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In this paper, we present the two-dimensional (2-D) energy cross-spectrum of the
streamwise velocity (u) component and use it to test the notion of self-similarity
in turbulent boundary layers. The primary focus is on the cross-spectrum (Φw

cross)
measured across the logarithmic (zo) and near-wall (zr) wall-normal locations,
providing the energy distribution across the range of streamwise (λx) and spanwise
(λy) wavelengths (or length scales) that are coherent across the wall-normal distance.
Φw

cross may thus be interpreted as a wall-filtered subset of the full 2-D u-spectrum (Φ),
the latter providing information on all coexisting eddies at zo. To this end, datasets
comprising synchronized two-point u-signals at zo and zr, across the friction Reynolds
number range Reτ ∼ O(103)–O(104), are analysed. The published direct numerical
simulation (DNS) dataset of Sillero et al. (Phys. Fluids, vol. 26 (10), 2014, 105109) is
considered for low-Reτ analysis, while the high-Reτ dataset is obtained by conducting
synchronous multipoint hot-wire measurements. High-Reτ cross-spectra reveal that the
wall-attached large scales follow a λy/zo ∼ λx/zo relationship more closely than seen
for Φ, where this self-similar trend is obscured by coexisting scales. The present
analysis reaffirms that a self-similar structure, conforming to Townsend’s attached
eddy hypothesis, is ingrained in the flow.

Key words: boundary layer structure, turbulent boundary layers

1. Introduction and motivation

Modelling turbulent boundary layers (TBL) has been an increasingly active area of
research, leading to proposals of various reduced-order as well as conceptual models.
Amongst the latter, the attached eddy model that has evolved from the attached
eddy hypothesis (AEH) of Townsend (1976) is well known and provides a kinematic
description of the logarithmic (log) region of wall turbulence. It assumes the TBL
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as an assemblage of randomly distributed geometrically self-similar attached eddies
or structures, with their population density inversely proportional to their size (see
Marusic & Monty (2019) for a comprehensive review). Throughout this article, the
words ‘structures’, ‘eddies’ and ‘motions’ are used interchangeably and essentially
refer to the definition of a coherent eddy given by Robinson (1991). Coherent
eddies can be self-similar or non-self-similar (Perry, Henbest & Chong 1986; Perry
& Marusic 1995). A self-similar eddy refers to a flow structure whose geometric
lengths and velocity field scale with distance from the wall (z) and friction velocity
(Uτ ), respectively. A non-self-similar eddy, on the other hand, does not exhibit these
characteristics.

Based on the attached eddy model, Perry et al. (1986) showed using spectral-
overlap arguments that self-similarity leads to a k−1

x scaling in the premultiplied
one-dimensional (1-D) u-spectra. Here, kx is the streamwise wavenumber and u, v
and w would refer to the streamwise, spanwise and wall-normal velocity fluctuations
respectively, associated with the coordinate system x, y and z. However, the true k−1

x
scaling for the u-spectra, representative of the contributions from purely self-similar
eddies has been obscured in the previously reported experiments and simulations due
to various reasons, namely: (i) spectral aliasing (Davidson, Nickels & Krogstad 2006;
Chandran et al. 2017) and (ii) overlapping contributions from various eddy types at
finite Reτ (Perry et al. 1986; Perry & Marusic 1995; Baars & Marusic 2020). The
present study tests the notion of self-similarity by bypassing both the aforementioned
scenarios through a methodology discussed ahead.

The 1-D spectra represents the average energy contribution over the entire range
of ky, for a particular kx, making it susceptible to spectral aliasing (Tennekes &
Lumley 1972). In that respect, a better alternative to the 1-D u-spectrum is the
direct measurement of the 2-D u-spectrum as a function of both kx (= 2π/λx) and
ky (= 2π/λy). The 2-D spectrum, however, is difficult to measure experimentally
at high Reτ . Chandran et al. (2017) were able to measure 2-D u-spectra at
2400 . Reτ . 26 000, in the log-region of a zero pressure gradient (ZPG) TBL,
by first reconstructing the 2-D two-point correlation:

Ruour(1x, 1y; zo, zr)= u(x, y, zr)u(x+1x, y+1y, zo),

with R̃uour = Ruour/(
√

u2(zo)
√

u2(zr)).

}
(1.1)

Subsequently, the 2-D spectrum was computed by taking the 2-D Fourier transforma-
tion of Ruour as:

φuour(kx, ky; zo, zr)=

∫∫
∞

−∞

Ruour(1x, 1y; zo, zr)e−j2π(kx1x+ky1y) d(1x) d(1y), (1.2)

where j is a unit imaginary number and overbar denotes ensemble time average.
Throughout this article, the 2-D spectrum refers to the modulus of the premultiplied
form of φuour normalized by the friction velocity (i.e. |k+x k+y φuour/U

2
τ |). For convenience,

the 2-D spectrum for zr = zo will be referred to as Φ, while that for zr 6= zo will
be referred to as Φcross. In agreement with del Alamo et al. (2004), at Reτ ≈ 2400,
Chandran et al. (2017) observed the constant-energy region of Φ to be nominally
bounded by power laws λy/zo ∼ (λx/zo)

1/2 in the large-scale range: λx/zo, λy/zo > 10.
Here, the wavelengths λx and λy were interpreted as the surrogate length and width
of the energetic eddies in the TBL. Therefore, the observation of a square-root
relationship suggested a failure of self-similarity at low Reτ since it indicates that
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the eddies do not grow wider (with z) at the same rate as they grow longer. At
Reτ ≈ 26 000, however, they found that the large scales deviate from the square-root
relationship towards a linear behaviour (λy/zo ∼ λx/zo), which is representative of the
self-similarity. The large-scale range where this change occurs was referred to as the
large-eddy region, existing in the nominal range λx > 10zo and λx < 7δ (Chandran
et al. 2017; Chandran 2019).

Chandran et al. (2017) conjectured that clear evidence of self-similarity would
be observed only for a TBL at Reτ & 60 000, due to Φ(zo) comprising energy
contributions from various eddy types existing at zo, which obey different scalings
(Baars & Marusic 2020). These contributions overlap with one another at relatively
lower Reτ (. 60 000), due to the limited scale separation, obscuring any λy/zo∼ λx/zo
relationship that may be present. The issue relates to the second reason ((ii)
mentioned above) responsible for obscuring self-similar trends in previous studies,
and we attempt to resolve it here by ‘filtering’ out the energy contribution from
the non-self-similar structures to bring out the self-similarity unequivocally. Here,
the term ‘filter’ is used to refer, in general, the methodology adopted to extract
flow statistics at zo contributed by structures coherent across a specified wall-normal
range, say zr–zo. Different studies have adopted different approaches to ‘filter’ out
these non-self-similar contributions, with some making use of the wall filter. Here,
the prefix ‘wall’ before ‘filter’ refers to the methodology utilized for extracting
flow features (at zo) contributed by eddies extending all the way down to the wall
(zr→0). These are referred to as the wall-attached structures in the present manuscript.
Similarly, structures which physically do not extend to the wall will be referred as
wall-detached structures.

Two recent studies, utilizing the wall filter, have shown promising results with
respect to removing the non-self-similar contributions. The first is by Hwang & Sung
(2018), who following the works of del Alamo et al. (2004) and Lozano-Durán, Flores
& Jiménez (2012), implemented a wall filter in their instantaneous ZPG TBL DNS
fields at Reτ ≈ 1000 to extract only those energetic motions which were physically
attached to the wall. Analysis of these filtered fields revealed a linear relationship
between the streamwise and spanwise length scales for the large wall-attached
structures. This evidence led them to conclude that the extracted structures were
principal candidates for Townsend’s AEH. The structures from the Reτ ≈ 1000 DNS,
however, are likely not statistically dominant in the log-region due to an insufficient
scale separation (Hwang & Sung 2018), encouraging a similar analysis at higher
Reτ . The second study, by Baars, Hutchins & Marusic (2017), involved computing
the 1-D linear coherence spectrum from synchronized two-point u-signals acquired
at a near-wall and log-region reference location. They identified the characteristic
lengths of the energetic wall-attached structures to be scaling self-similarly with zo,
as λx/zo ≈ 14. The analysis, which spanned datasets across three decades of Reτ , led
to the conclusion that a ‘self-similar attached eddy structure is ingrained within the
TBL flow’. Agostini & Leschziner (2017) made similar observations for structures in
the mesolayer. The present study may be viewed as a first step towards the extension
of the work by Baars et al. (2017) to the 2-D scenario. Here, we study the 2-D
cross-spectrum, Φw

cross (i.e. zr 6= zo; superscript ‘w’ used when z+r . 15) by considering
zr in the near-wall region and zo in the log-region. Therefore, Φw

cross(zo, zr) shows
the 2-D distribution of energy contributed purely by the wall-attached eddies that
extend up to zo and beyond (with zo� zr), and is investigated here to test the notion
of self-similarity. Throughout the article, superscript ‘+’ indicates normalization by
viscous length (ν/Uτ ) and velocity (Uτ ) scales.
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ZPG TBL dataset acquired at HRNBLWT, Reτ ≈ 15 000 (E1):
Set-up z+o z+r U∞ (m s−1) δ (m) TU∞/δ l+ (1y1)min (1y4)max

Φ 318 318 20 0.36 19 500 22 0.01δ 2.7δ
Φ 477 477 20 0.36 19 500 22 0.01δ 2.7δ
Φ 750 750 20 0.36 19 500 22 0.01δ 2.7δ
Φ 1025 1025 20 0.36 19 500 22 0.01δ 2.7δ
Φ 2250∗ 2250∗ 20 0.36 19 500 22 0.01δ 2.7δ
Φw

cross 318 15 20 0.36 19 500 22 0 2.5δ
Φw

cross 477 15 20 0.36 19 500 22 0 2.5δ
Φw

cross 750 15 20 0.36 19 500 22 0 2.5δ
Φw

cross 1025 15 20 0.36 19 500 22 0 2.5δ
Φw

cross 2250∗ 15 20 0.36 19 500 22 0 2.5δ

ZPG TBL DNS (Sillero, Jiménez & Moser 2014), Reτ ≈ 2000 (S1):
z+o z+r xstart xend (1x)max (1x+)min (1y+)min (1y)max

Φ 120 120 28.4δ 40.3δ 11.9δ 6.5 3.7 7.6δ
Φcross 120 15–77 28.4δ 40.3δ 11.9δ 6.5 3.7 7.6δ

TABLE 1. A summary of the various datasets containing synchronized multipoint u-signals
at zr and zo for various spanwise offsets, 1y. Terminology has been described in § 2.
Values highlighted in bold indicate the approximate z+-location for the beginning of the
log-region, 2.6

√
Reτ (Klewicki, Fife & Wei 2009), underlined represent z+≈ 3.9

√
Reτ and

the ones with superscript (*) represent the upper limit of the log-region, z+ ≈ 0.15δ+
(Marusic et al. 2013).

2. Experimental and numerical data

Two TBL datasets across a decade of Reτ are considered for analysis in the
present study (table 1). The high-Reτ dataset (E1) includes 2-D u-spectra (Φ) and
first measurements of 2-D u-cross-spectra (Φw

cross) at Reτ ≈ 15 000. This dataset was
obtained via synchronized multipoint hot-wire measurements in the large Melbourne
wind tunnel (HRNBLWT) and the details of these experiments are provided in table 1.
Here, l, U∞ and T denote the hot-wire sensor length, free-stream velocity and total
sampling duration, respectively. Boundary layer thickness, δ, and the friction velocity,
Uτ , are estimated via the composite fit proposed by Chauhan, Monkewitz & Nagib
(2009). 2.5 µm diameter Wollaston hot-wire probes were used for all measurements,
which were operated using an in-house Melbourne University Constant Temperature
Anemometer at a rate of 1T+≡U2

τ/(νfs)≈ 0.5, where fs refers to sampling frequency.
First, two-point measurements with z+r ≈ z+o were conducted with the aim to

obtain Φ at five wall-normal locations in the log-region, by employing the same
experimental set-up and methodology used by Chandran et al. (2017). Figure 1(ai)
shows the schematic of the experimental set-up used to reconstruct the corresponding
Ruour , with four hot-wire probes (HW1–4) located at zo. Following the calibration
procedure adopted by Chandran et al. (2017), HW1, HW2 and HW4 were calibrated
at zo by using the free-stream calibrated HW3 as reference. During experiments,
HW3 and HW4 remained stationary at a fixed spanwise location while HW1 and
HW2 were traversed together in the spanwise direction with logarithmic spacing.
u-velocity time series acquired from a pair of hot wires are cross-correlated to obtain
the correlation coefficient (R̃uour ) as a function of the spanwise spacing 1y (figure 1b).
At the start of the measurement, HW2 and HW3 were kept as close as practicably
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(fixed) (fixed)

Setup for Ï Setup for Ïw
cross(ai) (aii) (b)

FIGURE 1. (a) Schematic of the experimental set-up in HRNBLWT showing relative
positioning and movement of the four hot-wire probes (HW1–HW4) for reconstructing
the 2-D correlation corresponding to (i) Φ and (ii) Φw

cross. Mean flow direction is along x.
(b) Correlation coefficients (R̃uour ) as a function of spanwise separation 1y/δ, computed
for z+o ≈ 2.6

√
Reτ and 1x= 0.

possible, at (1y1)min ≈ 0.01δ. Thereafter, every step movement of the traverse gives
R̃uour at four distinct spanwise spacings: 1y1 (HW2–HW3), 1y2 (HW1–HW3), 1y3
(HW2–HW4) and 1y4 (HW1–HW4). Figure 1(b) highlights the 1y range covered
by each of these hot-wire pairs with different background colours. The experiment
continues up to (1y4)max ≈ 2.7δ, enabling computation of R̃uour for 1y = 0 and
(1y1)min 61y 6 (1y4)max. Taylor’s hypothesis, with the mean streamwise velocity at
zo considered as the convection velocity, is employed to construct R̃uour at different
streamwise spacings (1x) for the temporal dataset, E1. Φ(zo) is finally obtained
from Ruour via (1.2). It should be noted that (1y1)min is limited to 0.01δ for the
set-up in figure 1(ai), which leads to energy redistribution in Φ at small spanwise
scales (Chandran et al. 2017). To account for this, the DNS-based correction scheme
proposed by Chandran et al. (2016) has been implemented to correct Φ using the
2-D R̃uour obtained from the dataset of Sillero et al. (2014).

To obtain Ruour corresponding to Φw
cross, HW3 and HW4 were fixed at z+r ≈ 15 while

HW1 and HW2 were positioned at the same z+o (figure 1aii) as in the measurements
for Φ. Since the wall-coherence analysis remains largely unaffected for 0 6 z+r . 15
(Baars et al. 2017), the positioning of the wall-reference probe at z+r ≈ 15 was
considered appropriate. Except for the difference in the wall-normal locations of HW3
and HW4, the measurement technique to compute Ruour is similar to the previous case.
However, for this set-up, (1y1)min was reduced to zero by vertically aligning HW2
above HW3. The 1-D linear coherence spectrum (Baars et al. 2017) computed from
the u-signals acquired by these two probes, at 1y1 ≈ 0, agreed with its empirical fit
proposed by Baars et al. (2017), confirming the vertical alignment. Hence, as opposed
to Φ, no small-scale correction was required for Φw

cross. A part of this dataset has also
been used recently by Deshpande, Monty & Marusic (2019), wherein the sensitivity
of the 1-D linear coherence spectrum to 1y has been showcased.

The low-Reτ dataset (S1) considered in the present study is that of Sillero et al.
(2014). Thirteen raw DNS time blocks are considered, each of which is a subset of
the full computational domain between xstart and xend (see table 1) to ensure a limited
Reτ increase along x. Table 1 gives more details regarding the spatial resolution and
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FIGURE 2. (a) 3-D representation of R̃uour for dataset S1 with z+o ≈ 2.6
√

Reτ (= 120)
as a reference and 15 . z+r < 150 to plot isosurfaces for R̃uour = 0.1 (green) and −0.04
(red). Wall-parallel planes at z+r ≈ 2.6

√
Reτ and 15 have positive R̃uour contours as solid

lines at levels 0.0 : 0.1 : 1.0 and a dashed red contour for −0.04. (b) Experimentally
(E1) reconstructed R̃uour at equivalent z+o and z+r as in (a) and the same contour levels.
(c,d) Φ and Φw

cross for datasets (c) S1 and (d) E1 obtained on computing 2-D FFT of
the corresponding 2-D R̃uour plotted in (a) and (b). Contours in (c) and (d) represent
energy levels 0.15 : 0.10 : 0.55. Dot-dashed magenta and dashed blue lines represent the
square-root and linear relationship, respectively.

size of the flow fields considered. In the case of S1, Φ and Φw
cross are computed with

z+o ≈ 2.6
√

Reτ in order to correspond with E1. Since we get access to synchronous
u(x, y) data at various z in the case of DNS, we also selected several z+r in the range
15< z+r < z+o to study the variation in Ruour and the corresponding Φcross.

3. Results and discussion

3.1. Physical interpretation of Φw
cross and how it differs from Φ

While Φ(zo) gives the energy distribution of all coexisting eddies at zo, Φw
cross (zo, zr)

indicates the energy contributed by only those eddies at zo that have coherence at
the wall (i.e. are ‘wall-attached’). We attempt to explain this difference by first
investigating the cross-correlations, R̃uour . Figure 2(a) shows the positive and negative
isosurfaces of R̃uour considered from a correlation volume, R̃uour(1x, 1y, zr; zo),
obtained for z+o ≈ 2.6

√
Reτ and 15 . z+r < 150 for dataset S1. The plot is essentially

similar in concept to figure 1 of Sillero et al. (2014). Considering a wall-parallel
plane at zr = zo in this correlation volume gives a 2-D R̃uour map which is analogous
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Two-dimensional cross-spectrum in turbulent boundary layers

to the experimental 2-D correlation obtained via the probe arrangement shown in
figure 1(ai) and plotted at z+r ≈ 2.6

√
Reτ in figure 2(b). Now, by considering a

wall-parallel plane at z+r ≈ 15 in figure 2(a), we get a 2-D map of u-correlation
between the log (z+o ≈ 2.6

√
Reτ ) and the near-wall (z+r ≈ 15) region. An experimental

analogue of such a correlation is reconstructed with the probe arrangement shown
in figure 1(aii) and is plotted in figure 2(b) at z+r ≈ 15. A qualitative comparison
between the respective R̃uour maps from the two datasets shows good consistency:
(i) The length and width of a particular R̃uour contour level reduces as z+r is varied
from z+o towards the wall. This is consistent with the observations of del Alamo
et al. (2004), who attributed this decrease to the absence of the contributions from
wall-detached eddies as z+r → 0. (ii) The positive u-correlations at the spanwise
centre (1y= 0) are flanked by the negative correlations on either side, which extend
all the way from the log-region to the wall. This is representative of the adjacent
wall-attached low- and high-momentum zones responsible for the streaky pattern in
the TBL (Hutchins & Marusic 2007; Hwang & Sung 2018).

A 2-D Fourier transform of the respective wall-parallel R̃uour planes in figures 2(a,b),
following (1.2), gives the corresponding 2-D spectral energy distribution plotted in
figures 2(c,d). In each of these plots, Φ and Φw

cross as a function of the wavelengths
scaled with zo are plotted on the left and right, respectively. The energy distribution
in Φw

cross is restricted to large λx and λy, with negligible energy in the small scales:
λx .14zo, λy .2zo, which is unlike the scenario observed for Φ. This can be explained
by z+o � z+r , meaning that only physically large wall-attached eddies would appear in
Φw

cross(zo). In the forthcoming subsection, we compare Φ(zo) and Φcross(zo, zr) obtained
from the two datasets.

3.2. Low- versus high-Reτ 2-D spectra

Figure 3(a) shows the energy spectra for z+o ≈ 2.6
√

Reτ and various z+r at a constant
energy level of 0.2 for the low-Reτ dataset (S1). Also shown are dot-dashed magenta
and dashed blue lines which represent the square-root and linear relationship,
respectively. As discussed by del Alamo et al. (2004) and Chandran et al. (2017),
constant-energy contours of Φ follow a linear relationship (λy ∼ λx) only in the
small-scale region: λx/zo, λy/zo < 10. It changes to a square-root relationship
(λy ∼ λx

1/2) at larger scales, suggesting a failure of self-similarity at low Reτ . On
the other hand, if we consider the cross-spectra, the constant-energy contours in the
same large-scale range depart from the square-root towards a linear behaviour as zr
approaches the wall (i.e. for Φw

cross). This suggests that the energetic wall-attached
eddies are predominantly self-similar. Further, this self-similar trend is obscured in Φ
by energy contributions from the wall-detached eddies. It is obvious, however, that
a larger scale separation (i.e. higher Reτ ) would better highlight the changing trend
with zr.

Figure 3(b) shows constant-energy contours (∼0.2) of Φ and Φw
cross from the high-

Reτ dataset, E1, with the range of scales increased by almost a decade. Consistent with
the observations made by Chandran et al. (2017), for the 2-D spectrum Φ, the square-
root relationship for the intermediate range of scales deviates towards a relatively
higher power law at λx∼ 100zo and λy∼ 15zo, with the large scales having an average
aspect ratio of λx/λy ≈ 7 (indicated by a dark yellow line). According to Chandran
et al. (2017), this ratio is significant since the large-scale energetic structures in a
ZPG TBL become self-similar only after evolving into such large aspect ratios. As
opposed to Φ, the energetic ridge of Φw

cross is seen to follow λx/λy = 7 along its
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FIGURE 3. (a,b) 2-D energy spectra for z+o ≈ 2.6
√

Reτ and various z+r at a constant energy
level of 0.2 for datasets (a) S1 and (b) E1. Light yellow background indicates λx/zo > 14.
(c) Schematic of the AEH-based model considered, shown here having three distinct
hierarchies of self-similar wall-attached eddies, with the largest eddy (in black) of the
order of δ. L and W denote the length and width of an eddy hierarchy, respectively.
(d) 2-D spectra obtained from the AEH-based model for Reτ ≈ 15 000 and z+o ≈ 2.6

√
Reτ .

Solid black contour is qualitatively equivalent (∼0.5(ΦAEH)max) to the one in (b). In (a,b,d),
dot-dashed magenta, dashed blue and solid yellow lines denote λy/zo∼ (λx/zo)

1/2, λy/zo∼

λx/zo and λx/λy = 7 relationships, respectively.

entire stretch with negligible energy distribution in the scale range where Φ contours
vary as λy/zo ∼ (λx/zo)

1/2. The high-Reτ Φw
cross hence provides convincing evidence

of the self-similarity of wall-attached eddies. The fact that the energetic structures
contributing to Φw

cross are restricted to λx > 14zo (highlighted by yellow background),
which is consistent with the streamwise inner-scaling limit of self-similar wall-attached
structures (Baars et al. 2017), further adds credence to our claim. Given that Φw

cross
contours follow λx/λy ≈ 7 and λx > 14zo, present analysis suggests λy > 2zo as the
plausible spanwise inner-scaling limit for the wall-attached self-similar eddies.

The experimentally obtained Φw
cross is qualitatively similar to the 2-D energy spectrum

(ΦAEH) computed from a flow field consisting purely of self-similar wall-attached
eddies, as shown in figure 3(d). ΦAEH , here, is obtained using an AEH-based model
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FIGURE 4. (a,b) Contours at a constant energy level of 0.35(ΦAEH)max, 0.35(Φw
cross)max

(dataset E1) and 0.35(Φ)max (dataset E1) for z+o across the log-region (table 1) plotted as
a function of wavelengths scaled with (a) δ and (b) zo. Dark to light shade indicates an
increase in z+o . For each of the respective spectra, a maximum value at z+o ≈ 2.6

√
Reτ was

considered as a reference to normalize the energy spectra at all z+o . Dashed blue lines
represent the linear power-law relationship for respective spectra.

(Perry et al. 1986; Baidya et al. 2017; Chandran et al. 2017) where the log-region
is statistically represented by continuous hierarchies of representative eddies whose
geometric sizes scale with zo and whose probability density varies inversely with
zo. The idea is illustrated in figure 3(c), where, for clarity, the model is depicted
in a discretized form with three distinct hierarchies. Heights of the smallest and
largest eddies are taken as 100 viscous units and δ, respectively, with each eddy
inclined with respect to x at 45◦ (Deshpande et al. 2019). The aspect ratio of the
eddy hierarchy is roughly equivalent to the ratio of the large scales observed in the
high-Reτ results. Figure 3(d) plots the 2-D spectrum generated from this model at
conditions similar to dataset E1: Reτ ≈ 15 000 and z+o = 2.6

√
Reτ . It can be noted that

the high-Reτ Φw
cross contours show a good correspondence with ΦAEH contours, which

follow the λy/zo ∼ λx/zo relation given the imposition of self-similarity.
We extend this qualitative comparison between Φw

cross and ΦAEH to investigate
their scaling in the context of the spectral-overlap arguments of Perry et al. (1986).
According to their arguments, the energy contribution from self-similar eddies would
follow both outer-flow scaling (δ-scaling) and inner-flow scaling (zo-scaling) in
the wavelength range corresponding to ∼O(δ) and O(zo), respectively. These scaling
arguments are illustrated in figure 4 using Φw

cross and ΦAEH , for all z+o corresponding to
E1 (table 1), wherein the wavelengths are scaled with δ (figure 4a) and zo (figure 4b)
respectively. Φ(zo) is also plotted at the same z+o to demonstrate the effectiveness
of the wall filter. A noteworthy observation from figure 4 is that both ΦAEH and
Φw

cross contours exhibit the δ- and zo-scalings in a similar wavelength range. This
is suggested by the overlapping constant-energy contours for the respective spectra

890 R2-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

13
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

el
bo

ur
ne

 L
ib

ra
ry

, o
n 

02
 M

ar
 2

02
0 

at
 2

0:
23

:5
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.139
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


R. Deshpande, D. Chandran, J. P. Monty and I. Marusic

at various z+o . Further, these contours indicate an energy distribution predominantly
in the large-eddy region (Chandran et al. 2017), where they closely follow the
λy/zo ∼ λx/zo relationship. This supports the claim that Φw

cross predominantly consists
of the contribution from the self-similar eddies that comply with Townsend’s AEH.
This contribution can be seen to decrease for both ΦAEH and Φw

cross as distance from
the wall increases, with energy at z+o ≈ 0.15δ+ (light shaded contours) effectively
representing the contribution only from the tall wall-attached structures extending
beyond the log-region. In the case of Φ, on the other hand, the zo-scaling is also
observed in the small scales, which are predominantly wall-detached and hence do
not show up in Φw

cross. However, the wavelength range exhibiting δ-scaling is similar
to that observed for Φw

cross.

3.3. Is a wall filter sufficient to extract purely self-similar structures?
Referring to the discussion in § 1, on the studies by Baars et al. (2017) and Hwang
& Sung (2018), Φw

cross(zo) may be interpreted as the wall-filtered subset of Φ(zo).
Recent studies by Baars & Marusic (2020) and Yoon et al. (2020) show that not all
wall-attached structures exhibit self-similarity, and some of them may be geometrically
non-self-similar. Given the qualitative resemblance between Φw

cross and ΦAEH (§ 3.2),
it is worth investigating here if the energy contributions isolated via the wall filter
correspond purely to self-similar structures, or there are also contributions from the
non-self-similar structures. To this end, we probe the energetic ridges (Chandran et al.
2017) of Φ and Φw

cross, as self-similarity requires the slope (m) of the ridge to be
equal to one (λy ∼ λx). Here, the energetic ridge of the spectrum is computed by
identifying the spanwise wavelength, λy, corresponding to the maximum value of the
spectrum at each streamwise wavelength, λx. Additionally, Chandran et al. (2017) has
shown that the slope of the ridge translates as the ratio of the plateaus in the 1-D
streamwise u-spectrum to those in the 1-D spanwise u-spectrum. Here, the 1-D
streamwise and spanwise spectra are obtained by integrating the 2-D spectrum along
λy and λx, respectively.

Figure 5(a) shows the energetic ridges of Φ and Φw
cross for z+o ≈ 2.6

√
Reτ , while

figure 5(b) shows the respective 1-D spectra. A1x and A1y denote the peaks in the
1-D streamwise and spanwise spectra, respectively, while A′1x and A′1y refer to the
peaks in the 1-D streamwise and spanwise cross-spectra, respectively. These peaks
conform to the scale range where the 1-D spectrum is expected to plateau at very
high Reτ (Chandran et al. 2017), and is hence used as a reference over here for
analysis purposes. Direct computation of m, from the ratio of the 1-D spectra peaks,
shows a difference from 0.7 (for Φ) to 0.85 for Φw

cross, suggesting a relatively greater
contribution from self-similar structures to Φw

cross. A change in slope is also evident
from the comparison between the energetic ridges of Φ and Φw

cross. Figure 5(c) plots
m, directly computed from A1x/A1y and A′1x/A

′

1y for Φ and Φw
cross respectively, at

all z+o corresponding to E1 (table 1). Here, A1x/A1y can be seen decreasing with an
increase in z+o . This is consistent with the observations of Chandran et al. (2017),
who linked this trend with the AEH prediction on the decrease in self-similar eddy
population with distance from the wall (Townsend 1976). Interestingly, A′1x/A

′

1y on
the other hand remains approximately constant (≈0.85) at all z+o . This suggests that
the variation of A1x/A1y with z+o is most likely dictated by the contributions from the
wall-detached eddies, which are predominantly small, but can be either self-similar
or non-self-similar (Marusic & Monty 2019; Yoon et al. 2020).

The increment in m towards 1.0, when comparing Φ and Φw
cross, confirms that

the wall filter does indeed filter out energy contributions from the non-self-similar
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FIGURE 5. (a) Energetic ridges of Φ (light shaded) and Φw
cross (dark shaded) for z+o ≈

2.6
√

Reτ from dataset E1, plotted against δ-scaled wavelengths alongside the power laws
indicated by dot-dashed lines. (b) 1-D spanwise and streamwise (cross-)spectrum obtained
on integrating the corresponding Φ (Φw

cross) for z+o ≈ 2.6
√

Reτ from E1. Also highlighted
are the peaks of the 1-D spectrum (A1x,A1y) and cross-spectrum (A′1x,A′1y). (c) A1x/A1y and
A′1x/A

′

1y estimated at all z+o corresponding to E1 (table 1) by following the methodology
shown in (b).

structures which are wall-detached. However, the fact that m ≈ 0.85 and not 1.0
suggests that Φw

cross still consists of contributions from wall-attached non-self-similar
structures. This can be better understood on investigating the ridge for Φ and
Φw

cross (figure 5a) in the scale range: λx & 7δ, λy ∼ δ, where it appears to plateau at a
constant λy and grows only in λx for both the spectra. The energetic ridge in this scale
range is representative of the energy contribution from the δ-scaled superstructures
(Hutchins & Marusic 2007; Chandran 2019), which are known to have (λx)max up
to 20δ but spanwise width restricted to λy ∼ δ. The overlap suggests that Φw

cross, like
Φ, also consists of energy contributions from the superstructures which, although
wall-attached, cannot be categorized as self-similar structures. The presence of these
δ-scaled non-self-similar wall-attached structures has been noted previously by Baars
et al. (2017) as well as very recently by Yoon et al. (2020), who also described
these structures to be tall and reminiscent of the superstructures. The Φw

cross contour
for z+o ≈ 0.15δ+ (figure 4a), which is centred at λx∼ 7δ and λy∼ δ, can be considered
representative of the energy contributions from these tall non-self-similar structures.
The present analysis thus suggests that this contribution would have to be ‘filtered’
out from the wall-attached energy (at lower z+o ) to obtain the 2-D spectral distribution
purely from the self-similar eddies. Our conclusion aligns with the recent work of
Baars & Marusic (2020), who in addition to a wall filter, also proposed a log-filter in
order to isolate the energy contributions from the wall-attached self-similar eddies to
the 1-D streamwise spectra. Construction of a robust log-filter, however, is challenging
since it requires measurements to be conducted in a physically thick boundary layer
and/or at even higher Reτ than reported in the present study (Baars & Marusic 2020).

4. Concluding remarks

The present study investigates the 2-D cross-spectrum of u in a ZPG TBL for
Reτ spanning O(103)–O(104). Special emphasis is laid on the cross-spectrum (Φw

cross)
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representing coherence between a log (zo) and a near-wall reference, which depicts the
energy distribution across a range of wall-attached eddies existing at zo, and hence
is a subset of the full 2-D spectrum Φ(zo). Removal of the energy contributions
from wall-detached eddies results in Φw

cross, at high Reτ , having negligible energy
contribution in the scale range where otherwise a λy/zo ∼ (λx/zo)

1/2 behaviour
is noted for Φ. Further, the energetic large scales contributing to Φw

cross follow a
λy/zo ∼ λx/zo power law more closely than seen for Φ. This supports the hypothesis
on the obscured view of the self-similar trend for Φ, at finite Reτ , being a result of
limited scale separation between various eddies following dissimilar scalings. Further,
Φw

cross closely resembles the qualitative 2-D spectrum obtained from an AEH-based
model (ΦAEH), in terms of a scale-specific energy distribution as well as obeyance
of the self-similar scaling laws, giving strong evidence of self-similarity ingrained in
the TBL. It is shown, however, that Φw

cross does not represent energy contributions
purely from self-similar eddies. At least one more filter is required to remove the
contributions from wall-attached non-self-similar structures.
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