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In this paper we study the spatial evolution of zero-pressure-gradient (ZPG) turbulent
boundary layers from their origin to a canonical high-Reynolds-number state. A
prime motivation is to better understand under what conditions reliable scaling
behaviour comparisons can be made between different experimental studies at matched
local Reynolds numbers. This is achieved here through detailed streamwise velocity
measurements using hot wires in the large University of Melbourne wind tunnel.
By keeping the unit Reynolds number constant, the flow conditioning, contraction
and trip can be considered unaltered for a given boundary layer’s development and
hence its evolution can be studied in isolation from the influence of inflow conditions
by moving to different streamwise locations. Careful attention was given to the
experimental design in order to make comparisons between flows with three different
trips while keeping all other parameters nominally constant, including keeping the
measurement sensor size nominally fixed in viscous wall units. The three trips
consist of a standard trip and two deliberately ‘over-tripped’ cases, where the initial
boundary layers are over-stimulated with additional large-scale energy. Comparisons of
the mean flow, normal Reynolds stress, spectra and higher-order turbulence statistics
reveal that the effects of the trip are seen to be significant, with the remnants of the
‘over-tripped’ conditions persisting at least until streamwise stations corresponding
to Rex = 1.7 × 107 and x = O(2000) trip heights are reached (which is specific to
the trips used here), at which position the non-canonical boundary layers exhibit a
weak memory of their initial conditions at the largest scales O(10δ), where δ is the
boundary layer thickness. At closer streamwise stations, no one-to-one correspondence
is observed between the local Reynolds numbers (Reτ , Reθ or Rex etc.), and these
differences are likely to be the cause of disparities between previous studies where
a given Reynolds number is matched but without account of the trip conditions and
the actual evolution of the boundary layer. In previous literature such variations have
commonly been referred to as low-Reynolds-number effects, while here we show that
it is more likely that these differences are due to an evolution effect resulting from
the initial conditions set up by the trip and/or the initial inflow conditions. Generally,
the mean velocity profiles were found to approach a constant wake parameter Π as
the three boundary layers developed along the test section, and agreement of the mean
flow parameters was found to coincide with the location where other statistics also
converged, including higher-order moments up to tenth order. This result therefore
implies that it may be sufficient to document the mean flow parameters alone in order
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to ascertain whether the ZPG flow, as described by the streamwise velocity statistics,
has reached a canonical state, and a computational approach is outlined to do this.
The computational scheme is shown to agree well with available experimental data.

Key words: turbulent boundary layers, turbulent flows

1. Introduction
In the study of different wall-bounded turbulent flows, the zero-pressure-gradient

(ZPG) turbulent boundary layer is probably the most investigated, and perhaps the
most reviewed. The ZPG boundary layer is also often considered as the baseline flow
when examining various external influences such as roughness, streamwise pressure
gradient, heat transfer, etc. However, significant challenges still exist in identifying
the true statistical behaviour of a ZPG boundary layer, particularly at high Reynolds
numbers (Marusic et al. 2010b). One of the major challenges lies in unravelling
under what conditions different experimental results can be credibly compared when
assessing various scaling laws, such as outer-flow similarity. Comparisons of previous
experimental data sets have shown significant discrepancies between different studies
even though local experimental parameters are matched (Chauhan & Nagib 2008;
Chauhan, Nagib & Monkewitz 2009). Conventional wisdom suggests that provided
the local Reynolds number is matched then comparisons can be made for assessing
scaling behaviour, and this implicitly implies that no consideration is given to the
evolution of the boundary layers. In the following we will show that such comparisons
are not valid under certain conditions. Moreover, when anomalous behaviours have
been noted in the literature, for example, such as the variation of Coles wake factor
for Reδ∗ < 5000 (Coles 1962), these have been described as a low-Reynolds-number
effect. Again, in the following we will show that such trends are better described as
an evolution effect resulting from the initial conditions set up by the trip and/or the
initial inflow conditions.

Anomalous discrepancies between scaled data are not confined to experimental
studies. Schlatter & Örlü (2010) revealed large differences between direct numerical
simulations (DNS) of the ZPG boundary layer for the shape factor H = δ∗/θ and
skin-friction coefficient Cf = 2(Uτ/U∞)2 (δ∗ is the displacement thickness, θ is the
momentum thickness, Uτ is the skin-friction velocity and U∞ is the free-stream
velocity). A likely cause for these disparities is the different evolution conditions for
each boundary layer. A systematic DNS study by Schlatter & Örlü (2012) re-simulated
the canonical ZPG flow with varying inflow conditions and tripping effects. Schlatter
& Örlü (2012) suggest that the mean statistics and integral parameters agree well in
the inner and outer layer for Reθ > 2000, provided transition is initiated inside the
boundary layer at a low enough Reθ (< 300, where Reθ = U∞θ/ν is the Reynolds
number based on free-stream velocity U∞, momentum thickness θ and kinematic
viscosity ν), and that under- or over-stimulation by the trip is avoided. They also
concluded that the outer region of the boundary layer requires a longer inflow length
to reach a fully turbulent state. Since direct numerical simulations are still at the
lower end of the Reynolds number range where a scale separation starts to establish
itself, currently the only way to investigate the influence of different tripping or
inflow conditions in medium- to high-Reynolds-number boundary layers is through
experiments. This is the approach used in the present study where we experimentally
study the evolution of high-Reynolds-number ZPG turbulent boundary layers from
different initial (tripping) conditions.



Evolution of zero-pressure-gradient boundary layers 381

Although researchers have long recognised the importance of initial conditions in
boundary layers, quantifiable and careful investigations of the role of the upstream
conditions on the downstream flow have been sparsely reported. One of the first
experiments performed in this area was by Erm & Joubert (1991) who investigated
the effect of various tripping conditions on turbulent boundary layers for Reynolds
numbers between 715 6 Reθ 6 2810. Erm & Joubert (1991) proposed a technique
for obtaining correctly stimulated turbulent boundary layers for a particular tripping
device by changing the dimension of the trip iteratively until the measured Coles
(1956) wake factor Π agrees with the Coles (1962) curve of Π versus Reθ . Here
2Π/κ is the maximum deviation of the mean velocity profile from the log-law in
the outer region. They also mentioned that the effectiveness of a given device in
tripping a flow could be gauged to some extent by an examination of a plot of
the associated Cf versus x relationship, where x is the streamwise distance from
the trip. Thus it was reasoned that if a given device was subjected to a series of
free-stream velocities and plots of Cf were produced for each velocity within the
range, then an examination of the entire family of plots may indicate a velocity that
will later, after further testing, be shown to be the velocity that leads to the Coles
(1962) relationship being satisfied by the flow. This was validated by Erm & Joubert
(1991) with measurements. They made it very clear that each free-stream velocity
would require a unique tripping device to properly stimulate the turbulent boundary
layers. When the velocity is changed from the design value of the trip, the resulting
deviation from the log-law is known to depart from the ideal form suggested by
Coles (1962). The degree to which this deviation changes, and also how the mean
flow parameters vary for a given Reynolds number with changes in flow velocity for
different tripping devices, is yet to be investigated. Researchers have often presented
measurements corresponding to fixed tripping configurations, but different free-stream
velocities, based on the assumption that it is only the value of the local Reynolds
number (e.g. Reθ ) that is important and not how the boundary layer was formed,
i.e. no record of boundary layer evolution is necessary (see discussion in Hutchins
2012). However, studies by Johansson & Castillo (2001), Castillo & Johansson (2002)
and Castillo & Walker (2002) showed that the mean velocity and Reynolds stress
profiles collapse only in the outer part of the boundary layer when scaled in outer
variables, provided the upstream conditions were fixed between the flows, and they
concluded that the variation in Reynolds numbers in the boundary layer is mainly
due to changes in the initial conditions.

1.1. Mean flow considerations
The classical self-similarity theory states that the mean velocity deficit profiles U+∞−U+
(U∞ is the free-stream velocity) of all ZPG boundary layers would be self-similar in
the outer region when the Reynolds number is sufficiently high. The velocity deficit is
generally expressed as a two-parameter relation utilising η = z/δ (here z is the wall-
normal position and δ is the boundary layer thickness) and the wake parameter Π
(Coles 1956). The functional form of the velocity deficit profile is as follows:

U∞ −U
Uτ

= −1
κ

ln(η)+ 2Π
κ
[1−W(η, Π)]

= f (η, Π). (1.1)

Here W is the wake profile such that W(1, Π) = 1 and it models the deviation of
the mean velocity from the logarithmic law. Note that in this definition of Π , the
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magnitude of Π represents the deviation of U+ from the log-law at y= δ instead of
the definition utilised by Coles (1956) where Π is the maximum deviation from the
log-law. The velocity deficit relation postulates that the self-similarity solution does
not depend on the local Reynolds number: in other words, there is no ‘x’ (streamwise
distance) dependence when there is a sufficient boundary layer development length.
The data surveyed over a wide range of Reynolds numbers by Coles (1962) showed
that the wake parameter Π becomes nominally constant for Reθ > 8000. The scatter
in the data at low Reynolds numbers not only led to questions about the validity
of the experiments but also motivated new theories by Castillo & Johansson (2002),
based on the ‘asymptotic invariance principle’ of George & Castillo (1997). The
principle asserts that in the limit as Re−→∞, the boundary layer equations become
independent of the friction Reynolds number (Reτ = δUτ/ν), but the effect of the
upstream conditions might be retained because the flow may always depend on them,
even in the asymptotic limit. According to Castillo & Johansson (2002), the velocity
deficit (1.1) assumes the following form:

U∞ −U
Uτ

= f (η, Π, ∗) (1.2)

(with a similar form also existing with U∞ as the velocity scale rather than Uτ ), where
‘∗’ represents the upstream conditions and retains an influence over all Reynolds
numbers, including the asymptotic high-Re case.

Another possible explanation for the scatter in the data used by Coles (1962) is
the strong dependence of Π on the method by which it is extracted from the data
and on how sensitive Π and δ are to the particular curve fit used for the outer part
of the mean velocity profile. This dependence was studied extensively by Monkewitz,
Chauhan & Nagib (2008). In recent times, the progress in quantifying the deviation
from the canonical state of the boundary layers has been encouraging; however,
more data from different facilities are required before many of the questions can
be answered satisfactorily. Considerable advances have been made by Monkewitz,
Chauhan & Nagib (2007), Nagib, Chauhan & Monkewitz (2007) and Chauhan et al.
(2009), who have proposed criteria to quantify when ZPG boundary layers are
well behaved, i.e. they are representative of the canonical state. In the canonical
state, evolution of mean flow parameters (such as Π or H) is governed only by
the self-similarity of the mean defect velocity profile in the inertially dominated
region. Their criteria are based on the assumption that the canonical asymptotic
state is attained when the wake parameter Π becomes invariant and/or the values
of skin friction and shape factor are consistent with each other in the classical
framework. Although it is satisfying that many high-quality experiments agree well
with the asymptotic turbulent boundary layer theory and satisfy the criteria outlined
by Chauhan et al. (2009), the prediction of development of boundary layers at low Re
is challenging due to the sensitivity of the boundary layer to influences immediately
upstream.

This difficult problem of how the canonical asymptotic state evolves from an
arbitrary initial condition (or a low-Re state) was first tackled by Perry, Marusic &
Li (1994) and Perry, Marusic & Jones (2002) who computed the development of the
ZPG boundary layer from a specified set of initial conditions using the momentum
and continuity equations in simplified form. This involves the hypothesis that the
total shear stress field is uniquely described by a two-parameter family. In addition,
a relation between the mean flow and shear stress parameters is required to close the
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system of equations. Perry et al. (1994) and Perry et al. (2002) have tentatively given
a closure equation based on the data sets available to them at that time and showed
that all the different evolution curves converge to a single bifurcation line, which can
be regarded as equivalent to the asymptotic curves proposed by Nagib et al. (2007)
to indicate when an evolving boundary layer becomes well behaved.

1.2. Paper outline
The main aim of the current work is to obtain high-quality data of boundary layers
that develop spatially to high Reynolds number from different initial conditions,
and to ascertain whether the boundary layers ever reach a well-defined or ‘fully
developed’ state, allowing for meaningful comparisons of scaling behaviours between
different experiments. This is done by considering three tripping devices for the
same upstream conditions in a purpose-built wind tunnel with a long (27 m) working
section. In the reminder of the paper a detailed description of the experiments is
given, followed by comparisons of the mean flow, second-order statistics, including
spectra, and high-order statistics of the streamwise velocity across the boundary layers
at multiple streamwise stations. The second main aim of the study is to see where
the classical approach such as the one developed by Perry et al. (2002) can be used
to compute the evolution of the flow in different developing states. This approach
will be summarised in § 5 and computations and comparisons to experimental data
will be presented in § 6.

2. Experimental setup
We here produce a set of detailed boundary layer measurements in a developing

turbulent boundary layer at matched inlet conditions (achieved by matching the unit
Reynolds number U∞/ν between experiments). Matched unit Reynolds number allows
measurements made at the same x location, yet acquired on different days, to have
the same Rex even if the ambient temperature is different due to daily variations.
In this case variations in friction Reynolds number, Reτ = Uτδ/ν, are attained by
measuring at increasing streamwise distances downstream of the tripped inlet to the
working section (from 1.6< x< 18 m) rather than by altering U∞ or ν. By keeping
the unit Reynolds number constant, the flow conditioning, contraction, and trip can
be considered unaltered for all measurements and hence the effect of streamwise
development can be studied in isolation from the influence of inflow conditions. By
contrast, in facilities where variation in Reτ is attained by increasing the free-stream
velocity (or reducing ν), one runs the risk of contaminating any genuine Reynolds
number development with variations in the inflow conditions. For example, in such
situations, even if the contraction, fan and flow conditioning perform similarly, and
even if the pressure gradient is carefully adjusted, the magnitude of the tripping
stimulation will increase with U∞/ν (see Erm & Joubert 1991).

2.1. Facility
The measurements were performed in the High-Reynolds-Number Boundary Layer
Wind Tunnel in the Walter Basset Aerodynamics Laboratory at the University of
Melbourne. This tunnel has a 27 m long working section, and is capable of generating
free-stream velocities of up to 45 m s−1, although all measurements here are made
at a nominal free-stream velocity of 20 m s−1. Careful upstream flow conditioning
and a three-dimensional contraction, with a reduction area ratio of 6.2, yields a
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free-stream turbulence intensity (
√

u2/U∞) of 0.05 % at the start of the working
section, and in the range of 0.15–0.2 % at x≈ 18 m (for a free-stream velocity range
of 20 < U∞ < 40 m s−1). A series of adjustable slots and panels on the ceiling of
the working section enables precise control of the streamwise pressure gradient. For
all experiments presented here the coefficient of pressure Cp along the entire working
section is constant to within ±0.87 % (for all tripping configurations). Hence these
experiments can be considered as concerning zero-pressure-gradient (ZPG) flows.
Measurements are made in the turbulent boundary layer developing over the bottom
wall of the working section. The 27 m long test surface permits the development of
thick boundary layers. For example, with a free-stream velocity of U∞ ≈ 20 m s−1,
the boundary layer thickness varies from δ = 0.06 m at x = 1.6 m from the tripped
inlet, to δ= 0.32 m at x= 18 m. The thick boundary layer enables us to attain good
spatial resolution with a conventional hot-wire probe design.

Given the limited cross-sectional area of the working section (1.89 × 0.92 m2),
compared to the very long length (27 m), careful attention was given to ensure that
the boundary layers were nominally two-dimensional in the mean for the streamwise
stations considered here. Nickels et al. (2005) report that, based on the studies of
Jones, Marusic & Perry (1995) in a separate facility with adjustable side walls, the
extra strain-rate effects due to finite working section width are negligible provided that
the tunnel is wider than six boundary layer thicknesses (6δ), which is conservatively
met to at least x = 18 m. Further tests are reported by Kulandaivelu (2012) who
conducted a spanwise survey of free-stream velocity at U∞≈ 20 m s−1 at x= 10.5 m
over a spanwise distance of 0.8 m either side of the tunnel centreline, and found
the variation to be less than ±0.35 % with no distinguishable slope in the velocity
variation across the width of the boundary layer (corresponding to over 1y ≈ 8δ at
this streamwise station). The wind tunnel also contains corner fillets throughout the
facility. Comparisons of turbulence statistics at x = 21 m, with and without corner
fillets in the working section, revealed no discernible differences, providing further
confidence that the boundary layers at all streamwise locations reported here are
nominally two-dimensional in the mean.

2.2. Hot-wire anemometery
All measurements were made using slightly modified Dantec 55P15 single-normal
boundary layer type probes with prong tip spacing of 1.5 mm. Platinum–wollaston
wires are soldered to the prong tips and etched to produce a 2.5 µm diameter
platinum sensing element of length l ≈ 0.54 mm, resulting in a length to diameter
ratio, l/d ≈ 215 (see Ligrani & Bradshaw 1987; Hutchins et al. 2009). These
sensors are driven in constant-temperature mode using in-house-designed Melbourne
University Constant-Temperature Anemometers (MUCTA) with an overheat ratio
of 1.8. The system response was verified using a square-wave electronic test to
ensure a second-order response and demonstrating a −3 dB drop-off (based on the
definition of Freymuth 1967) at 18 to 32 kHz for mean velocities in the range
0 < U < 20 m s−1. Hutchins et al. (2015) have recently shown that the temporal
performance of all optimally tuned (under-damped) CTAs may start to diminish at
frequencies lower than the −3 dB drop-off (at approximately 7–10 kHz). In this
case, however, where high Reynolds numbers are attained with relatively low speeds
and large development lengths, the frequency content of the turbulent boundary
layer is relatively low. Hutchins et al. (2009) have shown that there is negligible
energy content for f+ > 1/3 (where f+ = f ν/U2

τ and f is the frequency of turbulent
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fluctuations in Hz), which corresponds to frequencies of approximately 10 kHz for
these measurements. Hutchins et al. (2015) estimate the error due to frequency
response in the peak variance of u at zUτ/ν = 15 to be less than 0.5 % for most
anemometers provided that U2

τ/ν < 0.3 × 10−5 s−1. For the present experiments,
U2
τ/ν ≈ 0.35× 10−5 s−1.
In terms of spatial resolution, since the unit Reynolds number is everywhere

matched, the only variation in the viscous-scaled wire length l+ occurs due to the
weak variation in Uτ along the development length of the facility. At x = 1.6, the
0.54 mm long sensing element yields l+ = 25.6, falling to 22.3 at x= 18 m. Hence,
the probes can be considered to be nominally matched in terms of viscous length to
within 24± 2.

2.3. Data acquisition
The hot-wire signals were sampled at 65 kHz, using a Data Translations DT9836
analogue–digital converter. This equates to a viscous-scaled sample interval of 0.41<
1t+<0.53 for the range of experiments (1t=1/fs is the time between samples, where
fs is sampling frequency). This exceeds the minimum timescale for energetic turbulent
fluctuations (which is estimated at t+≈ 3, Hutchins et al. 2009), and thus the Nyquist
criterion is met and aliasing is unlikely to be an issue. To be sure, the fluctuating
signals are filtered at 25 kHz using a low-pass analogue filter. The total sampling
time in seconds at each wall-normal position (z) is given by T . This is normalised in
outer variables to give boundary layer turnover times TU∞/δ. For converged statistics,
these numbers need to be large, since the largest structures in turbulent boundary
layers can exceed 20δ (e.g. Kim & Adrian 1999; Hutchins, Ganapathisubramani &
Marusic 2004; Guala, Hommema & Adrian 2006; Hutchins & Marusic 2007b) and
we would typically require several hundreds of these events to flow past the hot-wire
sensor before we could expect converged statistics. In this study, the total sampling
time was set in such a way that the boundary layer turnover time was in the range
of 12 000–26 000 for all Reynolds numbers tested.

2.4. Calibration
The wires were calibrated statically against a Pitot-static tube located at the centreline
of the tunnel in the undisturbed free stream. Calibrations are performed before and
after each boundary layer traverse (referred to here as pre- and post-calibrations).
To account for calibration drift during the experiments, the probe is periodically
traversed to the free stream within the boundary layer profile measurement. At this
free-stream excursion, the mean voltage measured by the hot wire and the mean
velocity measured by the Pitot-static tube provides an additional re-calibration point
at various intervals during the boundary layer traverse. Effectively, this means that
for every six measurements during the boundary layer traverse (which consisted
of between 33 and 50 logarithmically spaced measurement stations), the probe is
re-calibrated. This procedure leads to a considerable reduction in the scatter between
repeat experiments and is described in detail by Kulandaivelu (2012) and Talluru
et al. (2014).

2.5. Tripping devices
Three flow cases were studied, corresponding to three different tripping configurations.
All trips were introduced at the inlet to the working section (at x = 0 for the axis
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FIGURE 1. (Colour online) Contour plot depicting a scanned section (10 mm × 10 mm)
of the SP40 tripping configuration (P40 grit sandpaper). The colour bar on the right-hand
side shows the distance from the mean plane (mm). Detailed specifications are given in
table 1.

system used in this paper). The initial set of measurements was performed with the
‘standard’ tripping configuration, which consisted of a strip of P40 grit sandpaper,
of length 154 mm in the streamwise direction. This trip was originally selected
for this facility to obtain nominal shape factor values for ZPG turbulent boundary
layers according to the recommendations of Erm & Joubert (1991). The next two
tripping configurations were deliberately chosen to over-stimulate the boundary layer
to study the effect of the trip on the evolution of mean flow parameters. In these
configurations, 6 and 10 mm diameter threaded rods were added at x= 0. We refer to
the sandpaper and threaded rod configurations throughout as SP40, TR06 and TR10.
Specifications of each trip configuration are given in table 1 and a representative
scan of the sandpaper topography is shown in figure 1. To obtain consistent sets of
measurements throughout the course of the investigation, reference conditions were
fixed so that they corresponded to a given reference Reynolds number per metre.
Here the nominal reference free-stream velocity for all three cases was 20 m s−1,
resulting in a reference Reynolds number per metre of U∞/ν = 1.295× 106 m−1.

2.6. Streamwise pressure gradient
Since the pressure gradient plays an important role in the evolution of turbulent
boundary layers, it is necessary to document the static pressure distribution along the
length of the tunnel floor for all tripping configurations. The coefficient of pressure,
Cp, along the working section is constant to within ±0.87 % for SP40 configuration
as indicated in figure 2. Necessary adjustments are made to the roof of the working
section to achieve the desired zero pressure gradient. The static pressure distribution
for TR10 and TR06 configurations are also in figure 2. Since the streamwise pressure
distributions for all the tripping configurations exhibit negligible acceleration or
deceleration of the flow, they can all be considered in a state of constant pressure.

3. Canonical reference case (SP40)
Table 2 collates the key experimental parameters for the set of matched-unit-

Reynolds-number experiments conducted on the turbulent boundary layer developing



Evolution of zero-pressure-gradient boundary layers 387

SP40: grit P40 sandpaper

Commercial description P40 grit sandpaper
Grit size 425–500 µm
Typical mean size (very coarse) 465 µm
Skewness 0.753 mm
Kurtosis 3.641 mm
Root-mean-square height 142 µm
Maximum peak height 825 µm
(height between the highest peak and the mean plane)
Maximum pit height 321 µm
(depth between the mean plane and the deepest valley)
Maximum height 1147 µm
(height between the highest peak and the deepest valley)
Arithmetical mean height (mean surface roughness) 113 µm
Scanning details for SP40: configuration:
Step size Y-direction 30 µm
Step size X-direction 30 µm
Percentage drop-outsa 1.67 %

TR10: 6 mm threaded rod

Thread type Male, single start
Major diameter 10.00 mm
Minor diameter 8.16 mm
Pitch 1.5 mm

TR06: 10 mm threaded rod

Thread type Male, single start
Major diameter 6.00 mm
Minor diameter 4.773 mm
Pitch 1 mm

TABLE 1. Specifications of the tripping configurations.
aDrop-outs occur in clusters at or in between roughness elements on the sandpaper.

downstream of the standard P40 sandpaper trip. This represents what has previously
been considered to be the canonical case ZPG turbulent boundary layer in the large
Melbourne wind tunnel. The SP40 will be the reference measurement to compare
with the over-stimulated cases in § 4. For all three configurations, the measured mean
velocity U is fitted to the composite profile of Chauhan et al. (2009) to determine
the local parameters Uτ , δ and Π . The log-law constants in the composite profile
are κ = 0.384 and B = 4.17. Reynolds number and integral parameters listed in
table 2, and table 3 in § 4, are calculated using the fitted composite profile. Figure 3
shows a schematic representation of the working section, showing the streamwise
measurement stations, trip location and boundary layer development. Boundary layer
traverses were conducted at 10 streamwise locations (S1 to S10) downstream of the
trip, at x = 1.60, 2.65, 3.75, 4.75, 6.3, 7.5, 10, 12.8, 17.5 and 18.9 m. The local
friction Reynolds number (Reτ ) together with local displacement-thickness Reynolds
number (Reδ∗ = δ∗U∞/ν) and the local momentum-thickness Reynolds number (Reθ )
for the SP40 trip case are also indicated for each measurement station.

Over these 10 measurement stations the boundary layer develops from a friction
Reynolds number of Reτ ≈ 2700–13 000. Such Reynolds numbers are significant
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FIGURE 2. (Colour online) Streamwise pressure gradient for a reference free-stream
velocity U∞ = 20 m s−1. The downstream distance from the trip is given in the abscissa,
whereas the ordinate denotes the variation of the coefficient of pressure in the x direction.
E, SP40; ♦, TR10; @, TR06. The static pressure was measured at 20 cm and 50 cm
intervals for the length of the tunnel floor for the SP40 configuration and TR10 & TR06
configurations, respectively.
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FIGURE 3. (Colour online) Schematic of the boundary layer development along the test
section of the wind tunnel. S1 to S10 indicate measurement stations.

in terms of real-life engineering systems. For example, at the furthest downstream
measurement station, the friction Reynolds number is equivalent to that obtained
6.7 m downstream of the nose (at the first passenger window) on a Gulfstream G550
cruising at an altitude of 14 500 m and at Mach 0.86 (Palumbo 2013). Figure 3 also
shows the mean velocity profiles developing downstream of the P40 trip, plotted as
U/U∞ versus z, clearly demonstrating the growth in boundary layer thickness and
fullness of the profile as x increases. The dash-dotted line on this plot shows the
growth in boundary layer thickness δ, which exhibits a seemingly linear behaviour
with x for this particular configuration. In this study the boundary layer thickness
δ, the skin-friction velocity Uτ and the wake parameter Π are determined using the
composite velocity profile fit of Chauhan et al. (2009).

Figure 3 also shows the contour of the outer limit of the overlap region, typically
considered to be 0.15δ, as the dashed line. This is helpful in realising that in the actual
measurements the overlap region spans a small fraction of the total boundary layer
thickness. If the Reynolds number is increased by increasing the free-stream velocity
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FIGURE 4. (Colour online) (a) Inner-normalised mean velocity profiles corresponding to
the 10 streamwise hot-wire measurements acquired for the SP40 configuration. Straight
line indicates the log-law U+ = 1/0.384 ln(z+) + 4.17, (b) mean velocity defect profiles.
Straight line corresponds to (U∞ −U)+ = 2.3− 1/0.384 ln(z/δ), (c) streamwise Reynolds
normal stress u2+ versus z/δ on log-scale. Filled symbols indicate the peak magnitude of
u2 for each profile. The solid straight line corresponds to (3.1), and the dashed line is
from (3.2), where the slope is as reported by Lee & Moser (2015), (d) u2+ versus z/δ
on linear axes.

then the outer limit of the log-law indicated in figure 3 will move further towards
the wall, making the task of accurately resolving velocities in this region even more
challenging.

Figure 4(a) shows the measured mean velocity profiles normalised in wall units.
As mentioned above, the friction velocity Uτ is determined by fitting the data to
the composite velocity profile of Chauhan et al. (2009) (with log-law constants κ =
0.384 and B = 4.17), and hence the collapse of the data on to the logarithmic law,
marked by the straight line in figure 4(a), is forced. However, figure 4(a) demonstrates
that the mean velocity profiles have a pronounced region of logarithmic behaviour
at all measurement stations. This is reinforced by the velocity defect plots shown in
figure 4(b) where a reasonable collapse to the logarithmic law is also seen for all
profiles.

Figure 4(c) shows the profiles for u2 normalised by U2
τ against the outer-scaled

wall-normal height z/δ that correspond to the 10 mean velocity profiles in figure 4(a)
for the SP40 configuration. A good outer-scaling collapse is observed for nominally
z/δ > 0.1. For the logarithmic region the u2/U2

τ profiles appear to reasonably well
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follow the logarithmic behaviour

u2

U2
τ

= B1 − A1 ln(z/δ), (3.1)

as most recently discussed in Marusic et al. (2013), with A1= 1.26 and B1= 1.95. At
higher Reynolds numbers the region over which (3.1) is valid increases (see figure 2
of Marusic et al. 2013). As expected, in the near-wall region, outer scaling does
not apply; however, with inner scaling (z+ = zUτ/ν) a Reynolds-number independent
scaling for u2/U2

τ is not achieved either. The peak of u2/U2
τ is seen to clearly increase

with increasing Reynolds number, consistent with what has been extensively reported
in the literature, e.g. DeGraff & Eaton (2000), Hutchins et al. (2009), Klewicki
(2010), Marusic et al. (2010b) and others. The location at which the peak occurs
(zmax) is considered to be fixed in the inner scaling, i.e. z+max ≈ 15 for ZPG turbulent
boundary layers, and hence zmax/δ moves to the left with increasing Reynolds number
in figure 4(c). The peaks are indicated by the filled symbols. A least-squares-error
curve fit of these 10 points to the relation

u2
max

U2
τ

= B2 − A2 ln(zmax/δ) (3.2)

returns A2 = 0.7 and B2 = 3.9, which is generally consistent with results reported by
Inoue et al. (2012). Recently, Lee & Moser (2015) surveyed DNS channel flow data
up to Reτ = 5200, and reported a best fit of the peak variance results to be u2+

max =
3.66 + 0.642 ln(Reτ ). The dashed line in figure 4(c) corresponds to (3.2) using the
same slope as that of Lee & Moser (2015) (A2 = 0.642; B2 = 4.26), and it is seen
to be in good agreement to within the experimental uncertainty of the measurements.
It is noted that such a comparison of A2 between DNS and the experiments here is
only possible because we have maintained a fixed sensor length in wall units for all
measurements (l+ ≈ 24). While the additive constant (B2) is not expected to match
the DNS results, as the limited sensor length will involve some attenuation of u2+,
the slope of (3.2) should not change with the reasonable assumption that the energy-
contributing scales not resolved fully with a sensor of l+≈ 24 scale with viscous wall
units (Chin et al. 2009; Marusic, Mathis & Hutchins 2010a). Similarly, figure 4(d)
shows the profiles for u2 against the wall-normal distance z/δ in linear scale. The outer
similarity of normalised u2(z) with Uτ and δ as velocity and length scales, respectively,
is evident in this figure.

The results presented so far for the SP40 configuration will suffice to establish that
these measurements represent the canonical zero-pressure-gradient turbulent boundary
layer and are in very good agreement with the known scaling behaviour for U and
u2. Other results for this configuration will be discussed in comparison with the TR06
and TR10 configurations.

4. The over-stimulated boundary layers – TR06 and TR10
In this section we examine the evolution of the boundary layers that are

‘over-tripped’ by adding 6 and 10 mm threaded rods to the sandpaper trip (TR06
and TR10 configurations respectively). The mean flow parameters for TR06 and
TR10 configurations are listed in table 3. Measurements were performed at eight
and six streamwise locations for the 6 and 10 mm threaded rod trips, respectively.
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The streamwise locations that are common to all three trip configurations (SP40,
TR06 and TR10) are indicated by bold notation in the table. The boundary layer
thickness δ, skin-friction velocity Uτ and the wake parameter Π are determined using
the composite velocity profile fit of Chauhan et al. (2009) as was done for the SP40
configuration. The perturbations introduced by the threaded rods are more abrupt than
those emerging from the sandpaper, resulting in larger boundary layer thicknesses
at a given x. Since the incoming unit Reynolds number (U∞/ν) is the same for all
three configurations, Rex is the same at a particular streamwise location. However the
changes in δ (and integral thicknesses) result in the TR06 and TR10 configurations
having a much higher friction Reynolds number than SP40 for x6 10 m. Hence these
two configurations represent over-stimulated boundary layers.

4.1. Mean velocity
Figure 5(a) shows the mean velocity profiles using inner normalisation at four
different streamwise locations. Profile measurements for all three trips are available
at these four locations and hence a direct comparison can be made. The agreement
of the U+ versus z+ profiles for all three configurations in the logarithmic region
and below is expected since the inner normalisation utilises Uτ determined from a
composite profile fit. However at Station S1 significant differences are observed in the
outer wake region. Noticeably, U+ in the wake region for SP40 is higher than TR06,
which in turn is higher than TR10. Hence TR06 and TR10 configurations have a
smaller value of Π than SP40 at Station S1. This systematic deviation persists further
downstream at Stations S4 and S6, although the severity of the deviation is observed
to lessen with increasing streetwise distance. At the last common station of Station
S8 we observe that all three profiles are in good agreement with each other in terms
of wake strength although the TR10 case has a greater boundary layer thickness than
TR06 and SP40. Hence we can conclude that the threaded rods as transition triggers
over-stimulated the boundary layer such that the scaling of the mean velocity in the
wake region is altered. We emphasise here that the streamwise length required for the
over-stimulated boundary layers to recover to a canonical state is specific to the flows
considered here. A larger trip than TR10 will invariably require a longer recovery
length.

In the inner region, all the profiles in figure 5(a) are seen to agree following the
law of the wall. However, it should not be inferred that differences in the three cases
(SP40, TR6 and TR10) are confined only to the outer region. The influence of a
different trip is felt throughout the boundary layer and this is readily seen if one
considers the defect profiles, as shown in figure 5(b). We find that at Station S1, the
defect throughout the layer is highest for SP40 while it is relatively the lowest for the
TR10 case. This implies that the profiles for TR06 and TR10 trips are ‘fuller’ and the
mean velocities in the outer region are closer to the free stream in these cases. The
systematic deviations observed in the defect profiles decrease with increasing x and
eventually the outer similarity is regained by Station S8. It is only due to the change
in corresponding Uτ that we see collapse in U+ versus z+ in the inner region. Outer
scaling does not exist at low x because we have perturbed the boundary layer in the
outer region.

Based on figure 5(a,b) we can conclude that an obvious effect of different trips is
to modify the mean flow immediately downstream of the trip. The mean boundary
layer in the three configurations becomes identical further downstream, as marked by
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FIGURE 5. (Colour online) Comparison of mean velocity profiles for the three trips at
four streamwise locations.u, SP40;q, TR06;p, TR10. Note the vertical shift in profiles.

the collapse of inner- and outer-scaled velocity profiles. The rate at which the over-
stimulated boundary layers return to the canonical state depends on the incoming free-
stream velocity and type of trip. In this study the TR06 configuration approaches the
canonical state faster than the TR10. This point is elaborated on later.

4.2. Streamwise Reynolds normal stress

The changes to the streamwise Reynolds normal stress u2 are examined in figure 6.
The widely accepted inner scaling by U2

τ for u2 is utilised here and again we find that
the three profiles deviate considerably from each other at Station S1 downstream of
the trip. The increased Reτ values for the TR06 and TR10 cases are evident towards
the edge of the layer where u2→ 0. In the logarithmic region, unlike U+ versus z+

in figure 5(a) where a collapse of profiles was observed, the u2/U2
τ profiles are seen

to diverge. Close to the wall (in the vicinity of z+ = 15) the observed differences
are relatively small, but the peak value for TR10 at Station S1 is distinctly higher.
This indicates that the large-scale perturbations introduced in the outer part by the
threaded rod change the structure of turbulence in the bulk of the layer, and the
influence of these large scales appears to be felt well into the near-wall region during
the initial development of the highly over-stimulated boundary layers (this will be
shown more clearly when comparing spectra in § 4.4). Further downstream at Station
S4 the deviation of profiles from each other is smaller than that seen at Station S1 but
noticeably larger in the wake region. The profiles agree well with each other in the
near-wall and logarithmic region at Station S6 but small differences still exist near the
edge of the layer. It is clear that differences in the turbulence structure persist longer
in the outer region, similarly to the differences in the mean velocity in figure 5(a).
Finally, by Station S8 all profiles show an agreeable collapse and the three boundary
layers appear to be similar. Thus we find that for the same Rex (by keeping x the
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FIGURE 6. (Colour online) Comparison of u2 for the three trips at four streamwise
locations.u, SP40;q, TR06;p, TR10. Note the vertical shift in profiles by 2 units.

same) the three trip configurations result in three different states of the boundary layer
with respect to the structure of their mean velocity and streamwise normal Reynolds
stress. Reynolds number similarity clearly does not hold in the downstream region of
the trip. Only after a certain development length do the over-stimulated flows ‘relax’
to a state that can be classically considered as canonical. In our study, for the chosen
trip configurations this development length is at least 12.8 m, corresponding to Rex=
1.7× 107 and up to O(2000) trip-height lengths.

4.3. Comparisons at matched local Reynolds number
Above, comparisons were shown at matched Rex, and it is worthwhile to also consider
the similarities and differences at matched local Reynolds numbers. Figure 7 shows
comparisons of the above statistics at a nominally matched Reτ ≈ 8000. For the mean
flow, the profiles of SP40 at x = 10 m, and TR06 at x = 7.5 m are seen to match
very well, although small differences remain for u2+ suggesting that remnants of
the initial tripping conditions persist. In the case of the highly over-tripped TR10
flow at x = 4.75 m both the mean velocity and the normal Reynolds stresses are
seen to be notably different to the SP40 case, with a greatly reduced wake region
for the mean flow, and a u2+ profile that has a slightly smaller peak value at
z+ ≈ 15 and a less full outer region, which at face value would be interpreted as a
breakdown of Townsend’s outer-layer similarity hypothesis. Before proceeding further
it is noted the comparisons in figure 7(a–c) are not for perfectly matched values of
Reτ . Therefore, the results of a check are shown in figure 7(d) where the streamwise
stations of the three flows on either side of Reτ = 8000 were interpolated to obtain
an estimated profile at Reτ = 8000. For example, the profile for TR10 in figure 7(d)
was obtained by linear-interpolating the u2+ profiles at matched values of z/δ for
profiles at x = 1.6 m, Reτ = 5850 and x = 4.75 m, Reτ = 8680, weighted on Reτ .
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FIGURE 7. (Colour online) Comparison of statistics for the three flows (u, SP40; q,
TR06; p, TR10) at a nominally matched Reτ ≈ 8000. (d) A linear interpolation of data
based on Reτ between streamwise stations presented in tables 2 and 3 for Reτ = 8000.

The trends in figures 7(c) and 7(d) are seen to agree and therefore we conclude that
the differences in the Reτ values for the profiles in figure 7(a–c) is not the cause of
the different trends noted. Rather, the lack of agreement between figures 7(c) and 7(d)
is clearly due to the under-developed states of the over-stimulated boundary layers.
This serves as a stark warning when comparing different experimental results based
on matched Reτ without consideration of the tripping conditions and evolution of the
boundary layers. A further complication when considering Reynolds-number similarity
in comparisons of different experimental results is what local Reynolds number to
consider. In the wall turbulence literature Reθ is commonly used and figure 8 shows
the same comparisons as in figure 7 but here for nominally matched profiles at
Reθ ≈ 10 400. Curiously, the results show that while the u2+ profiles appear to be
in nominal agreement, apart from a departure of the TR10 results in the outermost
region of the flow, the mean flow profiles show distinct differences. These results
further highlight the pitfalls of comparing statistics at matched Reynolds numbers if
the boundary layers have not recovered from inappropriately chosen trips. In these
cases it is clear that there is no one-to-one correspondence between Reτ , Reθ or Rex.
These issues will be considered further in § 6.
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FIGURE 8. (Colour online) Comparison of statistics for the three flows (u, SP40, Reθ =
10 680; q, TR06, Reθ = 10 410; p, TR10, Reθ = 10 250) at a nominally matched Reθ ≈
10 400.

In order to gain insights into the differences in u2 observed above it is useful to
consider the contributions from different length scales of turbulent motions using pre-
multiplied spectra, and this is done in the following.

4.4. Pre-multiplied spectra
Figure 9 shows pre-multiplied spectra of streamwise velocity, kxφuu, as contour
plots for each of the three trips at four streamwise locations, where the streamwise
wavelength λx is used. At all x locations in figure 9 the similarity of kxφuu/U2

τ is
evident near the wall at all but the largest scales. For reference, ‘+’ is shown on
each plot at z+ = 15 and λ+x = 1000, the reported location of the inner peak in the
spectrogram (del Alamo et al. 2004; Hutchins & Marusic 2007a), which corresponds
to the location of the inner peak of u2/U2

τ . The agreement seen in this near-wall
region reinforces our interpretation that the influence of the wall is identical in these
three boundary layers.

In contrast, in the outer region the pre-multiplied spectra are seen to have different
characteristics, especially at smaller x locations. At Station S1, finite magnitudes of
kxφuu are present for TR06 and TR10 at higher z+ than for SP40, consistent with
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FIGURE 9. (Colour online) Pre-multiplied spectra of the streamwise velocity signal for
the three trips. Each row is for a particular trip: (a–d) SP40, (e–h) TR06, (i–l) TR10.
Each column is for a particular x location: (a,e,i) S1, (b,f,j) S4, (c,g,k) S6, (d,h,l) S8.
+ indicates λ+x = 1000 and z+ = 15, while × indicates λx/δ = 6 and z+ = 3.9Re1/2

τ .

the increased Reτ values. Hutchins & Marusic (2007a) reported that an outer peak
in the u-spectrogram emerges at higher Reynolds numbers, and its location was later
clarified by Mathis, Hutchins & Marusic (2009) to occur at z+≈3.9Re1/2

τ and λx/δ≈6;
this location is marked by ‘×’ for reference in all plots. The outer spectral peaks
for the SP40 cases here appear to follow this quite well; however, it is noted that
controversy remains as to the precise location and scaling of this outer spectral peak
(see for example, Rosenberg et al. 2013; Vallikivi, Ganapathisubramani & Smits 2015)
and the mark ‘×’ is used here purely as a reference for three flows.

At Station S1 the outer peak is minimal for the SP40 configuration due to the low
Reynolds number at this location. However, an outer peak does appear for the TR06
and TR10 configurations (more prominent for the TR10), but with the additional
contributions being of shorter wavelength (closer to λ+x ≈ 3Reτ ), and seemingly
occurring close to the wall. These additional contributions explain the increased
u2/U2

τ observed in figure 6, and are consistent with the notion that the bigger trips
have artificially aged and thickened the boundary layers. It is noted that the peak for
TR10 appears distinctly while that for TR06 resembles a plateau that is connected
to the inner peak. As the flows evolve downstream the outer peaks for the three
flows seem to converge, and by Station S8 the spectrograms for all three trips appear
similar in shape and magnitude.

It is deduced that the presence of a threaded rod at the trip location introduces large-
scale disturbances in the low-Re boundary layer. These large-scale disturbances reside
predominantly in the outer part of the boundary layer. A possible explanation is that
these large scales either originate from or are amplified by the periodic shedding of
the wake behind the rod. The presence of such energetic motions due to the abrupt
tripping of the boundary layer is manifested as the outer peak in the spectrogram at
low Rex, while at the same Rex such large scales are absent in the SP40 case.
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FIGURE 10. (Colour online) Excess energy content seen in pre-multiplied spectra of the
streamwise velocity signal. Each column is for a particular x location: S1 (a,c) and S8
(b,d). Each row is for a particular difference between trip configurations: TR06 – SP40
(a,b) and TR10 – SP40 (c,d). Colour-bar levels indicate differences in kxφuu/U2
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The differences observed between different trip configurations for the pre-multiplied
spectra in figure 9 can be more clearly studied if we consider the difference in
magnitude of kxφuu at matched Rex and at a particular z and λx. Such differences are
plotted in figure 10. Figure 10(a) shows contours of the difference in kxφuu between
the SP40 and TR06 configurations at Station S1. The dimensional magnitude of
kxφuu is determined at a wall-normal height z and wavelength λx for the SP40 and
TR06 spectrograms. Thereafter the magnitude of SP40 is subtracted from that of
TR06. The result is non-dimensionalised using δ and Uτ of the SP40 configuration at
Station S1. Similarly, figure 10(c) plots contours of the differences in spectrograms
between SP40 and TR10 at Station S1, again utilising parameters of SP40 for
non-dimensionalisation. It is clearly seen that the TR06 and TR10 configurations
have significant excess kinetic energy in the outer region at Station S1. This excess
energy is present in a wide range of scales 0.1 6 λx/δ 6 100 but pre-dominantly
concentrated near λx/δ≈ 10, with the peak difference occurring at λx/δ≈ 6, z/δ≈ 0.8,
placing it well into the intermittent region of the boundary layer that typically spans
0.46 z/δ61. Thus the threaded rod trips significantly influence the intermittent region
of the boundary layer by introducing large-scale motions in this region. The excess of
energy is larger for TR10 than for TR06, implying that the physical dimensions of the
trip have a direct influence on the turbulence in the outer region. These observations
for the scale-wise energy content in the outer part complement the observations for
the changes in the mean velocity and streamwise normal stress seen earlier. The small
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increase in the near-wall peak of u2/U2
τ for TR10 at Station S1 is seen to come from

the introduced large scales penetrating all the way down to the wall. This additional
large-scale energy in the near-wall region is likely to also play a role in modulating
the small scales near the wall (Mathis et al. 2009; Ganapathisubramani et al. 2012).
An additional interesting feature to note in figure 10(a,c) is the region of reduced
energy in the vicinity of λx/δ ≈ 0.7 and z/δ ≈ 0.2. This decrease in energy for the
large scales near the outer edge of the log-region is not understood yet, but suggests
a transfer of energy at the edge of the log-layer from wavelengths of order δ to much
longer wavelengths.

Complementary to figure 10(a,c) we show the difference in scale-wise energy
content at Station S8 in figure 10(b,d). As one would anticipate based on the
agreement of mean velocity profiles in figure 5(a), variance in figure 6 and the
spectrogram in figure 9(d,h,l), the differences in energy content at any particular
wavelength are now quite small. However, for TR10, at Station S8, there is still a
clearly observable, though now weakened, region of excess energy centred in the
range λx/δ ≈ 6–10 and extending from the wall to the edge of the layer.

4.5. Higher-order moments
Above, we have observed that the effects of ‘over-tripping’ diminish as the boundary
layers develop over the length of the plate, and as seen in figures 5 and 6, the
second-order statistics appear to agree for different trips once both the mean velocity
and defect velocities converge to the same respective profiles. This is perhaps
surprising as one might intuitively expect that a higher-order statistic would require
a longer development length to recover from a perturbed state (i.e u2 should be
more sensitive than U). As noted above, this does not appear to be the case. To test
this further we consider higher-order statistics up to tenth order, but for brevity we
only show the third- and eighth-order statistics to document the representative trends.
These results are shown in figure 11 in the form of the skewness Su= u3/(u2)3/2, and
(u8)1/4 following the work of Meneveau & Marusic (2013), who showed that even
moments represented in this way have a logarithmic behaviour with distance from the
wall in the log-region of fully developed ZPG flows, and this is seen to be the case
for the SP40 profiles. Comparison between the profiles in figures 11 and 6 indicates
that the recovery length required for the statistics to become independent of the trip
is not dependent on the order of the statistic (at least not up to tenth order), with all
statistics nominally agreeing by Station S8. This suggests that while the larger trips
introduce additional length scales into the flow, these perturbations and interactions
relax as the boundary layer evolves downstream, and once they have decayed to
the point of not further influencing the mean velocity profiles, their influence also
appears to be negligible for the higher-order statistics. This finding implies that in
order to determine if a flow has sufficiently recovered from a trip and reached a
canonical ZPG boundary layer state, then only information about the evolution of
the mean velocity profile is required. This is particularly advantageous as a reliable
computation scheme can be developed for mean flow evolution, and this is considered
in the following section.

5. Computing the evolution of turbulent boundary layers
The evolution of the mean flow for ZPG turbulent boundary layers at high Reynolds

numbers can be computed in a number of ways, the most common approaches being
RANS (Reynolds-averaged Navier–Stokes), CFD and large-eddy simulation. In those
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trips at four streamwise locations.u, SP40;q, TR06;p, TR10. Note the vertical shift in
profiles.

cases, however, models with multiple parameters are required together with a chosen
grid, and the computations yield velocity profiles. Here, we are interested in mean
flow parameters themselves (i.e. shape factor H, Coles wake factor Π etc.) and these
can be directly computed using an integral equation approach described by Perry
et al. (2002). For this one requires a closure formulation for the unknown Reynolds
shear stresses to solve the Reynolds-averaged Navier–Stokes equations, and here we
adopt a scheme similar to that developed by Perry et al. (1994). Jones, Marusic
& Perry (2001) utilised such a closure formulation to evaluate the development of
sink-flow boundary layers and showed good agreement of the calculated evolution
with experiments. The objective here is to use the same set of closure formulations
to compute the evolution of a boundary layer under zero pressure gradient from a
given set of initial conditions.

The procedure involves the hypothesis that the total shear stress profile is uniquely
described by a two-parameter family for a zero-pressure-gradient flow. In addition,
a relation between the mean flow and shear stress parameters is required to close
the system of equations. The equations that govern the streamwise evolution of
a turbulent boundary layer can be found after considerable algebra by using the
momentum integral and differential equations, the mean continuity equation, the log
law of the wall and law of the wake. A more detailed explanation is given in Perry
et al. (1994, 2002) and Jones et al. (2001) and therefore we only summarise the
equations relevant to the results presented, for brevity.

5.1. Derivation of evolution equations
As described in Perry et al. (1994) and Perry & Marusic (1995), the total shear stress
profile can be based on four non-dimensional mean flow parameters which describe
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the state of the turbulent boundary layer:

Π, S= U∞
Uτ

, β = δ
∗

τ0

dp
dx
, ζ = Sδ

dΠ
dx
. (5.1a−d)

Here Π is the wake parameter, S is the skin friction parameter, β is the pressure
gradient parameter, where p is the mean static pressure, and ζ is the non-equilibrium
parameter. These parameters come from the mean momentum equation with the
assumption that the mean velocity deficit profile is defined as a two-parameter family
of the following form:

U∞ −U
Uτ

= f
( z
δ
, Π
)
. (5.2)

A coupled set of ordinary differential equations results (see Jones et al. 2001):

dS
dRex

= χ [Rex,K] R[S, Π, ζ , β]
S E[Π ] exp[κS] , (5.3)

dΠ
dRex

= ζ χ[Rex,K]
S2 E[Π ] exp[κS] . (5.4)

The functional forms of R[S, Π, ζ , β] and E[Π ] are given in detail in Jones et al.
(2001) and Perry et al. (2002). Also,

χ [Rx,K] =U∞(x)/U0, (5.5)

K = ν

U2∞

dU∞
dx
= 0, (5.6)

where U0 is the reference free-stream velocity (free-stream velocity at the streamwise
location of the trip, i.e. U0 =U∞[x= 0]). In the case of ZPG flows U0 =U∞, β = 0
and K = 0 since dU∞/dx = 0. Therefore, in summary, the evolution equations (5.3)
and (5.4) are functions of three mean flow parameters only: S, Π and ζ . However,
this leaves two equations with three unknowns. In order to close this problem, there
needs to be one more equation, and in the absence of new theory that equation must
be obtained empirically as a function of S, Π and ζ . This semi-empirical equation is
termed the ‘closure equation’.

5.2. Closure formulation for ZPG flows
The restricted formulation of Perry et al. (1994) will now be extended with the effect
of the parameter ζ included so that the non-equilibrium flow problem can be solved.
Hence, following Perry et al. (2002),

F[Π, S, β, ζ ] = 0 ⇒ F[Π, S, ζ ] = 0. (5.7)

It is assumed that no further parameters are involved in (5.7) and F is universal.
Mapping out (5.7) from experimental data would help us to find the state of the
developing boundary layer. As mentioned previously, the shear stress profile can be
expressed by using these three mean flow parameters, Π , S and ζ . Figure 12 clearly
shows that the variation of shear stress profiles with S is only marginal, even over
a very large range of S. Since all the experimental data fall between S values of
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FIGURE 12. (Colour online) Total shear stress profiles computed using the closure
formulation of Perry et al. (1994) for varying values of S=U∞/Uτ .

20 to 40, it is very clear that we can approximate that the influence of S is small.
Therefore, the variation in S is neglected and (5.7) is reduced to a two-parameter
family of the following form:

F[Π, ζ ] ≈ 0, (5.8)

or
ζ = f [Π ], (5.9)

which we will attempt to find empirically.

5.3. Log-law of the wall and wake formulation
Before determining the functional form of (5.9) a note on the definition of Π is
necessary. One can find many log-law of the wall and wake formulations in the
literature, e.g. Coles (1956), Moses (1964), Lewkowicz (1982), Jones (1998), Nickels
(2004) and more recently Chauhan et al. (2009). As described earlier, the composite
profile of Chauhan et al. (2009) was used to fit the experimental data in order to
obtain the parameters Π , δ and Uτ , and therefore for consistency we continue to use
their wall-wake formulation here, which is given by

U
Uτ

=U+inner(z
+)+ 2Π

κ
W(z/δ), 0 6 z 6 δ, (5.10)

where the inner function is essentially the near-wall formulation of Musker (1979)
that approaches the logarithmic law with slope κ = 0.384 and additive constant
B = 4.17 in the range z+ > 100, and the wake function W takes the form of an
exponential function. It should be noted, however, that any convenient formulation
of the logarithmic profile coupled with a wake function can be used in the closure
formulation of Perry et al. (1994) and Perry & Marusic (1995). The parameter Π in
the theory is not bound to a particular choice of wake function.
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FIGURE 13. (Colour online) Variation of the non-equilibrium parameter ζ with wake
parameter Π for experimental ZPG boundary layer measurements. Symbols are: ∗, Erm
(1988);D, Klebanoff & Diehl (1951);B, Nagano et al. (1993); ×, U∞ = 37 m s−1 data
of Österlund (1999); +, U∞= 42 m s−1 data of Österlund (1999);u, SP40;q, TR06;p,
TR10. Solid line is (5.12).

5.4. Functional form for ‘closure’ equation
In order to evaluate the evolution of the ZPG boundary layer a general expression is
required for (5.9), i.e.

ζ = f [Π ]. (5.11)

Although the attached eddy model of Perry et al. (1994) can assist us for quasi-
equilibrium flows, at the present time we still require a model for finite ζ values.
The answer can be found empirically provided enough experimental information is
available. Here we require experiments where a constant free-stream velocity U∞ was
maintained at different streamwise stations x to obtain different Reynolds numbers,
and unfortunately only a limited number of previous studies satisfy this requirement.
In figure 13 we compile data that is available from the studies of Klebanoff & Diehl
(1951), Erm (1988), Nagano, Tagawa & Tsuji (1993) and Österlund (1999), together
with the present data from the three trips. A curve fit to (5.11) is obtained, given by

ζ = 0.1862× erfc[(Π − 0.2544)× 4.935] − 0.0517. (5.12)

Here the flow cases that have ζ > 0 are identified as developing flows and the
flow cases where ζ < 0 are identified as relaxing flows. Previously Perry et al. (2002)
proposed two closure equations corresponding to the relaxing and developing cases
but it is deemed unnecessary for ZPG flow to have two functional forms for (5.11),
as it is evident from figure 13 that all the discrete data appear to agree reasonably
well with the proposed fit (5.12).

6. Comparison of computed evolution with experimental data

When comparing results from different sources it is important to have consistent
definitions for the various measured quantities. Thus, in an effort to ease comparability,
certain parameters such as δ, Uτ , H and Cf have been recomputed in a consistent
manner for all data sets presented in this study. This is particularly important for
the wake parameter Π . Figure 14 shows the evolution of mean flow parameters
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FIGURE 14. (Colour online) Comparison of experimental boundary layer parameters with
computed evolution. (a) Π versus Rex. Dashed line is the asymptotic limit of Π according
to the definition of Chauhan et al. (2009); Π→ 0.42; (b) Cf versus Rex. Dashed line is
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−1; (d) Reθ versus Rex. See figure 13 for explanation of symbols.

compared with the predicted evolution solution computed using (5.3), (5.4) and
(5.12). All measurements shown here were taken at a nominally constant free-stream
velocity (U∞) and the increase in Reynolds number is achieved by increasing x.
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In order to compute the analytical evolution, the initial conditions for Π and S have
to be specified, and this is done at the lowest-Reynolds-number measurement in a
particular data set. For example, the initial conditions of the lowest-Reynolds-number
measurement (at Reτ = 2730) are assigned to compute the analytical evolution for the
tripping configuration SP40.

Figure 14(a) shows the evolution of Π and good agreement is observed between
the experimental data and the computed evolutions (solid lines). For SP40, the flow
is seen to be relaxing because the wake parameter starts at a slightly higher value
initially and then approaches a constant as Rex increases. This could be because the
mean height of the roughness elements on the sandpaper trip are smaller than the
incoming boundary layer height and therefore the transition is triggered within the
layer, resulting in a weakly under-stimulated boundary layer (or the development of
an internal layer). A cursory inspection of the mean velocity profiles does not seem
to indicate this behaviour; however, the computed evolution captures this relaxing
tendency very clearly. In the TR10 and TR06 cases, the flows are developing and
as the Reynolds number increases the Π values increase and approach a constant.
For both these trips the transition is triggered by introducing large-scale perturbations
emerging from the wake behind the threaded rod. Thereby, the relative size of these
perturbations is of the same order as the incoming boundary layer thickness. Hence
these trips over-stimulate the flow and have fuller velocity profiles, resulting initially
in smaller wake regions.

It is noted that the results in figure 14(a) show that even by Station S8 (Rex ≈
2× 107) the Π values have not yet strictly converged. The computed evolution curves
indicate that for the Π values for the three tripping configurations to all agree within
4 % requires Rex ≈ 7 × 107 (corresponding to U+∞ ≈ 33 and x ≈ 54 m), which is
well beyond the length of the facility. These results indicate that the trip does have a
considerable effect in the wake region, not only for the low-Reynolds-number flows
as suggested by Coles (1962) and Erm & Joubert (1991), but also at substantial Rex.
According to Coles (1962), Π is observed to drop for Reδ∗ < 5000, and he described
this as a low-Reynolds-number effect. However, here we see that this trend is better
described as an evolution effect resulting from the initial conditions set up by the trip
and/or the initial inflow conditions.

Also shown in figure 14(a) is the computed evolution for the data of Klebanoff &
Diehl (1951), Erm (1988), Nagano et al. (1993) and Österlund (1999). In the case
of Österlund’s 32 m s−1 data and 43 m s−1 data, the flow is under-stimulated and
the computed evolution predicts the Π trend reasonably well. The remaining data
have over-stimulated flow and their corresponding development is again well predicted
by the computation (solid lines). As a concluding comment for figure 14(a), it is
found that any reasonable definition of Π used in the analysis of the experimental
profiles does not change the trends seen in the figure, but only results in some shift
in magnitude (value of Π ) (see Chauhan, Nagib & Monkewitz 2007).

Figures 14(b), 14(c) and 14(d) show, respectively, the variation of friction
coefficient Cf = 2(Uτ/U∞)2, shape factor H = δ∗/θ , and Reynolds number based
on momentum thickness, Reθ , versus Rex, and again all the experiments considered
in this study agree well with the computed evolution. The dashed line in figure 14(b)
is Schlichting’s relation modified according to Nagib et al. (2007); given as
Cf = [2 log10(Rex) − 0.65]−7/3 (Schlichting 1960). Tripping configurations TR10 and
TR06, where the flow is over-tripped, as well as SP40, where the boundary layer
seems to be under-stimulated, exhibit behaviour that deviates from the canonical ZPG
case at low Rex. A distinctly noticeable deviation of Cf from the canonical behaviour
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is also observed for the data of Klebanoff & Diehl (1951) (where a 0.04 in. rod was
used as the trip). However, even in these cases the computed evolution still accurately
predicts the Cf development.

The shape factor H is an integral parameter that can be considered as an
independent criterion, since it offers a direct assessment of measured profiles without
any assumptions or reliance on theory and independent wall-shear measurements.
Figure 14(c) also shows the comparison between the equation for H provided in
Chauhan et al. (2009) and the computed evolution for different experiments. The
data points for Erm (1988) at low Reynolds number deviate from the dashed-curve of
Chauhan et al. (2009) for canonical behaviour of H and likewise the non-canonical
cases of TR06 and TR10 deviate considerably from the curve at high Reynolds
numbers. However, the computed evolution captures the trend of the experimental
data quite well. The comparison of Reynolds numbers in figure 14(d) emphasises
that there is no one-to-one correspondence between Reynolds numbers as long as the
remnants of the initial conditions persists in a given ZPG flow.

While the present experimental results are limited to one free-stream velocity, it is
expected that similar qualitative trends will emerge for other free-stream velocities
and that an account of the boundary layer evolution is needed in all cases. The overall
results in figure 14 highlight that matching one Reynolds number does not guarantee
similar states of two different ZPG flows. It is clear that non-equilibrium effects
introduced in the boundary layer at any stage not only cause the flow to deviate from
the canonical state but also have an influence on its growth immediately downstream
at low Reynolds number. The good news, though, is that the above results indicate
that the streamwise evolution of ZPG turbulent boundary layers can be computed,
provided the appropriate upstream initial conditions are specified.

7. Conclusions
Measurements were performed in the large University of Melbourne wind tunnel

to study the spatial evolution of zero-pressure-gradient turbulent boundary layers
from their origin to a high-Reynolds-number state. Careful attention was given to
the experimental procedures in order to make comparisons between flows with three
different trips while keeping all other parameters nominally constant, including the
pressure gradient and keeping the measurement sensor size nominally fixed at l+≈ 24.
The three trips consist of a standard sandpaper trip (SP40) and two cases where
additional threaded rods of 6 mm (TR06) and 10 mm (TR10) diameter are added.
The SP40 case was regarded as the standard case and measurements at 10 different
streamwise stations covering a range 2700 < Reτ < 13 000 showed good agreement
with the known scaling behaviour for mean flow and streamwise Reynolds stresses
described in the literature (Smits, McKeon & Marusic 2011). The near-wall peak
value in u2+ at z+ ≈ 15 is found to follow a log-linear dependence with Reτ with
a slope consistent with that recently reported from DNS results by Lee & Moser
(2015).

Since U∞/ν was held constant for all cases, comparisons at matched streamwise
distance from the trip (x) correspond to matched Rex. The TR06 and TR10 cases were
found to have significant differences to the SP40 case for U+ and u2+ at low Reynolds
number, particularly in the outer region of the boundary layer, with the larger trip
(TR10) resulting in larger deviations from canonical behaviour. Comparisons of
spectra reveal that the over-stimulated trips introduce large-scale disturbances into the
boundary layer, which are prominent at low Re. These large-scale disturbances reside
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predominantly in the outer part of the boundary layer, and probably originate from or
are amplified by the periodic shedding of the wake behind the rod. The presence of
such energetic motions due to the abrupt tripping of the boundary layer is manifested
as an outer peak in the spectrogram at low Rex, while at the same Rex such large
scales are absent in the SP40 case. This artificial outer peak is different to the
naturally occurring outer spectral peak that occurs at high Re in canonical ZPG flows.
The remnants of the ‘over-tripped’ conditions are seen to persist for some distance,
at least until Station S8, at which position the non-canonical boundary layers (TR06
and TR10) exhibit a weak memory of their initial conditions only for the large scales
O(10δ). Generally, the mean velocity profiles were found to approach a constant
wake parameter Π as the three boundary layers developed along the test section, and
the mean flow, broadband turbulence intensities, and higher-order moments are all
found to nominally agree by Station S8.

A comparison of U+ and u2+ was also made at nominally matched local
Reynolds numbers, namely at Reτ ≈ 8000 and Reθ ≈ 10 400. In both cases distinct
differences were observed despite the matched local Reynolds number, due to the
incomplete recoveries of the over-stimulated boundary layers. In these cases it is
clear that there is no one-to-one correspondence between Reτ , Reθ or Rex, and this
highlights that caution is needed when comparing data sets obtained under different
free-stream velocity conditions to achieve different Reynolds numbers, with little or
no information about their initial or upstream boundary conditions. Unfortunately the
majority of studies in the literature fall into this category. We find that non-equilibrium
effects in the boundary layer are not confined to low Reynolds number, and can
persist even at high Reynolds numbers. All ZPG boundary layers would be expected
to evolve to an equivalent form where Reynolds-number similarity holds, provided the
Reynolds number is sufficiently high, and the larger the trip disturbance is above its
ideal trip size the longer the boundary layer will need to recover. However, it is not
clear a priori how long this will take and how far downstream of the trip this will
occur. For the trips considered in our study, the recovery occurs at Rex ≈ 1.7 × 107,
which corresponds to a distance along the plate of O(2000) trip heights. It is also
noted that the present study is restricted to measurements only of the streamwise
component of velocity. Seo et al. (2004) have shown that wall-normal component
statistics are more sensitive to initial conditions, such as w2 compared to u2, and this
may change the quantitative values of the evolution lengths required to recover from
over-tripped conditions, and/or the conclusions regarding statistics of other velocity
components.

A perhaps surprising but important finding from the present study is that the
recovery length required for the statistics to become independent of the trip is not
dependent on the order of the statistic (at least not up to tenth order for u). This
suggests that, while the larger trips introduce additional length scales into the flow,
these perturbations and interactions relax as the boundary layer evolves downstream
and once they have decayed to the point of not further influencing the mean velocity
profiles, their influence also appears to be negligible for the higher-order statistics.
This is at least the case in the present study where the inflow initial conditions are
maintained constant and only the trip is varied. This result therefore implies that
for streamwise velocity statistics it may be sufficient to document the mean flow
parameters alone in order to ascertain whether the ZPG flow has reached a canonical
state.

The evolution of the mean flow parameters is considered by computing solutions
of the momentum integral equations using a semi-empirical closure relation for ZPG
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turbulent boundary layers based on a survey of available data. Using this approach,
the predicted evolution for all tripped configurations is found to be in agreement
with the experimental data for the mean flow parameters such as Π , H, Cf for a
wide range of Reynolds numbers. From figure 14, it can be seen that, though the
local parameters such as the Reynolds number Rex are matched (for the sake of
Reynolds-number similarity), different mean flow parameters (Π , H, Cf ) can be
obtained. This computational scheme should therefore be useful as a tool towards
determining whether a given ZPG boundary layer is of a canonical form.
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