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effect near the pipe axis is proposed in order to interpret the 
aforementioned differences.

1  Introduction

Scaling of the spectrum of velocity fluctuations in wall 
turbulence is of great interest since this characterises the 
behaviour of individual scales and, therefore, directly 
informs us about the physical structure of the turbulence. 
Theoretical bases for spectral scalings are few. However, in 
the inertial range where direct viscous effects are unimpor-
tant, application of dimensional analysis and the notion of a 
spectral overlap lead to the prediction that spectra follow a 
k−1
x  dependence in this range (Perry and Abell 1975; Perry 

et al. 1986), written as

Here, Euu(kx) is the one-dimensional (1D) power spectral 
density of the streamwise velocity fluctuation, normal-
ised such that u2 =

∫∞

0 Euu(kx) dkx, kx is the streamwise 
wavenumber and A1 is a universal constant named after 
Townsend and Perry (Townsend 1976; Perry et  al. 1986; 
Marusic et  al. 2013). The scaling (1) is for the large ani-
sotropic inertial scales, not to be confused with the k−5/3

x  
scaling for the small isotropic inertial scales. In this paper 
x, y and z are the streamwise, spanwise and wall-normal 
coordinates, respectively, and Uτ is the friction velocity. 
This k−1

x  formulation is consistent with the attached-eddy 
hypothesis (Townsend 1976; Perry and Chong 1982), 
although it is noted that other theories arrive at the same 
result (e.g. Högström et  al. 2002; Davidson and Krog-
stad 2009). In general, this scaling is independent of the 
spectral overlap argument and expected if, at a given wall 

(1)
Euu(kx)

U2
τ

=
A1

kx
.

Abstract  Recent experiments in high Reynolds number 
pipe flow have shown the apparent obfuscation of the k−1

x
 

behaviour in spectra of streamwise velocity fluctuations 
(Rosenberg et al. in J Fluid Mech 731:46–63, 2013). These 
data are further analysed here from the perspective of the 
log r behaviour in second-order structure functions, which 
have been suggested as a more robust diagnostic to assess 
scaling behaviour. A detailed comparison between pipe 
flows and boundary layers at friction Reynolds numbers 
of Reτ ≈  5000–20,000 reveals subtle differences. In par-
ticular, the log r slope of the pipe flow structure function 
decreases with increasing wall distance, departing from the 
expected 2A1 slope in a manner that is different to bound-
ary layers. Here, A1 ≈ 1.25, the slope of the log law in the 
streamwise turbulence intensity profile at high Reynolds 
numbers. Nevertheless, the structure functions for both 
flows recover the 2A1 slope in the log layer sufficiently 
close to the wall, provided the Reynolds number is also 
high enough to remain in the log layer. This universality is 
further confirmed in very high Reynolds number data from 
measurements in the neutrally stratified atmospheric sur-
face layer. A simple model that accounts for the ‘crowding’ 
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distance z, there is similarity of the turbulent flow between 
the large (∆E) eddies down to the locally scaled (z) eddies. 
Indeed, Vallikivi et al. (2015a, b) have shown no evidence 
of spectral overlap in high Reynolds number bound-
ary layers or pipe flows. Here, ∆E denotes either the pipe 
radius, R, or the boundary layer thickness, δ. Simply put, 
A1 = kxEuu(kx)/U

2
τ  is the only dimensionless group once z 

and ∆E are discounted.
The highest Reynolds number wall turbulence meas-

urements in a laboratory are those acquired in the Prince-
ton Superpipe (Hultmark et  al. 2012). From an analysis 
of these data, Rosenberg et  al. (2013) presented premul-
tiplied 1D spectra of streamwise velocity fluctuations at 
Reτ = R+ ≈ 2000–100,000, where ‘+’ denotes viscous 
scaling (the viscous length and velocity scales are ν/Uτ and 
Uτ, respectively, where ν is the kinematic viscosity). The 
spectra do not exhibit the k−1

x  region expected at such high 
Reynolds numbers where sufficient scale separation should 
exist. In fact, the energy associated with the k−1

x  range of 
scales appears to decrease with increasing wall distance in 
pipe flow, an effect (Rosenberg et  al. 2013) attributed to 
the increasing influence of large scales. This is in contrast 
to the observations by Nickels et  al. (2005) in a bound-
ary layer at Reτ = δ+ ≈ 14,380 where k−1

x  scaling was 
reported for about a third of a decade at z+ ≈ 100. Despite 
these apparent differences in spectral scaling, the integral 
of the spectrum, which is the turbulence intensity, appears 
to follow the same sloped log law in the log region of both 
flows where A1 ≈ 1.25 (Hultmark et  al. 2012; Marusic 
et al. 2013).

Davidson et  al. (2006b) argue that the 1D spectrum of 
streamwise velocity is not the ideal diagnostic tool to inves-
tigate the behaviour of, or indeed, find, the k−1

x  range due to 
aliasing. The aliasing comes from the fact that the 1D spec-
trum is the integral of the 2D spectrum, such that energy 
from a large range of spanwise length scales contributes to 
the energy of a single streamwise length scale. Davidson 
et al. (2006b) suggest that the second-order structure func-
tion is a better diagnostic. These authors show that the k−1

x  
behaviour of the 1D spectrum corresponds to log r behav-
iour of the structure function,

where r is the spatial separation in the streamwise direc-
tion and B1 is a constant that depends on flow geometry. 
Davidson et al. (2006a) extend this work to include a term 
for the imbalance between turbulent energy production P 
and dissipation ǫ,

(2)
(�u)2(r)

U2
τ

= 2B1 + 2A1 log

(

r

z

)

,

(3)
(�u)2(r)

U2
τ

= 2B1 + 2A1 log

(

r

z

)

− 2A1 log

(

P

ǫ

)

,

and show excellent agreement with high Reynolds num-
ber turbulent boundary layer data. In the following, we 
will examine the structure function for turbulent pipe and 
boundary layer flows and show that the aforementioned dif-
ferences between these flows can be reconciled, provided 
z is chosen to be sufficiently close to the wall, while at the 
same time maintaining a sufficiently high Reynolds num-
ber. When both these conditions are met, the log r region 
exhibits a slope corresponding to A1 ≈ 1.25 independent of 
the flow geometry.

2 � Structure functions of boundary layer and pipe 
flow

Figure  1 displays the second-order structure function for 
turbulent boundary layers and pipe flows at nominally 
matched Reynolds numbers. The turbulent boundary layer 
data are from the University of Melbourne High Reynolds 
Number Boundary Layer Wind Tunnel (Hutchins et  al. 
2009; Kulandaivelu 2012), and the turbulent pipe flow data 
are from the Princeton Superpipe (Hultmark et  al. 2012). 
The precise bounds of the overlap or classical logarithmic 
region in physical space remain an open topic of debate. 
For example, classically the start of the log region is taken 
to be at a fixed value of z+, while others (e.g. Klewicki 
et  al. 2009) have argued that it scales with Re1/2τ  in inner 
variables. Throughout this paper, we will follow Marusic 
et  al. (2013) and refer to the ‘log region’ as the range of 
wall distances where the mean and variance of the stream-
wise velocity follow logarithmic laws and use the tenta-
tive and conservative limits, 3Re1/2τ < z+ < 0.15Reτ. This 
choice of limits does not affect the general conclusions 
drawn in this paper.

Note that in Fig. 1 the correction for the production–dis-
sipation imbalance has been added to the structure function 
in the figure (Davidson et al. 2006a). The turbulent bound-
ary layer data display excellent collapse onto the expected 
log law and the data systematically peel off from this log 
law to a constant level at an r/z value that reduces with 
increasing wall distance. However, the pipe flow data dis-
play a subtle but noticeably different behaviour. The data 
in Fig.  1b, d, f could be interpreted as either peeling off 
from a log law at a lower r/z (for a given wall distance) 
or the slope of the structure function varies with wall dis-
tance. At the highest Reynolds number, the latter interpre-
tation seems more accurate. Interestingly, as the wall is 
approached, the data fall back on to the same log law that 
describes the turbulent boundary layer data at the highest 
Reynolds number (Fig. 1e, f). Further, the steady march of 
the pipe structure functions towards the 2A1-slope (red line) 
for the two lower Reynolds numbers (Fig. 1b, d) appears to 
be halted due to the shorter extent of the log region.
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In Fig. 2, we show the same data for the highest Reyn-
olds numbers without the production-to-dissipation cor-
rection to demonstrate the effect of the correction. Some 
differences can be seen in the z-dependent shifts relative 
to Fig. 1, but the systematic departure from the 2A1 slope 
at large wall distances (the lower curves) of pipe flow 
relative to the boundary layer remains clear. Perhaps a 
more searching test is in the premultiplied second-order 

structure function, that is, r d(�u)2/dr/U2
τ , in which a flat 

region with level 2A1 is expected in the log region between 
z ≪ r ≪ ∆E. The production-to-dissipation shift does not 
influence this diagnostic. In Fig.  3, contours of this diag-
nostic are shown, with the wall distance z mapped onto 
the ordinate. Here, we demarcate the region bounded by 
3z < r < ∆E. The three highest (darkest) contour levels 
denote 2.5± 20%. A relatively inclusive error bar is used 
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Fig. 1   Second-order structure function plotted against longitudi-
nal separation, r, scaled with wall distance, z, in the log region of: 
turbulent boundary layer at a Reτ = 5890, c Reτ = 10,110 and e 
Reτ = 19,030 (Hutchins et  al. 2009; Kulandaivelu 2012) and turbu-
lent pipe flow at b Reτ = 5410, d Reτ = 10,480 and f Reτ = 20,250 

(Rosenberg et  al. 2013). The structure function is corrected for the 
imbalance between production and dissipation (Davidson and Krog-
stad 2009). The value of the structure function as r/z → ∞ decreases 
with increasing wall distance, z. In all figures, the solid red line repre-
sents a log law with slope 2A1 = 2.5
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here because of difficulties with differentiating experimen-
tal data. At the lowest Reynolds number, Reτ ≈ 5000, the 
pipe flow data show only a small region close to the wall 
in the log layer that reaches the 2.5± 20% level in con-
trast to the boundary layer data, which shows a substantial 
region that reaches the same level. At the highest Reynolds 
number, Reτ ≈ 20,000, the region close to the wall in pipe 
flow in the log layer becomes stronger, but a systematic 
reduction in r d(�u)2/dr/U2

τ  remains with increasing wall 
distance. For reference, we also show in Fig. 3 the line cor-
responding to r/δ ∝ (z/δ)3/7, which has previously been 
documented as a signature of the very-large-scale motions 
(VLSMs) (Monty et al. 2009). Consistent with Monty et al. 
(2009), we observe that the VLSMs are more energetic in 
pipe flows (whose premultiplied structure functions trace 
extended ridges along this line to lengths in excess of 20R) 
than in boundary layers.

We provide further evidence of the universality of the 
2A1 constant of the log r region by compiling very high 
Reynolds number data from the Melbourne wind tunnel, 
the SLTEST atmospheric surface layer and the Princeton 
Superpipe at available log-layer locations closest to the 
wall (Fig. 4). These data, all of which satisfy z/∆E < 0.025 
show at least a decade of 2A1 slope in the structure func-
tion. Noticeable deviations from this log behaviour for 
(�u)2 appear for the pipe results for higher z/∆E values, 
even though the mean flow and u2 results follow log behav-
iour up until z/∆E ≈ 0.15.

3 � Discussion

The similarity between the boundary layer and pipe flow 
at distances sufficiently close to the wall, where geo-
metrical differences are negligible, suggests a geometrical 

explanation. The variations of the log r slope with wall dis-
tance could be attributed to the restricted size of eddies due 
to the confinement of the pipe geometry, a restriction that is 
absent in the boundary layer. We consider this interpretation 
in the discussion that follows. In boundary layers, a number 
of different characteristic shapes have been used in attached-
eddy modelling in the literature (Perry et al. 1986). For illus-
trative purposes, consider the simplest type of eddy with a 
Λ shape in Fig. 5a, as used by Monty (2005). A basic tenet 
of the attached-eddy model is that there exist hierarchies of 
geometrically similar representative eddies. However, the 
geometry of the pipe does not strictly permit such hierarchies 
when the eddy size becomes a significant fraction of the pipe 
radius, R, as can be seen in the comparison of Fig. 5a, b. Fur-
ther, it is known from two-dimensional potential flow that 
a point vortex at z in a circle has its inverse (image) point 
at −z/(1− z/R) = −z + O(z/R), while for a flat plate, the 
image is simply located at −z. A comparison of these two 
image vortex systems suggest a geometrical correction that 
depends on z/R and that the correction is negligible for van-
ishing z/R, i.e. at distances sufficiently close to the wall. It 
can also be observed that, assuming the same eddy con-
struction, the available space per wall-parallel area in pipe 
flow is less than that of a boundary layer, and this ‘crowd-
ing’ effect becomes more pronounced with increasing wall 
distance. Unlike the boundary layer in which the width is 
unbounded, the geometry of the pipe imposes a maximum 
width, (�y)max = 2π(R− z). These considerations suggest 
that the inertial scales in pipe flow cannot be expected to be 
entirely similar to its boundary layer counterpart if z is not 
sufficiently small relative to R, as observed in the structure 
functions presented in Sect. 2.

In Sect.  3.2, we propose to model this ‘crowding’ 
effect by simply reducing the upper limit of the widest 
eddies in the two-dimensional spectrum. First, we lay the 
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Fig. 2   Second-order structure function, without the production-
to-dissipation correction, plotted against longitudinal separation, r, 
scaled with wall distance, z, in the log region of: turbulent bound-
ary layer at a Reτ = 19,030 (Hutchins et  al. 2009) and turbulent 

pipe flow at b Reτ = 20,251 (Rosenberg et  al. 2013). The value of 
the structure function as r/z → ∞ decreases with increasing wall 
distance, z. In all figures, the solid red line represents a log law with 
slope 2A1 = 2.5
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groundwork in Sect.  3.1 for this interpretation by revisit-
ing the arguments leading to the k−1

x  range in the context 
of one- and two-dimensional spectra of turbulent boundary 
layers. We then show in Sect. 3.3 that the postulated pipe 
geometrical effects show behaviours that are consistent 
with the data presented in Sect. 2.

3.1 � One‑ and two‑dimensional spectra

Following del Álamo et  al. (2004), let us consider the 
two-dimensional (2D) spectrum, E2D

uu (kx, ky), in the iner-
tial region. Dimensional considerations suggest that 
there is a range of scales over which kxkyE2D

uu (kx, ky)/U
2
τ  
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Fig. 3   Premultiplied second-order structure–function maps for 
both boundary layers and pipes at various Reynolds numbers. 
Data are as described in Fig.  1. The thick solid red line demar-
cates the region, 3 z < r < ∆E, 3Re

1/2
τ < z+ < 0.15Reτ, where 

r d(�u)2/ dr/U2
τ → 2A1 ≈ 2.5 is expected. The three high-

est (darkest) colours correspond to 2.5± 20%. The thin dashed 
black line traces the very-large-scale motions (VLSMs), given by 
r/δ ∝ (z/δ)3/7 (Monty et al. 2009), here r/δ = 5.3 (z/δ)3/7
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is approximately constant (≈1 according to del 
Álamo et  al. 2004). Let this region of constancy be 
bounded by the limits �y/z = �L/z = C1f1(�x/z) and 
�y/z = �U/z = C2f2(�x/z), where f1(1) = f2(1) = 1, 
as illustrated in Fig.  6. The wavelength, �, is inversely 
proportional to the wavenumber, k (e.g. �y = 2π/ky).  
Without detailed knowledge of the spectrum at high 
Reynolds numbers, the precise forms of �L and �U are 
unknown, but we expect that C1 < 1 and C2 > 1. Given 
an eddy of streamwise length �x, (C1,C2) is the range of 

eddy widths that are self-similar. We allow the eddy to 
have widths ranging from less than its length (C1 < 1) 
to greater than its length (C2 > 1). These expectations 
are only stated to give some physical insight; they 
are not necessary for the following analysis. Physi-
cally, these conditions mean that eddies of scale z and 
aspect ratio �x/�y = 1 are included in the region where 
kxkyE

2D
uu (kx, ky)/U

2
τ  is approximately constant. In Fig. 6, 

the upper and lower bounds are straight lines on a log–
log plot, such that f1 and f2 are power laws; in the fig-
ure, f1(�x/z) = f2(�x/z) = (�x/z)

1. Note that Fig. 6 is for 
illustrative purposes; f1 and f2 can be general functions 
in the following analysis, but are most likely to be power 
laws (del Álamo et al. 2004).

The 1D spectrum for this range of scales is calculated by 
integration of the 2D spectrum:

Technically, integration over the negative wavelengths 
should also be included, but is unnecessary for the 
argument at hand. For simplicity, we will assume that 
kxkyE

2D
uu (kx, ky)/U

2
τ ≈ 1 between these limits (del Álamo 

et al. 2004) so that the integral is easily evaluated as

Now, to recover the traditional k−1
x  scaling of the 1D energy 

spectrum, the functions f1 and f2 may remain arbitrary, but 
must be identical such that the right-hand side of (5) is a 
constant. If f1(�x/z) = f2(�x/z) , then

(4)
kxEuu(kx)

U2
τ

=

∫

�U

�L

kxkyE
2D
uu (kx , ky)

U2
τ

d�y

�y
,

(5)
kxEuu(kx)

U2
τ

= log

(

�U

�L

)

= log

(

C2f2(�x/z)

C1f1(�x/z)

)

.
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Fig. 4   High Reynolds number second-order structure functions 
in the log region for z/∆E < 0.025 from the Melbourne wind tun-
nel (Hutchins et al. 2009) at Reτ = 19,030; the Princeton Superpipe 
(Rosenberg et  al. 2013) at Reτ = 98,190; and the SLTEST atmos-
pheric surface layer (Kunkel and Marusic 2006) at Reτ ≈ 106 all 
show at least a decade of logarithmic region approaching the same 
slope, 2A1 = 2.5 (thick solid red line). Each set of curves is shifted 
upwards by four units for legibility
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δ

Fig. 5   Hierarchy of eddies in the cross-plane highlighting geomet-
rical differences between a a pipe and b a boundary layer, adapted 
from Monty (2005)
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Fig. 6   Illustration of the 2D spectrum, where the grey area bounded 
by the lines, �L/z = C1f1(�x/z) and �U/z = C2f2(�x/z), is the region 
where kxkyE2D

uu (kx , ky)/U
2
τ  is approximately constant. The constrain-

ing effect of the pipe geometry is modelled as a blockage that reduces 
the width of eddies, �U, by a factor (1− βz/R), where β > 0 is a 
model constant, i.e. the crowding effect more strongly felt near the 
pipe axis, where z/R is larger
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which is the k−1
x  scaling with the Townsend–Perry con-

stant A1 ≈ 1.25. Note that differences in the functional 
forms between f1 and f2 will result in variations from the 
k−1
x  dependence (see del Álamo et  al. 2004). Such vari-

ations are beyond the scope of this paper. It should be 
noted that the conclusions drawn are not dependent on f1 
and f2 being equivalent (i.e. on the existence of k−1

x ) as 
discussed later.

The turbulence intensity is simply the integral of the 
streamwise 1D energy spectrum. Including contributions 
to the spectrum from large wavelengths that scale with ∆E, 
and also small but inertial wavelengths that scale with z, the 
turbulence intensity in the log region is given by

where g1(kx∆E) represents the normalised spectrum of the 
large wavelengths, g2(kxz) represents the normalised spec-
trum of the small but inertial wavelengths, and B1 is a flow-
dependent constant (i.e. different for pipes and boundary 
layers since the very large scales behave differently, see, 
e.g. Monty et al. 2009).

For boundary layers, the preceding analysis is sup-
ported by experimental data and A1 ≈ 1.25 appears to fit 
the data well (Marusic et al. 2013). However, in pipe flows, 
different spectral scaling has been reported at high Reyn-
olds numbers (Rosenberg et  al. 2013) despite logarithmic 
behaviour of the streamwise turbulence intensity (Marusic 
et al. 2013; Vallikivi et al. 2015a).

3.2 � A model for the ‘crowding’ effect of eddies

Here, we propose a simple modification to the upper limit 
of the constancy in the 2D spectrum for pipe flows to 
interpret the differences between pipe and boundary layer 
flows. We expect the width of large eddies in pipe flow to 
be restricted by the geometry of the pipe as illustrated in 
Fig. 5a. Therefore, let us constrain the upper limit, �U, of 
the constant kxkyE2D

uu (kx, ky)/U
2
τ  region such that

(6)
kxEuu(kx)

U2
τ

= log

(

C2

C1

)

= A1,

(7)

u2

U2
τ

=

∫ ∞

0

Euu(kx)dkx

U2
τ

=

∫ 1/∆E

0

Euu(kx)

U2
τ

dkx +

∫ 1/z

1/∆E

Euu(kx)

U2
τ

dkx

+

∫ ∞

1/z

Euu(kx)

U2
τ

dkx ∼

∫ 1

0

g1(kx∆E)d(kx∆E)

+

∫ 1/z

1/∆E

A1

kx
dkx +

∫ ∞

1

g2(kxz) d(kxz)

∼ B1 − A1 log

(

z

∆E

)

,

This constraint simply reduces �U linearly as the wall dis-
tance increases, as illustrated by the arrows in Fig. 6; β > 0 
is a model constant that determines the strength of the cor-
rection. Note that this a low-order correction (i.e. a Taylor 
series expansion in small z/R for the correction function) 
designed for conceptual simplicity. More complex con-
straints could be applied; however, the purpose here is to 
illustrate that the geometrical constraints imposed by the 
pipe walls will lead to qualitative differences in a range of 
statistics that are detailed below.

With this correction, integration of the 2D spectrum to 
obtain the 1D spectrum, cf. (6), now gives

Since the second term of the right-hand side of (9) is nega-
tive (for β > 0), the result is a reduction with wall distance 
in the level of the k−1

x  plateau of the 1D premultiplied spec-
trum. This means one should not expect a constant plateau 
that is independent of z/R in the premultiplied spectra of 
turbulent pipe flows, as has been documented in turbulent 
boundary layers. Some evidence for this spectral behaviour 
at high Reynolds numbers is provided in figure 4 of Rosen-
berg et al. (2013) and is further analysed by Vallikivi et al. 
(2015a). It was stated earlier that the conclusions of this 
paper are not predicated on the existence of the k−1

x  scaling. 
Even if f1(�x/z) and f2(�x/z) (the upper and lower limits 
of the constant-kxkyE2D

uu (kx, ky)/U
2
τ  region) are different, 

which will lead to non-k−1
x  behaviour of the 1D spectrum, 

the same geometrical correction to the upper limit can still 
be applied, and there will be a consequential difference 
between turbulent pipe flow and turbulent boundary layer 
spectra because of this. The aim of this simple model is to 
explain why there is a difference—the precise nature of the 
1D spectrum of the turbulent boundary layer is not critical 
to this explanation.

Nevertheless, Marusic et al. (2013) have shown that the 
streamwise turbulence intensity in pipe flows and bound-
ary layers follows the same logarithmic behaviour. Making 
use of (9) and following the same procedure as that used to 
determine (7) gives the result,

which means that the slope of the logarithmic region of 
pipe flows should be different to that of boundary layers. 
However, the slope is a constant, A1, to leading order so 
the magnitude of the slope change due to the geometrical 

(8)�U/z = C2f2(�x/z)(1− βz/R).

(9)

kxEuu(kx)

U2
τ

= log

(

C2

C1
(1− βz/R)

)

=A1 + log(1− βz/R).

(10)
u2

U2
τ

= B1,Pipe −
[

A1 + log(1− βz/R)
]

log
( z

R

)

,
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correction is small. Figure 7 displays the predicted turbu-
lence intensity behaviour for various geometrical correc-
tion strengths, β. Clearly, the change to the slope is not 
large. In fact, the maximum possible changes are within 
experimental error through almost the entire log region, so 
it is unlikely that evidence for the geometrical constraint 
will be found by solely analysing experimental turbulence 
intensity data.

3.3 � Second‑order structure function

We now consider modifications to the form of the longi-
tudinal second-order structure function. Using a similar 
procedure for computing the variance in (7), the dominant 
contribution to the second-order structure function is parti-
tioned into the three contributions,

where r is the spatial separation in the streamwise 
direction. Inserting the models for the k−1

x  range, 
Euu(kx)/U

2
τ = A1/kx , the large wavelength range, 

Euu(kx)/U
2
τ = ∆Eg1(kx∆E) and the small wavelength 

range Euu(kx)/U
2
τ = zg2(kxz), as used in (7), and integrat-

ing gives

(11)

(�u)2(r)

U2
τ

= 2

∫ ∞

0

Euu(kx)

U2
τ

[1− cos(kxr)] dkx

= 2

∫ 1/∆E

0

Euu(kx)

U2
τ

[1− cos(kxr)] dkx

+ 2

∫ 1/z

1/∆E

Euu(kx)

U2
τ

[1− cos(kxr)] dkx

+ 2

∫ ∞

1/z

Euu(kx)

U2
τ

[1− cos(kxr)] dkx ,

where s = kx∆E, t = kxz and Ci is the cosine inte-
gral function; recall that Ci(ξ) ∼ 0 as ξ → ∞ and 
Ci(ξ) ∼ γ + log(ξ) as ξ → 0, where γ ≈ 0.5772. The s- 
and t-integrals vanish as r ≫ ∆E and r ≫ z , respectively.

For the turbulent boundary layer, where no geometrical 
corrections are needed and ∆E = δ, we have for z ≪ r:

cf. Davidson et al. (2006b), where C1 =
∫∞

1 g2(t) dt.
For a pipe, we substitute the geometrically corrected 1D 

spectrum (9) and the structure function becomes

The asymptotic behaviour for z ≪ r is given by:

where A′
1 = A1 + log(1− βz/R). Upon comparison with 

(13), the modification with increasing z/R to the 2A1-slope 
of the log r behaviour is evident. Note that for both pipe 
flows and boundary layers, (�u)2(r) → 2u2 as r → ∞. 
The log r behaviour with universal slope 2A1 in pipe flow is 
recovered when z/R ≪ 1 in (15).

Although these structure–function relations, (12) and 
(14), qualitatively describe the structure–function behav-
iour well, plotting the relations reveals large oscilla-
tions at r/z ≈ 1 and r/z ≈ ∆E/z due to the sharp changes 

(12)

(�u)2(r)

U2
τ

∼ 2

∫ 1

0

g1(s)

[

1− cos

(

s
r

∆E

)]

ds

+ 2

∫ 1/z

1/∆E

A1

kx
[1− cos(kxr)] dkx

+ 2

∫ ∞

1

g2(t)

[

1− cos

(

t
r

z

)]

dt

∼ 2B1 − 2

∫ 1

0

g1(s) cos

(

s
r

∆E

)

ds

− 2

∫ ∞

1

g2(t) cos(t
r

z
) dt

+ 2A1[Ci

(

r

∆E

)

− Ci

(

r

z

)

+ log(∆E/z)],

(13)
(�u)2(r)

U2
τ

∼

{

2C1 + 2A1[γ + log(r/z)] r ≪ δ

2B1,BL + 2A1 log(δ/z) r ≫ δ
,

(14)

(�u)2(r)

U2
τ

∼ 2B1 − 2

∫ 1

0

g1(s) cos

(

s
r

∆E

)

ds

− 2

∫ ∞

1

g2(t) cos

(

t
r

z

)

dt

+ 2
[

A1 + log(1− βz/R)
]

×

[

Ci
( r

R

)

− Ci

(

r

z

)

+ log(R/z)

]

.

(15)
(�u)2(r)

U2
τ

∼

{

2C1 + 2A′
1[γ + log(r/z)] r ≪ R

2B1,Pipe + 2A′
1 log(R/z) r ≫ R

,
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Fig. 7   Streamwise velocity turbulence variance for selected values of 
model parameter β show that geometrical corrections are negligible in 
the region z/R < 0.15 (A1 ≈ 1.25, B1,Pipe ≈ 1.6)
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at kx∆E = 1 and kxz = 1 associated with the piecewise 
form for Euu(kx) used in (11) and (14). For this reason, a 
model spectrum that smoothly blends the different pieces 
at kx∆E = 1 and kxz = 1 is used to calculate the model 
structure function. Specifically, the model spectrum is con-
structed to behave as k0x (constant) for kx∆E < 1; k−1

x  for 
kx∆E > 1 and kxz < 1; and k−5/3

x  for kxz > 1. The method 
for smoothly blending these regions is due to von Kármán 
(1948) (see also Pope 2000). In Fig.  8, we show these 
model spectra for z/∆E = 0.001, 0.01 and 0.1 without 
the geometrical correction (β = 0) along with their cor-
responding structure functions. Figure 8 demonstrates that 
extended log r or k−1

x  regions require very low values of 
z/∆E and thus extremely high Reynolds numbers.

In Fig. 9, the model structure function is plotted for tur-
bulent boundary layers and for turbulent pipe flows with a 
range of geometrical correction strengths, β. The notable 
differences between pipe flows and boundary layers are as 
follows: (1) the structure function peels off from the unper-
turbed log law at lower r/z for the pipe and (2) the apparent 
slope decreases as z/R increases in the pipe. In other words, 
the geometry effect is negligible for small z/R. These dif-
ferences are qualitatively the same as those observed in the 
experimental data shown in Fig.  1 and particularly clear 
for β = 1.0. A consequence of point (2) at lower Reynolds 

numbers is that the 2A1-slope is never observed, even at the 
smallest z/R because the log region is bounded below by 
z+ > 3Re

1/2
τ . For example, if Reτ ≈ 5000, the log region 

is bounded below by z/R ≈ 0.04, a wall distance large 
enough to still be affected by pipe geometry, cf. Figs.  9b 
and 1b, d.

4 � Conclusions

Second-order structure functions of streamwise velocity are 
considered in the logarithmic region of wall-bounded flows 
to assess the universality of the scaling behaviours. Meas-
urements in pipes, boundary layers and the atmospheric 
surface layer indicate that, provided the Reynolds number 
is sufficiently high and the wall distance is sufficiently 
small, a log r behaviour for (�u)2(r)/U2

τ  is revealed with 
universal slope 2A1 ≈ 2.5, where A1 is the Townsend–Perry 
constant that is associated with the log law for u2/U2

τ  and 
the k−1

x  spectrum. Deviations from the universal behaviour 
appear first in pipe flows for nominally z/R > 0.025, while 
the boundary layer data show persistent log behaviour for 
the structure functions further from the wall.

A model for the ‘crowding’ effect of eddies near the 
pipe axis is proposed to interpret the observed differences 

Fig. 8   a Model spectra and 
b corresponding second-
order structure functions 
at high Reynolds numbers: 
z/∆E = 0.001, 0.01, 0.1. The 
case when z/∆E = 0.001 is at 
the bottom of the log region 
corresponds nominally to 
Reτ = 9,000,000
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ture function modelled at the 
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turbulent boundary layers and 
b turbulent pipe flows with a 
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value of the structure function 
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between turbulent pipe flows and turbulent boundary lay-
ers. By simply limiting the width of the largest eddies in 
the 2D spectrum, the model serves to qualitatively demon-
strate the link between flow geometry and flow statistics. 
Consistent with data, the model predicts a shallower slope 
and an earlier peel-off in the second-order structure func-
tion, together with undetectable changes in the stream-
wise turbulence intensity profile. A more detailed and 
more accurate model requires extended knowledge of the 
2D spectrum at high Reynolds numbers in pipe flows and 
boundary layers (e.g. Bailey et al. 2008).

The present arguments assume that the scaling of the 
energy and the bandwidth of the very large scales do not 
change with Reynolds number, which is consistent with the 
present data in the range Reτ ≈  5000–20,000. However, 
data at larger Reynolds numbers (Hutchins and Marusic 
2007; Rosenberg et al. 2013) suggest that the influence of 
the very large scales cannot simply be discounted. Fur-
ther studies in this regard are ongoing (e.g. Vallikivi et al. 
2015a).
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