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A B S T R A C T

Predictions of the spatial representation of instantaneous wall-bounded flows, via coherent structure-based
models, are highly sensitive to the geometry of the representative structures employed by them. In this study,
we propose a methodology to extract the three-dimensional (3-D) geometry of the statistically significant
eddies from multi-point wall-turbulence datasets, for direct implementation into these models to improve their
predictions. The methodology is employed here for reconstructing a 3-D statistical picture of the inertial wall
coherent turbulence for all canonical wall-bounded flows, across a decade of friction Reynolds number (𝑅𝑒𝜏 ).
These structures are responsible for the 𝑅𝑒𝜏 -dependence of the skin-friction drag and also facilitate the inner-
outer interactions, making them key targets of structure-based models. The empirical analysis brings out the
geometric self-similarity of the large-scale wall-coherent motions and also suggests the hairpin packet as the
representative flow structure for all wall-bounded flows, thereby aligning with the framework on which the
attached eddy model (AEM) is based. The same framework is extended here to also model the very-large-
scaled motions, with a consideration of their differences in internal versus external flows. Implementation
of the empirically-obtained geometric scalings for these large structures into the AEM is shown to enhance
the instantaneous flow predictions for all three velocity components. Finally, an active flow control system
driven by the same geometric scalings is conceptualized, towards favourably altering the influence of the wall
coherent motions on the skin-friction drag.
. Introduction

Owing to its highly chaotic and random nature, an accurate predic-
ion of the instantaneous velocity in a turbulent flow remains the most
hallenging demand from any turbulence model. Despite its inherent
omplexities, turbulence flow modelling has remained an active area
f research for over half a century (Brunton et al., 2020), given the
umerous incentives on offer. In case of wall-bounded flows, for exam-
le, the ability to predict/replicate the instantaneous flow phenomena
an greatly facilitate the design of active flow control techniques (Choi
t al., 1994), and also aid in enhancing future high-fidelity numerical
imulations, by providing realistic inflow boundary conditions and im-
roving computational efficiency (Subbareddy et al., 2006; Wu, 2017).
ne of the popular approaches of modelling wall-turbulence, amongst
any, has been by focusing on the recurring and statistically significant

coherent’ motions (Robinson, 1991; Choi et al., 1994) omnipresent in
hese flows. These motions play a crucial role in both the kinematics
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as well as dynamics of wall-bounded flows (Robinson, 1991; Jiménez,
2018; Lee and Moser, 2019) and have been directly associated with
the behaviour of several flow statistics — both averaged (Ganap-
athisubramani et al., 2005; Hutchins and Marusic, 2007; Heisel et al.,
2020) and instantaneous (Adrian et al., 2000; de Silva et al., 2016a,
2018). Hence, several studies proposing coherent structure-based mod-
els can be found in the literature (Theodorsen, 1952; Grant, 1958;
Willmarth and Tu, 1967; Townsend, 1976; Davidson and Krogstad,
2009), amongst which the attached eddy model (AEM; Perry and Chong
(1982), Marusic and Monty (2019)) based on Townsend’s attached
eddy hypothesis (Townsend, 1976), is one of the most cited. Here,
the words ‘structures’, ‘motions’ and ‘eddies’ are used interchangeably
and essentially conform to the definition of a coherent motion given
by Robinson (1991).

According to Townsend’s attached eddy hypothesis, an inviscid
asymptotically high friction Reynolds number (𝑅𝑒𝜏 = 𝑈𝜏 𝛿

𝜈 ) canonical
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wall-bounded flow can be modelled via a hierarchy of geometrically
self-similar attached eddies, having population densities inversely pro-
portional to their sizes, which vary over (𝑧) – (𝛿). The term ‘at-
ached’ here refers to any coherent motion whose geometric extent
cales with its distance from the wall, given by 𝑧, while the associated
elocity fluctuations scale with the friction velocity 𝑈𝜏 , but does not
ecessarily imply its velocity signatures physically extending down to
he wall (Marusic and Monty, 2019). Further, 𝛿 here corresponds to
he outer scale of the respective canonical flow geometry, which is
he boundary layer thickness for a zero-pressure gradient turbulent
oundary layer (ZPG TBL), while it is the pipe radius and channel half-
eight for internal flows. Increased access to high 𝑅𝑒𝜏 wall-turbulence
atasets, over the past two decades, has confirmed that the kinetic
nergy production and transfer within these flows is mostly influenced
y the inertial (inviscid) motions predominating in the inertial re-
ion (Marusic et al., 2010; Lee and Moser, 2019; Hwang and Lee,
020), making AEM ideally suited for modelling these flows. These
haracteristics also make the inertial motions a key target of active
low control schemes (Abbassi et al., 2017). Studies in the past have
lready demonstrated that the AEM is able to predict ensemble/time-
veraged statistics, such as the Reynolds stresses (Marusic and Perry,
995; Baidya et al., 2014), higher order moments (Woodcock and
arusic, 2015; de Silva et al., 2016b), two-point correlations (Marusic,

001) and the energy spectra (Baidya et al., 2017; Deshpande et al.,
020a; Chandran et al., 2020) across the inertial layer (2.6

√

𝑅𝑒𝜏 ≲ 𝑧+

≲ 0.15𝑅𝑒𝜏 ; Klewicki et al. (2009)) in high 𝑅𝑒𝜏 canonical flows. While
there have been a few studies focused on predicting the instantaneous
flow phenomena in both the inertial and the wake region (de Silva
et al., 2016a, 2018; Eich et al., 2020), success has mostly been limited
to the wake region, predominated solely by the largest hierarchy of
eddies (∼ (𝛿)).

The primary challenge associated with accurately predicting the
representative instantaneous flow in the inertial region, is its high
sensitivity to the geometry of the coexisting motions, given that the
region is populated by a host of statistically significant eddies, with
sizes varying from (𝑧) to (𝛿) (Lee and Moser, 2015; Deshpande et al.,
020a; Yoon et al., 2020). These eddies are highly three-dimensional
3-D) in geometry, and hence vary considerably in terms of their spatial
oherence, which also needs to be accounted for while attempting to
eplicate the instantaneous flow. To this end, there are several studies
n recent literature (Yoon et al., 2020; de Silva et al., 2020; Chandran
t al., 2020) which have envisioned and subsequently characterized
he inertial region as a superposition of two types of inertial motions:
i) motions with their velocity signatures (i.e. coherence) extending
ll the way down to the wall (i.e. wall coherent or WC motions)
nd (ii) those with velocity signatures not extending to the wall (wall
ncoherent; WI). Interestingly, both these eddy types (WC and WI) have
een shown by the same set of studies to depict characteristics consis-
ent with Townsend’s attached eddies, although with certain caveats;
or example, apart from the hierarchy of self-similar eddies, the WC
nertial motions also comprise 𝛿-scaled superstructures or very-large-
cale motions (VLSMs), which do not conform to Townsend’s attached
ddies (Deshpande et al., 2020a; Yoon et al., 2020). These results, thus,
howcase the prospect of predicting the instantaneous wall-bounded
low by using the AEM framework to individually model the WC and

I motions in the inertial region.
In the present study, we take the first step towards achieving this

y establishing an AEM-based methodology to model the inertial WC
otions in all three canonical wall-bounded flows. Specifically, to

mprove its predictive capability, the geometry of the attached eddies is
ased on estimates extracted directly from published experimental and
umerical datasets. It is worth noting here that although the inertial
C motions are only a subset of the full flow, these motions are

esponsible for the 𝑅𝑒𝜏 -dependence of the wall shear stress fluctuations
and hence, the skin-friction drag characteristics) in any wall-bounded
low (Örlü and Schlatter, 2011; Deck et al., 2014; de Giovanetti et al.,
2

2016; Abbassi et al., 2017; Smits et al., 2021). Further to that, the
WC motions are also known to superimpose onto and modulate the
near-wall cycle (Hutchins and Marusic, 2007; Mathis et al., 2009),
which has a significant impact on the skin friction drag. This makes
the present modelling effort relevant for both fundamental as well
as applied research. We begin by first reviewing the current state of
the AEM (Section 1.1) and its limitations (Section 2), followed by
proposal of the new methodology (Section 3), which provides a data-
driven basis to improve the AEM predictions. Throughout this paper,
we use the coordinate system 𝑥, 𝑦 and 𝑧 to refer to the streamwise,
spanwise and wall-normal directions respectively, with 𝑢, 𝑣 and 𝑤
denoting the corresponding fluctuating velocity components. ⟨⟩ and
capitalization indicates averaged quantities while the superscript +
refers to normalization in viscous units (eg., 𝑢+ = 𝑢/𝑈𝜏 and 𝑧+ = 𝑧𝑈𝜏∕𝜈,
where 𝜈 is the kinematic viscosity).

1.1. Current state of the AEM

In the original AEM conceptualized by Perry and Chong (1982), a
single hairpin or a simple arch-shaped (𝛬) eddy, inclined forwards with
respect to the flow direction (𝑥) at ∼45◦ (Head and Bandyopadhyay,
1981; Deshpande et al., 2019), was considered as the representative
coherent structure/eddy. This shape was inspired from the seminal flow
visualization studies of Head and Bandyopadhyay (1981) in a low 𝑅𝑒𝜏
TBL. The simplest version of this eddy is essentially made up of two
vortex rods, arranged in a 𝛬-shape, with each rod containing a Gaussian
distribution of vorticity about its core. The corresponding velocity field
for the eddy can be obtained by performing the Biot–Savart calculations
(schematically depicted in figures 2, 6 and 7 of Perry and Chong
(1982)). Over time, the representative eddy shape has evolved as more
detailed quantitative measurements, revealing the structure of wall-
bounded flows were reported, such as the seminal PIV measurements
of Adrian et al. (2000). While this study highlighted the presence of
𝛬-type eddies in the TBL, it was found that the eddies are organized in
the form of a packet in fully turbulent flows. The use of a 𝛬-eddy packet
(Fig. 1(a)), instead of a single eddy, as the representative attached
eddy was subsequently incorporated into the AEM by Marusic (2001),
and this change was shown to further improve statistical predictions.
Fig. 1(b–d) depict the near-wall (𝑧 = 0.01𝑧𝑖) planar flow field of the
three velocity components associated with a single packet-like eddy,
which is simply a superposition of the velocity fields obtained from
multiple individual 𝛬-eddies. In case of the AEM, it should be noted
that 𝑤 = 0 ≠ 𝑢, 𝑣 at 𝑧 = 0 due to the impermeability condition being the
only condition imposed at the wall, which is achieved by using packet
structures with image packet pairs in the plane of the wall.

To model the inertially dominated (i.e. outer) region, the flow
is simply represented by the superposition of multiple such 𝛬-eddy
packets (referred as hierarchies), of varying sizes and population den-
sity, randomly distributed in the flow domain. Following Townsend’s
hypothesis, the geometry of these hierarchies is considered to vary self-
similarly, a claim which has received both empirical (Baars et al., 2017;
Deshpande et al., 2020a; Yoon et al., 2020; Hwang et al., 2020) and
theoretical (Perry et al., 1986; McKeon, 2019) support in the literature.
The recent study by Eich et al. (2020) is the latest published AEM
flow-field configuration (henceforth referred simply as AEM) used to
replicate the instantaneous flow-field for a ZPG TBL at 𝑅𝑒𝜏 ≈ 3200. In
this study, the major axis of the 𝛬-eddy packet was oriented at various
angles (with respect to 𝑥) along the 𝑥-𝑦 plane, to incorporate the ‘me-
andering’ characteristics of the eddies noted in experiments (Hutchins
and Marusic, 2007; Kevin et al., 2019). To summarize, while the mean-
dering features and the eddy inclination angles have been chosen based
on the empirical estimates (Deshpande et al., 2019; Kevin et al., 2019),
the aspect ratios governing the representative eddy geometry (marked
in Fig. 1(a)) have never had an empirical basis to date, which forms

the motivation for the present study. The eddy geometry plays a major
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Fig. 1. (a) Schematic depicting the representative 𝛬-eddy packet used in the AEM (de Silva et al., 2016b; Eich et al., 2020), with the blue and red iso-contours respectively
denoting the negative and positive streamwise velocity induced from the 𝛬-shaped vortex rods (indicated in green). (b) Streamwise, (c) spanwise and (d) wall-normal velocity
induced by the 𝛬-eddy packet in the reference wall-parallel plane at 𝑧 = 0.01𝑧𝑖 (highlighted in grey) shown in (a). Labels in (a) are used to refer to the 3-D geometry of the packet,
with 𝛥𝑦𝑖 representing the spanwise half-width, owing to the symmetry of the 𝑢-distribution about the 𝑦 = 0 plane. This figure has been adapted from de Silva et al. (2016b). Mean
flow direction is along 𝑥. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
role in the visual appearance of the instantaneous flow field generated
by the AEM, as will be highlighted in the next section (Section 2).

The present study, hence, follows in line with previous studies
(de Silva et al., 2016b; Eich et al., 2020) with the aim of enhancing
the AEM framework, in order to improve spatial representation of a
wall-bounded flow from the model. We note that the typical shape of
the representative eddy (of a 𝛬-eddy packet) has been kept the same
with the intention to preserve its low-order complexity, and given its
past success in replicating turbulent wall flow statistics (Woodcock and
Marusic, 2015; Baidya et al., 2014, 2017; Deshpande et al., 2020a;
Chandran et al., 2020). Further, the present shape is also well suited to
model the wall-coherent subset of the wall-bounded flows, given that
all three velocity components generated from the eddy extend down to
the near-wall region, (Fig. 1(b–d)).

2. Motivation for a data-driven AEM

Here, we compare the instantaneous flow fields generated by the
AEM (Eich et al., 2020) with the corresponding flow fields from the
direct numerical simulation (DNS) of a ZPG TBL (Sillero et al., 2014) to
motivate a data-driven definition of the representative eddy geometry
used in the former. Given that the AEM simulates purely the WC portion
of the TBL, a logical way to go about this would be by comparing
it with the subset of the full DNS fields comprising solely the WC
motions. Fig. 2 presents this comparison between the instantaneous
velocity fluctuations for all three components, considered along the
wall-parallel plane at the lower bound of the inertial region. It brings
out significant differences in the geometry of the coherent motions,
with the velocity features in the DNS fields substantially longer than
those noted in the AEM fields. A plausible reason behind this difference
may be the geometry of a 𝛬-eddy packet not defined based on empirical
estimates, which we aim to facilitate in the present study. Here, we
propose to obtain the geometric estimates by reconstructing the 3-
D statistical picture of the wall-coherent turbulence from published
datasets (Section 3). Another noteworthy limitation in the AEM is that
all the coherent structures considered in the current model correspond
to the hierarchy of self-similar eddies, following Townsend’s hypoth-
esis. A true WC flow field, however, cannot be replicated without
also considering the 𝛿-scaled superstructures or VLSMs (Deshpande
et al., 2020a; Yoon et al., 2020), which we also intend to include in
3

the model. Interestingly, these motions can also be modelled via the
same representative 𝛬-eddy packet shown in Fig. 1(a), as demonstrated
recently by Chandran et al. (2020) for modelling the 2-D spectra.

Readers may note here that the DNS flow fields in Fig. 2(b,d,f),
which comprise solely the WC motions, have been computed using the
publicly available full (WC+WI) fields via a spectral linear stochastic
estimation (SLSE) based decomposition technique. Interested readers
may refer to Appendix for more details on how the WC fields were
estimated, and also see Fig. 11, where the full flow field instants
corresponding to the WC fields in Fig. 2 have been plotted. Differences
between the full (Fig. 11) and the WC (Fig. 2) flow fields are substan-
tial, especially for the lateral velocity components, with large spatial
coherence observed in case of the latter as compared to the former.
Further, the oblique features otherwise apparent in the full spanwise
velocity field in the log-region (Fig. 11(b); Sillero et al. (2014), de Silva
et al. (2018)), cannot be noted in its WC subset (Fig. 2(d)). These
differences underscore the importance of comparing the AEM fields
with solely the WC motions, which the representative eddy models.

3. 3-D statistical picture of the wall-coherent turbulence

3.1. Datasets and methodology

The present study utilizes five previously published multi-point
datasets, spanning all three canonical flow geometries. Key parameters
of the datasets are summarized in Table 1. Dataset 1 corresponds to
DNS of ZPG TBL, while 2 and 3 correspond to higher 𝑅𝑒𝜏 experi-
mental data for the same flow geometry. 1 and 1 are respectively
the DNS and experimental datasets for a fully turbulent channel and
pipe flow. The selected datasets present a unique combination of syn-
chronously acquired 𝑢-fluctuations mapped across 3-D space in the
wall-bounded shear flow (refer Figs. 3(a,b) and 4(a–c)). 1, 1 and 1
each comprise 𝑢-fluctuations acquired using multiple near-wall fixed
probes (placed at 𝑥𝑤 = 0, 𝑦𝑤, 𝑧𝑤), distributed in log spacing along
the spanwise/azimuthal directions, in conjunction with those acquired
by the probe traversing along the wall-normal direction (𝑧). On the
other hand, 2 and 3 comprise 𝑢-fluctuations from a single near-wall
fixed probe (placed at 𝑥𝑤 = 0, 𝑦𝑤 = 0, 𝑧𝑤), acquired synchronously
with those measured farther from the wall by a probe traversing along
the 𝑧- and 𝑦-directions, respectively. Considering the fact that the
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Fig. 2. Instantaneous (a,b) streamwise, (c,d) spanwise and (e,f) wall-normal velocity fluctuations on a wall-parallel plane at the lower bound of the inertial-region (𝑧+ ≈ 2.6
√

𝑅𝑒𝜏 ).
Data in (a,c,e) corresponds to the AEM of Eich et al. (2020) and has been plotted at 𝑧+ ≈ 160, while that in (b,d,e) corresponds to the ZPG TBL DNS of Sillero et al. (2014)
comprising solely of wall-coherent motions (represented by subscript wc). The DNS data has been plotted at 𝑧+ ≈ 100. Black dashed lines are used to highlight the largest spatial
features of low momentum for a qualitative comparison. Note the difference in axis limits between (a–d) and (e–f).
Table 1
Table summarizing the details of five previously published datasets comprising synchronized measurements of 𝑢-fluctuations by various near-
wall fixed probes (placed at 𝑥𝑤 = 0, 𝑦𝑤, 𝑧𝑤) and a traversing probe (𝑥 = 0, 𝑦, 𝑧), in turn separated by relative spanwise (𝛥𝑦 = ∣ 𝑦 − 𝑦𝑤 ∣) and
wall-normal (𝑧 − 𝑧𝑤 ≈ 𝑧) offsets. In case of dataset 1, the hot-film attached to the wall measures the instantaneous skin-friction velocity, �⃗�𝜏

=
√

𝜈(𝜕�⃗�∕𝜕𝑧). The probe arrangements associated with each of these datasets have been schematically depicted in Figs. 3 and 4, with probes
in blue and red respectively denoting the traversing and near-wall fixed probes.
Dataset:
∙ Label 1 1 2 3 1
∙ Flow type ZPG TBL Channel ZPG TBL ZPG TBL Pipe
∙ Facility DNS (raw) DNS (raw) HRNBLWT HRNBLWT CICLoPE
∙ Reference Sillero et al. (2014) Lee and Moser (2015) Baars et al. (2017) Deshpande et al. (2020a) Baidya et al. (2019)
∙ 𝑅𝑒𝜏 ≈ 2000 5200 14 000 14 000 40 000

Near-wall probes:
∙ Probe type Grid point Grid point Hot-wire Hot-wire Hot-film
∙ Number 38 40 1 1 20
∙ 𝑧+𝑤 ≈ 15 15 4.33 15 Wall
∙ Spanwise/azimuthal 0 ≤ 𝑦𝑤∕𝛿 ≤ 1 0 ≤ 𝑦𝑤∕𝛿 ≤ 1 𝑦𝑤 ≈ 0 𝑦𝑤 ≈ 0 0 ≤ 𝑦𝑤∕𝛿 ≤ 1
arrangement of probes (log-spacing) (log-spacing) (log-spacing)

Traversing probe:
∙ Probe type Grid point Grid point Hot-wire Hot-wire Hot-wire
∙ Traversing direction 𝑧 𝑧 𝑧 𝑦 𝑧
∙ Traversing range 15 < 𝑧+ ≤ 𝑅𝑒𝜏 15 < 𝑧+ ≤ 𝑅𝑒𝜏 4.33 < 𝑧+ ≤ 𝑅𝑒𝜏 0 ≤ 𝑦∕𝛿 ≤ 1 0 < 𝑧+ ≤ 𝑅𝑒𝜏

(log-spacing) (log-spacing) (log-spacing) (log-spacing) (log-spacing)
∙ Position along non-
traversing directions 𝑦 = 0 𝑦 = 0 𝑦 = 0 𝑧 ∼ log-region 𝑦 = 0
canonical wall-bounded flows are statistically homogeneous along the
span, the cumulative 3-D space mapped by combining the datasets 2
and 3 would be equivalent to that mapped in each of the individual
datasets, 1, 1 and 1. In case of 1, it should be noted that the
near-wall probe is essentially a hot-film sensor attached to the wall
for measuring the instantaneous skin-friction velocity �⃗�𝜏 (= 𝑈𝜏 +
𝑢𝜏 ), which is associated with the near-wall instantaneous streamwise
velocity (�⃗�) following �⃗�𝜏 =

√

𝜈(𝜕�⃗�∕𝜕𝑧). Interested readers may refer
to the individual references for more specific details regarding the
measurements/simulations.

We now move on to proposing the methodology used to recon-
struct the 3-D statistical picture of the wall-coherent turbulence, from
which the geometric estimates for the representative eddy (of the
AEM) would be extracted. There have been several studies in the
past (Ganapathisubramani et al., 2005; Hutchins and Marusic, 2007;
Lee and Sung, 2011) which have used multi-point datasets to estimate
4

the geometry of the coherent motions, by computing mostly space–time
cross-correlations. These cross-correlations, however, represent cumu-
lative contributions from eddies of various length scales at a specific
spatial offset (say streamwise offset, 𝛥𝑥). Here, since we are interested
in estimating the 3-D geometry of individual hierarchies/length scales
to be incorporated in the AEM, we compute the cross-correlations in the
spectral domain to get a scale-specific estimate of the coherent structure
geometry (i.e. as a function of the streamwise wavelength, 𝜆𝑥). Given
our focus is on modelling the inertial wall-coherent motions coexisting
in the outer region, we consider the cross-correlations specifically
between 𝑢-signals in the outer region (at 𝑧) and those acquired close
to the wall (at 𝑧+𝑤 ≲ 15), via the cross-correlation spectra (𝛤 ) defined
as (Bailey et al., 2008; Deshpande et al., 2020b):

𝛤 (𝑧, 𝛥𝑦, 𝜆𝑥) =
Re[{�̃�(𝑧, 𝑦; 𝜆𝑥)�̃�∗(𝑧𝑤, 𝑦𝑤; 𝜆𝑥)}]

√

2
√

2
{∣ �̃�(𝑧, 𝑦; 𝜆𝑥) ∣ } {∣ �̃�(𝑧𝑤, 𝑦𝑤; 𝜆𝑥) ∣ }
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Re[𝜙′

𝑢𝑢𝑤
(𝑧, 𝑧𝑤, 𝛥𝑦; 𝜆𝑥)]

√

𝜙𝑢𝑢(𝑧, 𝑦; 𝜆𝑥)
√

𝜙𝑢𝑤𝑢𝑤 (𝑧𝑤, 𝑦𝑤; 𝜆𝑥)
, (1)

where �̃� = (𝑢) is the Fourier transform of 𝑢 in either time or 𝑥
depending on the dataset with 𝜆𝑥 = 2𝜋∕𝑘𝑥, where 𝑘𝑥 is the streamwise
wavenumber. Further, the curly brackets ({}), asterisk (∗) and vertical
bars (∣∣) indicate the ensemble averaging, complex conjugate and mod-
ulus, respectively while Re denotes the real component. 𝜙′

𝑢𝑢𝑤
is, thus,

the complex-valued 1-D cross-spectrum between 𝑢-signals recorded at 𝑧
and 𝑧𝑤, which quantifies the scale-specific cross-correlation, while 𝜙𝑢𝑢
and 𝜙𝑢𝑤𝑢𝑤 respectively are the conventional 1-D energy spectra at 𝑧 and
𝑧𝑤 used for the scale-specific normalization. Such a definition forces
𝛤 to vary between −1 to 1, with the former and latter respectively
indicating perfect anti-correlation and correlation for each scale, 𝜆𝑥.
In case of dataset 1, notably, 𝛤 is computed by substituting the skin-
friction velocity fluctuations (𝑢𝜏 ) measured by the wall-based hot-films,
in place of 𝑢(𝑧𝑤).

As can be noted from its definition in Eq. (1), 𝛤 is a function of the
spatial offsets in all three directions, which is facilitated by computing
the cross-correlations between 𝑢-signals recorded at various relative
spanwise offsets (𝛥𝑦 = ∣𝑦 − 𝑦𝑤∣) and wall-normal offsets (𝑧 ≈ 𝑧 − 𝑧𝑤,
given 𝑧𝑤 ≪ 𝑧). The offset along 𝑥 is obtained in the form of a stream-

ise wavelength, which is estimated by using the Taylor’s hypothesis in
ase of the experimental datasets (where the local convection velocity,
𝑐 = 𝑈 (𝑧)), or obtained directly from the spatial domain for the DNS
atasets. 𝛤 (𝑧, 𝛥𝑦, 𝜆𝑥), thus, can be interpreted as a coherence met-
ic which associates each WC scale/eddy (𝜆𝑥) with its corresponding
panwise (𝛥𝑦) and wall-normal extent (𝑧). This information can be
irectly used to define the geometry of the representative eddy, for
he respective coherent structure-based model, corresponding to the
treamwise scale, 𝜆𝑥. The benefit in case of models such as the AEM,
hich incorporate vorticity-based structures, is that once the eddy
eometry of the 𝛬-eddy packet is defined, velocity field for all three
omponents can be simulated without needing to estimate 𝛤 for the

other (lateral) velocity components.
It is worth noting here that 𝛤 being used here is different from

he linear coherence spectrum (LCS; 𝛾2𝐿) computed previously by Baars
t al. (2017) and Baidya et al. (2019), since 𝛤 retains solely the real
art of the cross-spectrum while 𝛾2𝐿 uses the absolute value of the cross-
pectrum. Here, we prefer 𝛤 over 𝛾2𝐿, to define the eddy geometry,
iven that the anti-correlated regions (𝛤 < 0) are indicative of the
elative placement of low-momentum (−𝑢) regions with respect to the
igh-momentum (+𝑢) regions, which otherwise cannot be inferred from
he LCS (0 ≤ 𝛾2𝐿 ≤ 1). For example, a recent study (Deshpande et al.,
020b) focusing on the 𝛤 -distribution over very large spatial extents
as confirmed the periodic distribution of 𝛿-scaled +𝑢 and −𝑢 motions
long the spanwise direction. Investigating the 𝛤 distribution in 3-

space, thus, could provide quantitative basis to the choice of the
epresentative eddy for a coherent structure-based model, as will be
iscussed ahead in this section.

.2. Application to high 𝑅𝑒𝜏 ZPG TBL datasets

We begin the empirical analysis by first reconstructing 𝛤 (𝑧, 𝛥𝑦, 𝜆𝑥)
or high 𝑅𝑒𝜏 ZPG TBL using the two experimental datasets, 3 and 2.

In case of 2, the traversing probe is constrained to move vertically
above the near-wall fixed probe (i.e. maintaining 𝛥𝑦 = 0), owing to
which this dataset yields the statistical picture solely in the streamwise
wall-normal plane, given by 𝛤 (𝛥𝑦 = 0; 𝑧, 𝜆𝑥) in Fig. 3(d). This plot
brings out the range of energetic WC scales/motions coexisting in the
outer region, which correspond to the wavelength range, 𝜆𝑥 ≳ 0.1𝛿.
For a specific energetic length scale, say 𝜆𝑥 ∼ 4𝛿, it indicates the
presence of a positively correlated region up to 𝑧 ∼ 0.3𝛿, followed
by a negatively correlated region between 0.3𝛿 < 𝑧 < 0.6𝛿. When
interpreted physically in terms of the spatial extent of the 𝑢-velocity
5

distributions along the mid-span of a 𝛬-eddy packet of length ∼ 4𝛿
(Fig. 1(a)), the aforementioned 𝑧-ranges may be respectively associated
ith the wall-normal extent of the −𝑢 region (represented by +𝛤 ) and
f the +𝑢 region (represented by -𝛤 ). Consequently, the height of the
-eddy packet may be nominally defined based on the region where
≈ 0, which is approximately 𝑧 ∼ 0.3𝛿. If we consider this for the

entire range 𝜆𝑥 ≳ 0.1𝛿, Fig. 3(d) indicates that the height (𝑧) of the
nertially dominated eddies varies self-similarly with respect to their
treamwise length scale (𝜆𝑥), which is given by the linear relationship
𝑥 = 14𝑧 (indicated by a dashed–dotted green line fitted to 𝛤 ≈ 0).
nterestingly, the same linear relationship between 𝜆𝑥 and 𝑧 was noted
y Baars et al. (2017) and Baidya et al. (2019) for a ZPG TBL and a
ipe respectively, although based on 𝛾2𝐿 as the metric. The 𝛤 -contours,

however, can be noted to be deviating from the linear relationship for
𝑧 < 0.02𝛿, which corresponds to the nominal lower bound of the log-
region (𝑧∕𝛿 ∼ 2.6(𝑅𝑒𝜏 )−0.5) as per Klewicki et al. (2009). This deviation
suggests that only 𝜆𝑥∕𝛿 > 0.3 (∼ 14×2.6(𝑅𝑒𝜏 )−0.5) conform to the truly
self-similar hierarchy at this flow 𝑅𝑒𝜏 .

The same analysis is next conducted along the wall-parallel plane, at
𝑧 corresponding to the inertial-region, by using the dataset 3. Fig. 3(c)
plots 𝛤 (𝑧 = 0.02𝛿; 𝛥𝑦, 𝜆𝑥) as an example, which corresponds to the 2-D
statistical picture at the lower bound of the inertial region. This picture,
however, represents the spanwise coherence only along the +𝛥𝑦 axis
and would be complete by considering a mirror image of the same plot
about 𝛥𝑦 = 0, owing to symmetry (Hutchins and Marusic, 2007). Given
that the 𝛤 -distribution in Fig. 3(c) is of the same nature as in Fig. 3(d),
the physical interpretation discussed for the latter is now extended to
the former. By fitting a dashed–dotted orange line along 𝛤 ≈ 0, we can
interpret from Fig. 3(c) that the spanwise half-width (𝛥𝑦) of the 𝛬-eddy
packet also varies self-similarly with respect to 𝜆𝑥, which is represented
by the linear relationship 𝜆𝑥 = 20𝛥𝑦. Consistent with what was noted
from Fig. 3(d), the self-similar trend is observed for 𝜆𝑥 > 0.3𝛿 but is
only valid up to 𝜆𝑥 ∼ 4𝛿, as all the larger length scales are found to
have a constant half-width, 𝛥𝑦 ∼ 0.17𝛿. These large eddies, hence, do
not conform to Townsend’s hierarchy of attached eddies but, in fact,
correspond to the 𝛿-scaled very-large-scales or superstructures noted
previously in the ZPG TBL (Hutchins and Marusic, 2007; Lee and Sung,
2011). The spanwise widths of these structures, which is found from the
present analysis to be 2𝛥𝑦 ∼ 0.35𝛿, is consistent with previous findings
based on PIV experiments (Dennis and Nickels, 2011; Gao et al., 2011).

Following the analysis on the individual 2-D planes, the plots in
Fig. 3(c,d) can now be stitched together to reconstruct the 3-D statisti-
cal picture of the WC motions in the ZPG TBL, as shown in Fig. 3(e). By
estimating the cross-correlation spectra at various 𝑧: 0.02𝛿 ≲ 𝑧 ≲ 0.15𝛿
from dataset 3, 𝛤 (𝑧, 𝛥𝑦, 𝜆𝑥) can be reconstructed across the inertial
region, as depicted in Fig. 3(e-g). These figures, thus, describe the
scale-specific geometry of the range of energetic motions coexisting
in the inertial region: the flow at the beginning of the inertial region
(𝑧 ∼ 0.02𝛿) comprises contributions from the widest hierarchy of self-
similar eddies, spanning 0.3𝛿 ≲ 𝜆𝑥 ≲ 4𝛿, which reduces to 0.8𝛿 ≲ 𝜆𝑥 ≲
4𝛿 at 𝑧 ≈ 0.05𝛿, and finally negligible contributions from the self-similar
hierarchy at the upper bound (𝑧 ≈ 0.15𝛿). The contributions from the
𝛿-scaled superstructures (𝜆𝑥 ≳ 4𝛿), on the other hand, is consistently
present throughout the inertial region. The corresponding spanwise and
wall-normal extents for each eddy (𝜆𝑥) can also be inferred based on the
scalings shown in Fig. 3(g), and have been summarized as a function
of the flow 𝑅𝑒𝜏 below:

𝜆+𝑥 ≳ 4𝑅𝑒𝜏

{

𝑧+ = 𝜆+𝑥 ∕14;𝛥𝑦
+ = 0.17𝑅𝑒𝜏 if true

𝑧+ = 𝜆+𝑥 ∕14;𝛥𝑦
+ = 𝜆+𝑥 ∕20 otherwise.

(2)

This information can be directly used to facilitate definition of the
representative eddy geometries in any coherent structure-based model.
It is worth noting here though, 𝛤 (𝑧, 𝛥𝑦, 𝜆𝑥) in Fig. 3(g) looks consistent
with the shape of a 𝛬-eddy packet when halved along the span (refer
to Figs. 1 or 5), thus providing quantitative support to the choice of the
representative eddy shape used in the AEM and making a strong case

in favour of implementing equation (2) into AEM.
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Fig. 3. (a,b) Experimental setups corresponding to datasets (a) 3 and (b) 2. Hotwire sensors marked in blue correspond to traversing probes, which move along their respective
traversing directions also marked in blue, while sensors marked in red correspond to the fixed near-wall probes. (c) Cross-correlation spectra computed as a function of 𝛥𝑦 and 𝜆𝑥
(i.e. 𝛤 (𝛥𝑦, 𝜆𝑥)) for 𝑧 ≈ 0.02𝛿 from the dataset 3. (d) 𝛤 (𝑧, 𝜆𝑥) computed for 𝛥𝑦 ≈ 0 from the dataset 2. Black contour in (c,d) corresponds to 𝛤 = 0.1. (e-g) Reconstruction of
the 3-D cross-correlation spectra, 𝛤 (𝑧, 𝛥𝑦, 𝜆𝑥) across the inertial region (0.02𝛿 ≲ 𝑧 ≲ 0.15𝛿) by fusing the empirical estimates from datasets 2 and 3. (e) is obtained by simply
combining data in (c) and (d). (f) and (g) are similarly obtained by fusing data in (d) and that estimated from dataset 3 over a range of 𝑧: (f) 0.02𝛿 ≲ 𝑧 ≲ 0.05𝛿 and (g) 0.02𝛿
≲ 𝑧 ≲ 0.15𝛿. Black iso-contour in (e-g) also corresponds to 𝛤 = 0.1. Dash-dotted lines in green, orange, indigo and grey colours represent the scalings: 𝜆𝑥 = 14𝑧, 𝜆𝑥 = 20𝛥𝑦, 𝛥𝑦 =
0.17𝛿 and 𝜆𝑥 = 4𝛿, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
3.3. Extension to various 𝑅𝑒𝜏 and flow geometries

Having described the methodology to reconstruct 𝛤 (𝑧, 𝛥𝑦, 𝜆𝑥) and
applied it to high 𝑅𝑒𝜏 ZPG TBL data, we now extend the same to
datasets at different 𝑅𝑒𝜏 (1) and other flow geometries (1 and 1) to
check for the universality of the scalings noted in Fig. 3. As discussed
previously, each of these datasets are self-sufficient to reconstruct the
3-D statistical picture across the inertial region. Fig. 4(d) plots the same
for the low 𝑅𝑒𝜏 ZPG TBL data using similar plotting style as in Fig. 3(g).
Interestingly, all the scalings noted previously from the high 𝑅𝑒𝜏 exper-
imental data (expressed in Eq. (2)) are also observed for the low 𝑅𝑒𝜏
case, confirming the 𝑅𝑒𝜏 -invariance of these empirical estimates and
consequently, their direct utilization in data-driven coherent structure-
based models for flows at any 𝑅𝑒𝜏 . Further, the spanwise half-width
(𝛥𝑦) is also found to tend towards a constant (∼ 0.17𝛿) at 𝜆𝑥 ≳ 4𝛿 for
the DNS dataset, confirming that the wavelength range estimated for
the 𝛿-scaled superstructures is independent of the Taylor’s hypothesis
assumption. It is worth noting here that the low 𝑅𝑒𝜏 for the dataset
1 reduces the thickness of the inertial region (0.05𝛿 ≲ 𝜆𝑥 ≲ 0.15𝛿)
and consequently the range of energetic scales (𝜆𝑥) corresponding to
the self-similar hierarchy. This can be confirmed from 𝛤 (𝑧 ≈ 0.05𝛿; 𝜆𝑥,
𝛥𝑦) plotted in Fig. 4(g), where the contours can be seen to follow the
linear relationship only for 𝜆𝑥∕𝛿 > 0.8, which is consistent with the
𝑅𝑒𝜏 -dependence of the lower limit of the self-similar scaling, as noted
previously in the high 𝑅𝑒𝜏 dataset in Fig. 3(c).

Fig. 4(e,h) and (f,i) respectively depict 𝛤 (𝑧, 𝛥𝑦, 𝜆𝑥) reconstructed us-
ing the high 𝑅𝑒𝜏 channel (1) and pipe flow (1) datasets. Remarkably,
the same self-similar scalings for the WC motions, noted previously for
ZPG TBL, are also noted for the case of internal flows. Similarly, it is
6

found that the contribution from the self-similar hierarchies becomes
statistically insignificant beyond the upper bound of the inertial region,
in both the internal flows. Although not shown here, 𝛤 (𝑧, 𝛥𝑦, 𝜆𝑥)
(similar to Fig. 4(f)) was also reconstructed for the relatively low 𝑅𝑒𝜏
data (≈ 10 000 and 20 000) acquired at the same facility by Baidya et al.
(2019), which exhibited the same scalings/behaviour. This universality
in the self-similar scaling, across all three canonical flows, is consistent
with the observation of Hwang et al. (2020) based on low 𝑅𝑒𝜏 (≈ 1000)
DNS datasets. Given that the estimation of the exact linear scalings
at low 𝑅𝑒𝜏 may be limited by the narrower range of the self-similar
hierarchy, the present study confirms the existence as well as the 𝑅𝑒𝜏 -
invariance of these self-similar scalings across all three canonical flows.
Further, given the channel and pipe datasets are at differing 𝑅𝑒𝜏 , the
𝛤 contours (Fig. 4(h,i)) also exhibit the 𝑅𝑒𝜏 -dependence of the lower-
limit of the self-similar range. Consistent with the observations noted
for the ZPG TBL, we can see that an increase in 𝑅𝑒𝜏 extends the linear
scaling up to much smaller scales, where the limit is governed by 𝜆𝑥∕𝛿
∼ (𝑅𝑒𝜏 )−0.5.

In case of the internal flows, however, the 𝜆𝑥 = 20𝛥𝑦 relationship is
found to be valid up to a larger length scale (𝜆𝑥 ≈ 6𝛿) than the ZPG TBL
(𝜆𝑥 ≈ 4𝛿), beyond which the constant spanwise half-width gradually
plateaus to a constant, 𝛥𝑦 ≈ 0.3𝛿. The scalings describing the 3-D spatial
extent of the inertial motions, in case of the internal flows, can thus be
expressed as a function of 𝑅𝑒𝜏 following:

𝜆+𝑥 ≳ 6𝑅𝑒𝜏

{

𝑧+ = 𝜆+𝑥 ∕14;𝛥𝑦
+ = 0.30𝑅𝑒𝜏 if true

𝑧+ = 𝜆+𝑥 ∕14;𝛥𝑦
+ = 𝜆+𝑥 ∕20 otherwise.

(3)

These trends suggest that the 𝛿-scaled VLSMs (𝜆𝑥 ≳ 6𝛿) conforming to
the internal flow geometries are relatively wider than the superstruc-
tures in ZPG TBL (Monty et al., 2009). These differences between the



International Journal of Heat and Fluid Flow 92 (2021) 108879R. Deshpande et al.
Fig. 4. Reconstruction of the (d–f) 3-D cross-correlation spectra, 𝛤 (𝑧, 𝛥𝑦, 𝜆𝑥) across the inertial region and (g–i) 𝛤 (𝛥𝑦, 𝜆𝑥) at the lower bound of the log-region (𝑧+ ≈ 2.6
√

𝑅𝑒𝜏 )
for datasets (d, (g) 1, (e, h) 1 and (f, i) 1 by utilizing the 𝑢-fluctuations associated with the probe placements depicted for the respective flow geometries in (a–c). Probes
marked in blue correspond to traversing probe which move along their respective traversing directions also marked in blue, while those marked in red correspond to the fixed
near-wall probes. Here, only two near-wall probes are shown for representative purposes, with the actual number given in Table 1. Black iso-contour in (d–f) corresponds to 𝛤 =
0.1. Dash-dotted lines in green, orange, indigo and grey colours represent scalings indicated in each figure. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
internal and external flows have been previously noted by Balakumar
and Adrian (2007), Monty et al. (2007) and Lee and Sung (2013) and
were attributed to the ‘persistent growth’ of the energetic motions,
beyond the inertial region, in case of internal flows, which is otherwise
inhibited by the turbulent/non-turbulent interface (T/NTI) in the ZPG
TBL (Monty et al., 2007; Lee and Sung, 2013).

4. Data-driven AEM

4.1. Incorporating the empirically-obtained scaling laws into the AEM

With the 3-D statistical picture of the wall-coherent turbulence now
characterized for all three canonical flows, we move onto discussing
how the empirically obtained scalings can be used in the data-driven
AEM (dd-AEM). In the remainder of this manuscript, we concentrate
our efforts on the attached eddy modelling of solely the ZPG TBL flow.
The methodology, however, can also be applied to the internal flows by
using the appropriate empirical estimates (given in Eq. (3)). Although a
real ZPG TBL flow comprises of a continuous distribution of statistically
energetic motions over a broadband spectrum (Fig. 3(g)), for the case
of the AEM, we consider a discretized distribution of eddies across 𝑛
hierarchies for convenience in modelling. Here, 𝑛 depends on the 𝑅𝑒𝜏
of the flow being modelled, with higher 𝑅𝑒𝜏 requiring the inclusion
of more hierarchies/scales. While the wall-normal height of the largest
hierarchy, say 𝑧𝑛 = 𝛿 by definition, we follow the convention adopted
by Perry and Chong (1982) of defining the wall-normal extent of the
smallest hierarchy (say 𝑧1) equal to the nominal lower bound of the
outer region, i.e. 𝑧+1 ∼ 100. Perry and Chong (1982) further defined
the heights of the subsequently larger hierarchies to be double that of
the relatively small hierarchy, which can be expressed mathematically
as 𝑧+𝑖 = 𝛿+2𝑖−𝑛, with 𝑖 being the hierarchy number. For 𝑧+1 = 100, 𝛿+
∼ 𝑅𝑒𝜏 = 100(2𝑛−1), meaning the number of hierarchies 𝑛 essentially
define the 𝑅𝑒 of the flow.
7

𝜏

Here, we follow Eich et al. (2020) and use 𝑛 = 6 for the dd-AEM,
yielding 𝑅𝑒𝜏 ≈ 3200 for the simulations which is also close to the
DNS at 𝑅𝑒𝜏 ≈ 2000. To extract the geometric estimates for the eddy
packet (Fig. 5(b)) corresponding to each of the six hierarchies, Fig. 5(a)
shows the same 3-D statistical picture as in Fig. 3(g) discretized into
six individual blocks. Here, the 𝑥-axis location of the 𝑖th block repre-
sents the streamwise length scale (𝜆𝑥𝑖 ) of the 𝑖th hierarchy, while the
corresponding extents along the 𝑦− and 𝑧-axis respectively indicate its
spanwise half-width (𝛥𝑦𝑖) and the wall-normal height (𝑧𝑖). It is worth
noting here that the eddy packet in Fig. 5(b), with seven 𝛬-eddies, is
simply shown for representative purposes and the actual number of
𝛬-eddies in the packet may vary depending on 𝜆𝑥𝑖/𝑧𝑖 (Table 2), such
that the inter-eddy spacing is maintained constant for both AEM and
dd-AEM.

Table 2 records the geometric estimates of all six hierarchies for
the dd-AEM, and compares them with those considered in the previous
AEM by Eich et al. (2020). The size of hierarchies 1 to 4 grows
self-similarly in all three directions, in accordance to the empirically
obtained scalings, which associates them with Townsend’s attached ed-
dies. Hierarchies 5 and 6, on the other hand, have a constant spanwise
half-width (𝛥𝑦 ∼ 0.17𝛿). The two largest hierarchies, thus, represent
the 𝛿-scaled superstructures, which were found to be the sole energetic
WC motions coexisting beyond the upper bound of the inertial region
(Fig. 3(g)). The presence of these 𝛿-scaled eddies, which do not conform
to the self-similar hierarchy, is another improvement of the dd-AEM
over the AEM, given that all six hierarchies in the latter conformed to
the self-similar hierarchy (Table 2).

The best way to quantify the impact of the changed eddy aspect
ratios (Table 2) in the AEM would be to compute the cross-correlation
spectra (𝛤 ) using both AEM and dd-AEM fields and comparing it
with the empirical estimate. This comparison is showcased in Fig. 6,
where 𝛤 is considered along the XZ plane (Fig. 6(a–c)), and that
along two wall-parallel planes at the lower (Fig. 6(d–f)) and upper
bound of the inertial region (Fig. 6(g–i)). Here, for convenience in
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Table 2
Comparing the geometry of the various eddy hierarchies in the AEM (Eich et al., 2020) and dd-AEM. Here, SS and NSS
respectively denote self-similar and non-self-similar. Other terminologies have been defined in Fig. 5(b). 𝛬-eddy packets
corresponding to the AEM and dd-AEM comprise of 7 and 30 𝛬-eddies respectively, to account for the differing 𝜆𝑥𝑖 /𝑧𝑖.

Hierarchy, 𝑖 𝑧𝑖∕𝛿 AEM (Eich et al., 2020) dd-AEM (present study)

𝜆𝑥𝑖 𝛥𝑦𝑖 SS/NSS 𝜆𝑥𝑖 𝛥𝑦𝑖 SS/NSS

1 𝑧1 = 2−5 𝜆𝑥1 = 3𝑧1 𝛥𝑦1 = 𝜆𝑥1 /12 SS 𝜆𝑥1 = 14𝑧1 𝛥𝑦1 = 𝜆𝑥1 /20 SS
2 𝑧2 = 2−4 𝜆𝑥2 = 3𝑧2 𝛥𝑦2 = 𝜆𝑥2 /12 SS 𝜆𝑥2 = 14𝑧2 𝛥𝑦2 = 𝜆𝑥2 /20 SS
3 𝑧3 = 2−3 𝜆𝑥3 = 3𝑧3 𝛥𝑦3 = 𝜆𝑥3 /12 SS 𝜆𝑥3 = 14𝑧3 𝛥𝑦3 = 𝜆𝑥3 /20 SS
4 𝑧4 = 2−2 𝜆𝑥4 = 3𝑧4 𝛥𝑦4 = 𝜆𝑥4 /12 SS 𝜆𝑥4 = 14𝑧4 𝛥𝑦4 = 𝜆𝑥4 /20 ≈ 0.17𝛿 SS
5 𝑧5 = 2−1 𝜆𝑥5 = 3𝑧5 𝛥𝑦5 = 𝜆𝑥5 /12 SS 𝜆𝑥5 = 14𝑧5 𝛥𝑦5 ≈ 0.17𝛿 NSS
6 𝑧6 = 20 𝜆𝑥6 = 3𝑧6 𝛥𝑦6 = 𝜆𝑥6 /12 SS 𝜆𝑥6 = 14𝑧6 𝛥𝑦6 ≈ 0.17𝛿 NSS
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ig. 5. (a) A discretized representation of 𝛤 (𝑧, 𝛥𝑦, 𝜆𝑥) for a ZPG TBL as the
uperposition of six discrete eddy hierarchies (𝑖 = 1 to 6), following the attached
ddy model of Perry and Chong (1982). Light-shaded boxes represent the self-similar
ierarchy while the dark-shaded boxes represent the 𝛿-scaled superstructures. Dash-
otted lines in green, orange, indigo and grey colours represent the same scalings as
escribed in Fig. 3. Blue and red colour contours plotted along the 𝛥𝑦 = 0 and 𝑧
0.01𝛿 planes are from Fig. 3(e) and are used simply for reference. (b) The spanwise

alf of the same 𝛬-eddy packet as in Fig. 1(a), representing the 𝑖th hierarchy with its
eometry defined in accordance to the discretized plot of 𝛤 (𝑧, 𝛥𝑦, 𝜆𝑥) shown in (a).
able 2 discusses the geometry of each of the six eddy hierarchies interpreted from
a). (For interpretation of the references to colour in this figure legend, the reader is
eferred to the web version of this article.)

nterpretation, 𝛤 computed from both the AEMs is considered only in
he 𝜆𝑥-range encompassing all six hierarchies (Table 2). We can note a
ignificant difference between 𝛤 estimated from the AEM and the dd-
EM fields, with the latter following the scaling trends consistent with

hose obtained empirically. Based on the comparison along both the
all-parallel planes (Fig. 6(d–i)), we can expect the dd-AEM to perform
uch better than the AEM throughout the inertial region.

.2. Spatial representation in the inertial region

We now extend the comparison between the dd-AEM and the
atasets to the instantaneous velocity fluctuations in the inertial region.
ig. 7 presents this comparison between the instantaneous fields for all
hree velocity fluctuations estimated from the dd-AEM, AEM and the
PG TBL DNS dataset ( ) at the lower bound of the inertial region.
8

1 p
ere, it should be noted that the ‘meandering’ aspect of the large-
cale motions (Hutchins and Marusic, 2007) has been built into the
d-AEM framework in the exact same way as in the AEM (Eich et al.,
020). Amongst these three datasets, the plots associated with the
EM and ZPG TBL DNS are the same as shown previously in Fig. 2,
ith significant differences noted between them (Section 2). Now,
ith the geometry of the representative eddy defined based on data in

he dd-AEM, along with the inclusion of the 𝛿-scaled superstructures,
he corresponding instantaneous velocity fields (Fig. 7(b,e,h)) can be
bserved to closely match the DNS fields. In particular, the extended
oherence of the velocity features (≳ 2𝛿) noted in all three velocity
omponents in the DNS have been well replicated by the dd-AEM,
ighlighting the impact of basing the eddy geometry on the data.
his reaffirms the fact that all three components are essentially inter-
ependent, and can be modelled via a representative eddy comprising
ultiple vortex structures (Fig. 1). The meandering very-large-scale
otions or superstructures which extend beyond 6𝛿 in length (Hutchins

nd Marusic, 2007; Lee and Sung, 2011), as observed in the DNS
Fig. 7(c)), are also well represented by the dd-AEM (Fig. 7(b)). The
d-AEM, however, appears to overestimate the magnitude of the lateral
elocity fluctuations (when compared to the DNS), which is likely an
rtifact of choosing the simplest shape/arrangement for the represen-
ative 𝛬-eddy packet in the present study (its optimization is beyond
he scope of the present study).

The qualitative agreement between the dd-AEM and the DNS, show-
ased in Fig. 7, can be confirmed quantitatively by generating averaged
low fields conditioned on a statistically dominant feature in the flow.
ne such statistical flow feature, which is predominant in the inertial

egion, is the negative value of the instantaneous momentum flux (𝑢𝑤
0; Wallace et al. (1972), Deshpande and Marusic (2021)), which is

arried by coherent motions associated with ejection (𝑢 < 0, 𝑤 > 0)
nd sweep (𝑢 > 0, 𝑤 < 0) events. Notably, the velocity field associated
ith the representative 𝛬-eddy packet (Fig. 1) is also consistent with

his notion and models features associated with both ejection and
weep events. Hence, we compute the conditionally averaged wall-
arallel flow fields for the coherent regions associated with strong
jections and sweeps by following the same methodology as adopted
reviously by de Silva et al. (2018) and Eich et al. (2020). This is
erformed by attaching a frame of reference to the centroid of each flow
eature representing strong 𝑢 and 𝑤 fluctuations, which are used as the
onditioning points. Here, the strong fluctuations correspond to 𝑢+ ≲ -1
nd 𝑤+ ≳ 1 for ejections and vice versa for the sweeps. The mean flow
eature is obtained by averaging multiple such strong features extracted
rom several flow fields.

Fig. 8 presents the averaged velocity signatures conditioned for the
trong ejection features, at the lower bound of the log-region, from flow
ields obtained from the AEM, dd-AEM and the DNS. Firstly, it can be
oted that the conditionally averaged fields from the DNS (Fig. 8(c,f,i))
ualitatively resemble the velocity fields around a single 𝛬-eddy packet
Fig. 1), giving further support to the choice of the representative
ddy. On comparing the geometric extents of the velocity features
enerated from the two AEMs and the DNS, a better match between
he dd-AEM and the DNS can be noted, confirming the enhanced
erformance of the dd-AEM. To list a few specific improvements, the
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Fig. 6. Cross-correlation spectra computed along (a–c) XZ-plane at 𝛥𝑦 ≈ 0, 𝛤 (𝛥𝑦 ≈ 0; 𝑧, 𝜆𝑥), (d–f) XY-plane at the lower bound of the inertial region, 𝛤 (𝑧+ ≈ 2.6
√

𝑅𝑒𝜏 ; 𝛥𝑦, 𝜆𝑥)
and (g–i) XY-plane at the upper bound of the inertial region, 𝛤 (𝑧 ≈ 0.15𝛿; 𝛥𝑦, 𝜆𝑥) from the (a,d,g) AEM of Eich et al. (2020), (b,e,h) data driven-AEM and (c,f,i) datasets 2
and 3. Dash-dotted lines in green, orange, indigo and grey colours represent the same scalings as described in Fig. 3. The plots in (c,f) represent the same data as in Fig. 3(d,c)
respectively, with the only difference being the change in axis limits to match with the plots from the AEM. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
long streamwise coherence observed particularly in ⟨𝑤+
𝑤𝑐⟩ (Fig. 8(i)) is

well replicated by ⟨𝑤+
⟩ generated from the dd-AEM (Fig. 8(h)). Further,

the extent of spanwise coherence for all three velocity components,
noted in the dd-AEM, compares better with the DNS than that noted
for the AEM. The inclusion of relatively long hierarchies in the dd-
AEM, which also considers the meandering aspect of the large-scale
motions, clearly brings out the distinct X-pattern in the ⟨𝑢+⟩ similar
to that seen for ⟨𝑢+𝑤𝑐⟩ from the DNS, and noted previously in the
literature (Hutchins and Marusic, 2007; Elsinga et al., 2010). The
streamwise extent of the wall-parallel velocity features, however, are
still falling short of the estimates from the DNS. This may be an
artefact of the assumption of scale-independent yaw angles, imposed
onto the 𝛬-eddy packets, to replicate ‘meandering’ phenomena in the
TBL (Eich et al., 2020). It seems plausible that the scales with the
longest streamwise extent (i.e. 𝜆𝑥) ‘meander’ with lesser intensity than
those with relatively shorter extent, which may favourably alter the
comparison being presented in Fig. 8. This, however, remains a subject
for future work.

It is also worth noting here that the close match of the conditioned
fields from the DNS (Fig. 8(c,f,i)), with the corresponding flow fields
from the 𝛬-eddy packet (Fig. 1), is owing to the consideration of solely
the WC motions. Interested readers may refer to Fig. 11(d,e,f) where
full flow fields (WC + WI) have been conditionally averaged based on
the same criteria as in Fig. 8. The significant mismatch between the
velocity features from the WC and full fields, for the DNS, suggests the
present representative eddy packet as a suitable choice to model solely
the WC subset of the TBL (and not the full flow as a whole).

5. Discussion

The present effort promises enhancement in the spatial representa-
tion of an instantaneous wall flow by means of a data-driven coher-
ent structure-based model. One would hope that such models, which
9

have the capability to predict very high 𝑅𝑒𝜏 flows in a computa-
tionally inexpensive way, will drive future investigations into flow
phenomena otherwise difficult to measure experimentally, such as the
instantaneous variation of the 𝑤-component over the homogeneous
wall-parallel plane (as in Fig. 7(h)) or that of 𝑣-component over the
wall-normal plane. While the data driven-AEM developed here seems
a promising prospect in this regard, more work needs to be done in
terms of also incorporating the WI motions to be able to predict the
full inertially-dominated turbulent flow field. These WI motions not
only are as statistically significant as the WC motions in the inertial
region (Chandran et al., 2020; de Silva et al., 2020), but are also the key
driver of the flow phenomena in the wake region. This is evident from
the instantaneous 𝑢-velocity fluctuations plotted in the wall-normal
plane, which are compared for the AEM, dd-AEM and the DNS in Fig. 9.
As we would expect, the dd-AEM predictions (Fig. 9(a)) compare well
with the instantaneous flow field from the DNS, comprising solely the
WC motions (Fig. 9(c)). These motions, however, lose their coherence
in the wake region where the WI motions predominate, which can be
deciphered from the full DNS field in Fig. 9(d). Another aspect of coher-
ent structure-based modelling requiring further work is the shape/form
of the representative eddy. The present choice of the 𝛬-eddy packet for
the AEM, although consistent with the statistical picture (𝛤 ) obtained
empirically, does not reflect the typical flow structure observed in
an instantaneous flow, leading to overestimation of the instantaneous
lateral velocity fluctuations noted in Fig. 7. Efficient machine learning-
based algorithms (Brunton et al., 2020), which have the capability to
analyse big datasets, may be better placed to propose a solution for this.

Besides assisting with the modelling of the WC motions, the em-
pirically determined geometric scalings in (2), (3) can also be used to
enhance the active flow control schemes operating based on real-time
sensing. Fig. 10 depicts a conceptual sketch showcasing the coher-
ent motions in a ZPG TBL, which can be manipulated by cross-flow
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Fig. 7. Instantaneous (a,b,c) streamwise, (d,e,f) spanwise and (g,h,i) wall-normal velocity fluctuations on a wall-parallel plane at the lower bound of the inertial-region (𝑧 ≈ 0.05𝛿
for the present 𝑅𝑒𝜏 ). Data in (a,d,g) corresponds to the AEM of Eich et al. (2020), that in (b,e,h) corresponds to the data driven-AEM developed in the present study, while that
in (c,f,i) corresponds to the ZPG TBL DNS of Sillero et al. (2014) comprising of solely the wall-coherent motions (represented by subscript wc). Black dashed lines are used to
highlight the largest spatial features of low momentum for a qualitative comparison. Note the difference in axis limits between (a–f) and (g–i).
Fig. 8. (a,b,c) Streamwise, (d,e,f) spanwise and (g,h,i) wall-normal velocity fluctuations conditioned for 𝑢+ ≲ −1 and 𝑤+ ≳ 1. The conditional average is computed for the flow
on a wall-parallel plane at the lower bound of the inertial-region, which is 𝑧 ≈ 0.05𝛿 for the present 𝑅𝑒𝜏 . Data in (a,d,g) corresponds to the AEM of Eich et al. (2020), (b,e,h)
corresponds to the dd-AEM developed in the present study, while that in (c,f,i) corresponds to the ZPG TBL DNS of Sillero et al. (2014) comprising of solely the wall-coherent
motions (represented by subscript 𝑤𝑐).
Fig. 9. Instantaneous streamwise velocity fluctuations on a wall-normal plane. Data in (a) corresponds to the dd-AEM developed in the present study, that in (b) is from the AEM
of Eich et al. (2020), while that in (c,d) corresponds to the same ZPG TBL DNS flow field Sillero et al. (2014), with difference being (c) comprises of solely the wall-coherent
motions (represented by subscript wc) and (d) the full flow field (WC+WI).
(wall-normal) jets controlled by a computer, based on data from a
spanwise array of skin-friction sensors placed at a sufficiently upstream
location (Abbassi et al., 2017). These skin-friction sensors, which are
used to detect the incoming high-momentum (+𝑢) carrying coherent
motions, are also capable of detecting the streamwise extent (𝜆𝑥) of
these motions. Utilizing the empirically estimated scalings, the com-
puter controlling the jet actuation can decide how much momentum
10
to inject through them, based on the estimated wall-normal extent (𝑧)
of the incoming motions (indicated as control system 1 in Fig. 10).
Alternatively, in scenarios where sufficiently long separations between
the sensors and the jets cannot be maintained, the spanwise sensor
array can be used to estimate the spanwise coherence (𝛥𝑦) of the
incoming motions, through which the wall-normal extent could be
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Fig. 10. Conceptualization of an active-flow control system aimed at efficiently
manipulating the wall-coherent inertial motions in a ZPG TBL by utilizing the scalings
determined from high 𝑅𝑒𝜏 datasets. Concept of the flow control system has been
adapted from Abbassi et al. (2017). 𝑈∞ denotes mean freestream speed.

predicted (indicated as control system 2 in Fig. 10). Such empirically-
driven flow control systems, which also consider the wall-normal extent
of the incoming motions, could potentially manipulate the turbulent
inertial wall flow more efficiently, as demonstrated previously by Yao
et al. (2017). Given the significant contribution of the attached eddy
hierarchy to the mean skin friction at high 𝑅𝑒𝜏 (de Giovanetti et al.,
2016), availability of their corresponding 3-D geometric scalings can
also be used to decide the spanwise spacing between the cross-flow jets
targeting these eddies.

6. Concluding remarks

The present study analyses a unique set of multi-point datasets
to reconstruct the 3-D statistical picture of the inertial wall-coherent
(WC) turbulence in all three canonical wall-bounded flows. Previous
studies have found these motions to be responsible for both, the 𝑅𝑒𝜏 -
dependence of the skin-friction drag (Örlü and Schlatter, 2011; Deck
et al., 2014; de Giovanetti et al., 2016; Smits et al., 2021) as well as
the bulk production and the inter-scale energy transfer in high 𝑅𝑒𝜏
flows (Marusic et al., 2010; Lee and Moser, 2019; Hwang and Lee,
2020). The aforementioned characteristics make these motions a key
target of coherent structure-based models, which the present study
attempts to enhance.

Here, the statistical picture is reconstructed by computing the
cross-correlation spectra (𝛤 ) using the streamwise velocity fluctuations
mapped across the 3-D space in the wall-bounded shear flow. The
intermediate- and large-scaled inertial WC motions are found to exhibit
geometric self-similarity with respect to the distance from the wall 𝑧,
expressible by simple linear relationships, which are universal across all
canonical flows and independent of flow 𝑅𝑒𝜏 . The geometry of the very-
large-scaled motions, on the other hand, is found to exhibit 𝛿-scaling,
associating them with the superstructures and VLSMs for external and
internal flows, respectively. The present study also confirms the 3-D
geometry of the VLSMs to be much larger than the superstructures
even in high 𝑅𝑒𝜏 flows, highlighting the role of the T/NTI in inhibiting
the growth of these very-large-scaled motions in external flows (Monty
et al., 2007; Lee and Sung, 2013).
11
Alongside testing the universality of the 3-D statistical picture, the
geometric scalings brought out from the data (given by (2) and (3))
are also proposed to be used as a metric to estimate the spanwise
and wall-normal extent corresponding to each WC scale/eddy (𝜆𝑥).
Application of these linear relationships to any coherent structure-
based model can provide a data-driven basis to the geometry of the
representative structure, which is demonstrated in this study using
the attached eddy model (AEM; Perry and Chong (1982)) for a ZPG
TBL. Here, the choice of AEM (over other models) is also driven by
the empirical analysis, given the latter provides evidence of geometric
self-similarity of the inertial motions and also supports the 𝛬-eddy
packet as the representative eddy (both of which are built into the
AEM framework; Marusic and Monty (2019)). The present study further
extends the scope of the AEM by using its framework to also model
the 𝛿-scaled superstructures, which correspond to the very-large-scales
beyond the self-similar hierarchy. The data-driven AEM (or dd-AEM),
which has the representative eddies defined based on the data, is
shown to improve upon recent works on the AEM (Eich et al., 2020)
in replicating instantaneous flow phenomena associated with all three
velocity components. This sets up the platform for future work, which
would include both the WC and WI (wall-incoherent) motions modelled
via the AEM framework, to replicate the full turbulent wall-bounded
flow that can provide realistic inflow conditions for use in future
numerical simulations (Subbareddy et al., 2006; Wu, 2017).
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Appendix. SLSE-based decomposition of the instantaneous flow
fields

As discussed previously in Section 1, the flow field in the inertial
region comprises contributions from both wall-coherent (WC) and wall-
incoherent (WI) eddies. Here, we demonstrate a methodology, based
on the spectral linear stochastic estimate (SLSE) approach, to estimate
the WC subset of a velocity fluctuation (say for 𝑢-component) at any
wall-normal location 𝑧 in the inertial region. This procedure has been
utilized in previous studies (Baars et al., 2016; Madhusudanan et al.,
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Fig. 11. Instantaneous (a) streamwise, (b) spanwise and (c) wall-normal velocity fluctuations on a wall-parallel plane at the lower bound of the log-region (𝑧 ≈ 0.05𝛿 for the
present 𝑅𝑒𝜏 ) extracted from ZPG TBL DNS dataset (1) of Sillero et al. (2014). Unlike Figs. 2 or 7, these flow fields comprise contributions from both WC and WI motions,
i.e. they are the raw flow fields directly from the dataset. (d) Streamwise, (e) spanwise and (f) wall-normal velocity fluctuations conditioned for 𝑢+ ≲ −1 and 𝑤+ ≳ 1 on the same
wall-parallel plane as in (a–c).
2019; Deshpande and Marusic, 2021) for similar purposes (i.e. to obtain
a subset of the full flow field comprising selected coherent motions),
which can be directly referred for an elaborate introduction to this
technique. According to SLSE, a scale-specific unconditional input at
any near-wall location, 𝑧𝑤 (with 𝑧+𝑤 ≲ 15) can be used to obtain a
scale-specific conditional input at 𝑧 following:
𝐸 (𝑧+; 𝜆+𝑥 , 𝜆

+
𝑦 ) = 𝐻𝑢

𝐿(𝑧
+, 𝑧+𝑤; 𝜆

+
𝑥 , 𝜆

+
𝑦 )�̃�(𝑧

+
𝑤; 𝜆

+
𝑥 , 𝜆

+
𝑦 ), (4)

where �̃�(𝑧𝑤; 𝜆𝑥, 𝜆𝑦) is the 2-D Fourier transform of the instantaneous
wall-parallel flow field, 𝑢(𝑧𝑤; 𝑥, 𝑦) in space. Here, the superscript 𝐸 and
𝐻𝑢

𝐿 respectively represent the estimated quantity and the scale-specific
linear transfer kernel (for 𝑢-component). 𝑢𝐸 in Eq. (4), essentially,
corresponds to the energy distribution (at 𝑧) across wavelengths 𝜆𝑥
and 𝜆𝑦, which are coherent across 𝑧 and 𝑧𝑤. This is facilitated by first
computing 𝐻𝑢

𝐿 from an ensemble of data as per:

𝐻𝑢
𝐿(𝑧

+, 𝑧+𝑤; 𝜆
+
𝑥 , 𝜆

+
𝑦 ) =

{�̃�(𝑧+; 𝜆+𝑥 , 𝜆
+
𝑦 )�̃�

∗(𝑧+𝑤; 𝜆
+
𝑥 , 𝜆

+
𝑦 )}

{�̃�(𝑧+𝑤; 𝜆+𝑥 , 𝜆+𝑦 )�̃�∗(𝑧+𝑤; 𝜆+𝑥 , 𝜆+𝑦 )}
, (5)

where the curly brackets ({}) and asterisk (∗) denote the ensemble
averaging and complex conjugate, respectively. Given that 𝑧+𝑤 ≲ 15 and
𝑧+𝑤 ≪ 𝑧+, �̃�𝐸 (𝑧+; 𝜆+𝑥 , 𝜆+𝑦 ) thus represents energy contributions at 𝑧 from
solely WC motions, that are taller than 𝑧 (Madhusudanan et al., 2019;
Deshpande and Marusic, 2021), leading to:
𝐸 (𝑧+; 𝜆+𝑥 , 𝜆

+
𝑦 )
|

|

|𝑧+𝑤≲15
→ �̃�𝑤𝑐 (𝑧+; 𝜆+𝑥 , 𝜆

+
𝑦 ), (6)

where 𝑢𝑤𝑐(𝑧) represents the subset of 𝑢(𝑧) comprising solely the WC
motions. On obtaining �̃�𝑤𝑐 , the corresponding flow field in physical
space can be obtained by:

𝑢𝑤𝑐 (𝑧; 𝑥, 𝑦) = −1(�̃�𝑤𝑐 (𝑧; 𝜆𝑥, 𝜆𝑦)), (7)

where −1 represents the inverse Fourier transform. Here, although
the entire procedure has been demonstrated solely for 𝑢-fluctuations,
the same can be applied to other (lateral) velocity fluctuations by
estimating the respective linear transfer kernel (𝐻𝑣

𝐿 or 𝐻𝑤
𝐿 ). To give an

example, Fig. 11(a–c) plot the instantaneous wall-parallel flow fields,
comprising both WC + WI motions (i.e. the full flow fields) at the lower
bound of the inertial region. While, Fig. 2(b,d,f) plot the subset of the
corresponding full fields comprising solely the WC motions, estimated
using the aforementioned procedure.
12
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