an example of generated summary by HGSUM in
MULTI-NEWS in Table 4.

Ablation Study
To show the effectiveness of the HGSUM components, we
conduct an ablation study and compare it with three model
variants: (1) HGSUM w/o MGAT, which replaces MGAT
with the vanilla GAT model that treats all graph nodes and
edges as being the same type, (2) HGSUM w/o graph com-
pressor, which drops the graph compressor from HGSUM

9We note that prior studies use a mixture of summary-level and
sentence-level R-L, and for more details about their differences, we
refer the reader to: https://pypi.org/project/rouge-score/

10https://www.nltk.org/

Model R-1 R-2 R-L BScore
HGSUM 50.64 21.69 45.90 87.38

w/o MGAT 48.87 20.32 43.21 87.08
w/o graph compressor 49.00 20.38 45.01 86.92

w/o multi-task training 48.10 20.30 44.24 86.85

Table 5: Results of ablation study on MULTI-NEWS.

Initialized by R-1 R-2 R-L BScore
random weights 18.99 27.86 16.88 79.32

LED 48.36 19.99 44.25 86.73
PRIMERA 50.64 21.69 45.90 87.38

Table 6: Summarization results of HGSUM with different
initialization on MULTI-NEWS.

and uses the output from the graph encoder directly as the
input for the text decoder, and (3) HGSUM w/o multi-task
training, which replaces the multi-task objective using only
the cross entropy objective.

For the ablation results, we also present the performance
in terms of BERTScore (“BScore”; Zhang et al. (2020b)),
which measures the semantic similarity between the ground-
truth and generated summary based on BERT embeddings.
Table 5 shows the ablation results on the test set of MULTI-
NEWS.11 We see that removing the heterogeneous graph en-
coder, graph compressor, or the multi-task objective result
in a performance drop over all metrics, confirming the ef-
fectiveness of these components. In particular, dropping the
multi-task objective leads to the largest degradation in model
performance, suggesting that this auxiliary task is essential
to help HGSUM learn how to compress the graph for sum-
marization.

More Analysis
Impact of Text Encoder and Decoder Initialization Our
text encoder and decoder can be initialized by any pre-
trained Transformer models. Here we make a comparison

11We found similar results for different datasets, and present
only MULTI-NEWS here in light of space.



Figure 3: Average lengths of generated summaries for differ-
ent datasets when the compression ratio k is set to different
values.

on initialization using PRIMERA, the large version of LED
and random weights. Table 6 shows results using such ini-
tialization strategies on the test set of MULTI-NEWS. We see
that initialization with random weights has much worse per-
formance than initialization using pre-trained PLMs, which
is expected. Using PRIMERA leads to better empirical per-
formance than using the LED, consistent with prior findings.

Impact of the Graph Compression Ratio k The hyper-
parameter k in the heterogeneous graph pooling is to control
the proportion of sentence nodes to be retained in the com-
pressed graph. To understand how much k affects the gener-
ated summary length, we present average lengths of gener-
ated summaries for different datasets when the compression
ration k is set to different values in Figure 3. Interestingly,
we see that larger k generally produces longer summary, and
this effect is strongest for MULTI-NEWS.

Related Work
Abstractive Multi-Document Summarization
PLM-Based Models Recent PLM-based models have
shown strong performance for abstractive text sum-
marization tasks. These models follow a Transformer-
based (Vaswani et al. 2017) encoder-decoder architecture.
For example, general-purpose PLMs such as T5 (Raffel et al.
2020), BART (Lewis et al. 2020), and LED (Beltagy, Pe-
ters, and Cohan 2020) can be fine-tuned for abstractive text
summarization. PEGASUS (Zhang et al. 2020a) is a strong
PLM-based model pre-trained with an objective that predicts
gap sentences as a pseudo summary. These models can be
used for MDS by concatenating the source documents into a
single document. PRIMERA (Xiao et al. 2022) has the same
architecture as LED, but is designed for MDS specifically in
that it is pre-trained to generate pseudo summaries — text
spans that are automatically extracted based on the entity
salience. Although these models show impressive perfor-
mances and can even handle zero-shot cases, they use a flat
concatenation of the input documents, which limits their ca-
pability in learning the cross-document relationships among
different semantic units.

Graph-Based Models Although graphs are commonly
used to boost text summarization (Wu et al. 2021b; You et al.

2022; Song and King 2022), there are only a handful of mod-
els which have been proposed to use graphs to encode the
documents in abstractive MDS (Li et al. 2020; Jin, Wang,
and Wan 2020; Li and Zhuge 2021; Cui and Hu 2021). Most
of these models only leverage homogeneous graphs as they
do not consider different edge types of graphs. For exam-
ple, MGSum (Jin, Wang, and Wan 2020) constructs a three-
level (i.e., document, sentence, and word levels) hierarchi-
cal graph and learns semantics with a multi-level interaction
network. GraphSum (Li et al. 2020) constructs a similarity
graph over the paragraphs. It learns a graph representation
for the paragraphs and uses a hierarchical graph attention
mechanism to guide the summary generation process. The
graphs constructed in these models are in fact homogeneous,
in that GraphSum only consider paragraph nodes, and MG-
Sum uses the same edge type to connect the graph nodes.

Graph Neural Networks
Graph Modeling GNNs have yielded strong performance
for modeling documents (Wu et al. 2021a), e.g., to model re-
lationships among text spans for MDS. Graph convolutional
networks (GCN; Kipf and Welling (2017)) and graph atten-
tion networks (GAT; Velickovic et al. (2018)) are two repre-
sentative GNN models, which are frequently used in mod-
eling graph-structured data composed of nodes and edges.
GAT is based on the attention mechanism (Vaswani et al.
2017), while GCN is based on Laplacian transformation on
the adjacency matrix. Another difference between these two
is that edge weights of GCNs (i.e., the adjacency matrix) are
fixed in training but those of GAT (i.e., the attentions) can
be updated, although both of them perform message pass-
ing (Gilmer et al. 2017) on graphs.

Graph Pooling Graph pooling (Liu et al. 2022) aggre-
gates node embeddings to obtain compressed graph repre-
sentations. Existing graph pooling methods can be largely
grouped into two categories: global pooling and hierarchi-
cal pooling. Global pooling generates the graph representa-
tion with a mean- or sum-pooling over the node embeddings.
This method does not preserve the hierarchical structure
of graphs. Hierarchical pooling, in contrast, considers the
graph structure by compressing an input graph into smaller
graphs iteratively, through node clustering (Bianchi, Grat-
tarola, and Alippi 2020) or node dropping (Lee, Lee, and
Kang 2019). Our graph compressor follows the idea of the
hierarchical pooling, and condenses the graph by removing
nodes to generate a small-sized graph.

Conclusion
We propose HGSUM, an extended encoder-decoder model
that builds on PLMs to incorporate a compressed hetero-
geneous graph for abstractive multi-document summariza-
tion. HGSUM is novel in that it captures the heterogene-
ity between words, sentences, and document units in the
constructed graph for source documents, and it also learns
to compress the heterogeneous graph by ‘mimicking’ the
ground-truth summary graph during training. Experimen-
tal results over multiple datasets show that HGSUM outper-
forms current state-of-the-art MDS systems.
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