Two-dimensional cross-spectrum of the streamwise velocity in turbulent boundary layers

Rahul Deshpande†, Dileep Chandran, Jason P. Monty and Ivan Marusic

Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia

(Received 22 October 2019; revised 15 January 2020; accepted 17 February 2020)

In this paper, we present the two-dimensional (2-D) energy cross-spectrum of the streamwise velocity (u) component and use it to test the notion of self-similarity in turbulent boundary layers. The primary focus is on the cross-spectrum (Φ_{w}^{cross}) measured across the logarithmic (z_o) and near-wall (z_r) wall-normal locations, providing the energy distribution across the range of streamwise (λ_x) and spanwise (λ_y) wavelengths (or length scales) that are coherent across the wall-normal distance. Φ_{w}^{cross} may thus be interpreted as a wall-filtered subset of the full 2-D u-spectrum (Φ), the latter providing information on all coexisting eddies at z_o. To this end, datasets comprising synchronized two-point u-signals at z_o and z_r, across the friction Reynolds number range $Re_t \sim O(10^3)$–$O(10^4)$, are analysed. The published direct numerical simulation (DNS) dataset of Sillero et al. (Phys. Fluids, vol. 26 (10), 2014, 105109) is considered for low-Re_t analysis, while the high-Re_t dataset is obtained by conducting synchronous multipoint hot-wire measurements. High-Re_t cross-spectra reveal that the wall-attached large scales follow a $\lambda_y/z_o \sim \lambda_x/z_o$ relationship more closely than seen for Φ, where this self-similar trend is obscured by coexisting scales. The present analysis reaffirms that a self-similar structure, conforming to Townsend’s attached eddy hypothesis, is ingrained in the flow.

Key words: boundary layer structure, turbulent boundary layers

1. Introduction and motivation

Modelling turbulent boundary layers (TBL) has been an increasingly active area of research, leading to proposals of various reduced-order as well as conceptual models. Amongst the latter, the attached eddy model that has evolved from the attached eddy hypothesis (AEH) of Townsend (1976) is well known and provides a kinematic description of the logarithmic (log) region of wall turbulence. It assumes the TBL

† Email address for correspondence: raadeshpande@gmail.com
as an assemblage of randomly distributed geometrically self-similar attached eddies or structures, with their population density inversely proportional to their size (see Marusic & Monty (2019) for a comprehensive review). Throughout this article, the words ‘structures’, ‘eddies’ and ‘motions’ are used interchangeably and essentially refer to the definition of a coherent eddy given by Robinson (1991). Coherent eddies can be self-similar or non-self-similar (Perry, Henbest & Chong 1986; Perry & Marusic 1995). A self-similar eddy refers to a flow structure whose geometric lengths and velocity field scale with distance from the wall (z) and friction velocity \(U_\tau \), respectively. A non-self-similar eddy, on the other hand, does not exhibit these characteristics.

Based on the attached eddy model, Perry et al. (1986) showed using spectral-overlap arguments that self-similarity leads to a \(k_x^{-1} \) scaling in the premultiplied one-dimensional (1-D) \(u \)-spectra. Here, \(k_x \) is the streamwise wavenumber and \(u, v \) and \(w \) would refer to the streamwise, spanwise and wall-normal velocity fluctuations respectively, associated with the coordinate system \(x, y \) and \(z \). However, the true \(k_x^{-1} \) scaling for the \(u \)-spectra, representative of the contributions from purely self-similar eddies has been obscured in the previously reported experiments and simulations due to various reasons, namely: (i) spectral aliasing (Davidson, Nickels & Krogstad 2006; Chandran et al. 2017) and (ii) overlapping contributions from various eddy types at finite \(Re_\tau \) (Perry et al. 1986; Perry & Marusic 1995; Baars & Marusic 2020). The present study tests the notion of self-similarity by bypassing both the aforementioned scenarios through a methodology discussed ahead.

The 1-D spectra represents the average energy contribution over the entire range of \(k_y \), for a particular \(k_x \), making it susceptible to spectral aliasing (Tennekes & Lumley 1972). In that respect, a better alternative to the 1-D \(u \)-spectrum is the direct measurement of the 2-D \(u \)-spectrum as a function of both \(k_x (= 2\pi/\lambda_x) \) and \(k_y (= 2\pi/\lambda_y) \). The 2-D spectrum, however, is difficult to measure experimentally at high \(Re_\tau \). Chandran et al. (2017) were able to measure 2-D \(u \)-spectra at \(2400 \lesssim Re_\tau \lesssim 26,000 \), in the log-region of a zero pressure gradient (ZPG) TBL, by first reconstructing the 2-D two-point correlation:

\[
R_{u_x u_y}(\Delta x, \Delta y; z_o, z_r) = \overline{u(x, y, z_r)u(x+\Delta x, y+\Delta y, z_o)},
\]

with \(\overline{R_{u_x u_y}} = R_{u_x u_y} / (\sqrt{u^2(z_o)}\sqrt{u^2(z_r)}) \). (1.1)

Subsequently, the 2-D spectrum was computed by taking the 2-D Fourier transformation of \(R_{u_x u_y} \) as:

\[
\phi_{u_x u_y}(k_x, k_y; z_o, z_r) = \int_{-\infty}^{\infty} R_{u_x u_y}(\Delta x, \Delta y; z_o, z_r)e^{-j2\pi(k_x \Delta x + k_y \Delta y)} \, d(\Delta x) \, d(\Delta y),
\]

(1.2)

where \(j \) is a unit imaginary number and overbar denotes ensemble time average. Throughout this article, the 2-D spectrum refers to the modulus of the premultiplied form of \(\phi_{u_x u_y} \) normalized by the friction velocity (i.e. \(|k_x k_y \phi_{u_x u_y} / U_\tau^2| \)). For convenience, the 2-D spectrum for \(z_r = z_o \) will be referred to as \(\Phi \), while that for \(z_r \neq z_o \) will be referred to as \(\Phi_{cross} \). In agreement with del Alamo et al. (2004), at \(Re_\tau \approx 2400 \), Chandran et al. (2017) observed the constant-energy region of \(\Phi \) to be nominally bounded by power laws \(\lambda_y/z_o \sim (\lambda_x/z_o)^{1/2} \) in the large-scale range: \(\lambda_x/z_o, \lambda_y/z_o > 10 \). Here, the wavelengths \(\lambda_x \) and \(\lambda_y \) were interpreted as the surrogate length and width of the energetic eddies in the TBL. Therefore, the observation of a square-root relationship suggested a failure of self-similarity at low \(Re_\tau \) since it indicates that
the eddies do not grow wider (with \(z \)) at the same rate as they grow longer. At \(Re_t \approx 26\,000 \), however, they found that the large scales deviate from the square-root relationship towards a linear behaviour (\(\lambda_s/z_o \sim \lambda_s/z_o \)), which is representative of the self-similarity. The large-scale range where this change occurs was referred to as the large-eddy region, existing in the nominal range \(\lambda_s > 10z_o \) and \(\lambda_s < 7\delta \) (Chandran et al. 2017; Chandran 2019).

Two recent studies, utilizing the wall filter, have shown promising results with respect to removing the non-self-similar contributions. The first is by Hwang & Sung (2018), who following the works of del Alamo et al. (2004) and Lozano-Durán, Flores & Jiménez (2012), implemented a wall filter in their instantaneous ZPG TBL DNS fields at \(Re_t \approx 1000 \) to extract only those energetic motions which were physically attached to the wall. Analysis of these filtered fields revealed a linear relationship between the streamwise and spanwise length scales for the large wall-attached structures. This evidence led them to conclude that the extracted structures were principal candidates for Townsend’s AEH. The structures from the \(Re_t \approx 1000 \) DNS, however, are likely not statistically dominant in the log-region due to an insufficient scale separation (Hwang & Sung 2018), encouraging a similar analysis at higher \(Re_t \). The second study, by Baars, Hutchins & Marusic (2017), involved computing the 1-D linear coherence spectrum from synchronized two-point \(u \)-signals acquired at a near-wall and log-region reference location. They identified the characteristic lengths of the energetic wall-attached structures to be scaling self-similarly with \(z_o \), as \(\lambda_s/z_o \approx 14 \). The analysis, which spanned datasets across three decades of \(Re_t \), led to the conclusion that a ‘self-similar attached eddy structure is ingrained within the TBL flow’. Agostini & Leschziner (2017) made similar observations for structures in the mesolayer. The present study may be viewed as a first step towards the extension of the work by Baars et al. (2017) to the 2-D scenario. Here, we study the 2-D cross-spectrum, \(\Phi_{cross}^w \) (i.e. \(z_r \neq z_o \); superscript ‘\(w \)’ used when \(z_r^+ \approx 15 \)) by considering \(z_r \) in the near-wall region and \(z_o \) in the log-region. Therefore, \(\Phi_{cross}^w(z_o, z_r) \) shows the 2-D distribution of energy contributed purely by the wall-attached eddies that extend up to \(z_o \) and beyond (with \(z_o \gg z_r \)), and is investigated here to test the notion of self-similarity. Throughout the article, superscript ‘+’ indicates normalization by viscous length (\(v/U_t \)) and velocity (\(U_t \)) scales.
At the start of the measurement, HW_1 was operated using an in-house Melbourne University Constant Temperature Anemometer at a rate of 1 Hz. First, two-point measurements with Φ and Φ^cross were traversed together in the spanwise direction with logarithmic spacing. Here, δ, U_{∞} and T denote the hot-wire sensor length, free-stream velocity and total sampling duration, respectively. Boundary layer thickness, δ, and the friction velocity, U_τ, are estimated via the composite fit proposed by Chauhan, Monkewitz & Nagib (2009). 2.5 µm diameter Wollaston hot-wire probes were used for all measurements, which were operated using an in-house Melbourne University Constant Temperature Anemometer at a rate of $\Delta T^+ \equiv U_\tau^2/(\nu f_s) \approx 0.5$, where f_s refers to sampling frequency.

First, two-point measurements with $z_r^+ \approx z_o^+$ were conducted with the aim to obtain Φ at five wall-normal locations in the log-region, by employing the same experimental set-up and methodology used by Chandran et al. (2017). Figure 1(ii) shows the schematic of the experimental set-up used to reconstruct the corresponding R_{u_1,u_2}, with four hot-wire probes (HW_1–HW_4) located at z_o. Following the calibration procedure adopted by Chandran et al. (2017), HW_1, HW_2 and HW_4 were calibrated at z_o by using the free-stream calibrated HW_3 as reference. During experiments, HW_3 and HW_4 remained stationary at a fixed spanwise location while HW_1 and HW_2 were traversed together in the spanwise direction with logarithmic spacing. u-velocity time series acquired from a pair of hot wires are cross-correlated to obtain the correlation coefficient (\tilde{R}_{u_1,u_2}) as a function of the spanwise spacing Δy (figure 1b). At the start of the measurement, HW_2 and HW_3 were kept as close as practicably possible.
Possible, at $(\Delta y_1)_{\min} \approx 0.01\delta$. Thereafter, every step movement of the traverse gives $\widetilde{R}_{u_1u_t}$ at four distinct spanwise spacings: Δy_1 (HW2–HW3), Δy_2 (HW1–HW3), Δy_3 (HW2–HW4) and Δy_4 (HW1–HW4). Figure 1(b) highlights the Δy range covered by each of these hot-wire pairs with different background colours. The experiment continues up to $(\Delta y_4)_{\max} \approx 2.7\delta$, enabling computation of $\widetilde{R}_{u_1u_t}$ for $\Delta y = 0$ and $(\Delta y_1)_{\min} \leq \Delta y \leq (\Delta y_4)_{\max}$. Taylor’s hypothesis, with the mean streamwise velocity at z_o considered as the convection velocity, is employed to construct $\widetilde{R}_{u_1u_t}$ at different streamwise spacings (Δx) for the temporal dataset, E_1. $\Phi(z_o)$ is finally obtained from $R_{u_1u_t}$ via (1.2). It should be noted that $(\Delta y_1)_{\min}$ is limited to 0.01δ for the set-up in figure 1(a), which leads to energy redistribution in Φ at small spanwise scales (Chandran et al. 2017). To account for this, the DNS-based correction scheme proposed by Chandran et al. (2016) has been implemented to correct Φ using the 2-D $\widetilde{R}_{u_1u_t}$ obtained from the dataset of Sillero et al. (2014).

To obtain $R_{u_1u_t}$ corresponding to Φ_{cross}^w, HW3 and HW4 were fixed at $z^+_o \approx 15$ while HW1 and HW2 were positioned at the same z^+_o (figure 1(aii)) as in the measurements for Φ. Since the wall-coherence analysis remains largely unaffected for $0 \leq z^+_o \lesssim 15$ (Baars et al. 2017), the positioning of the wall-reference probe at $z^+_o \approx 15$ was considered appropriate. Except for the difference in the wall-normal locations of HW3 and HW4, the measurement technique to compute $R_{u_1u_t}$ is similar to the previous case. However, for this set-up, $(\Delta y_1)_{\min}$ was reduced to zero by vertically aligning HW2 above HW3. The 1-D linear coherence spectrum (Baars et al. 2017) computed from the u-signals acquired by these two probes, at $\Delta y_1 \approx 0$, agreed with its empirical fit proposed by Baars et al. (2017), confirming the vertical alignment. Hence, as opposed to Φ, no small-scale correction was required for Φ_{cross}^w. A part of this dataset has also been used recently by Deshpande, Monty & Marusic (2019), wherein the sensitivity of the 1-D linear coherence spectrum to Δy has been showcased.

The low-Re_τ dataset (S_1) considered in the present study is that of Sillero et al. (2014). Thirteen raw DNS time blocks are considered, each of which is a subset of the full computational domain between x_{start} and x_{end} (see table 1) to ensure a limited Re_τ increase along x. Table 1 gives more details regarding the spatial resolution and
size of the flow fields considered. In the case of \(S_1 \), \(\Phi \) and \(\Phi^w \) are computed with \(z_o^+ \approx 2.6 \sqrt{Re_r} \) in order to correspond with \(E_1 \). Since we get access to synchronous \(u(x, y) \) data at various \(z \) in the case of DNS, we also selected several \(z_r^+ \) in the range \(15 < z_r^+ < z_o^+ \) to study the variation in \(R_{u_o u_r} \) and the corresponding \(\Phi_{cross} \).

3. Results and discussion

3.1. Physical interpretation of \(\Phi^w \) and how it differs from \(\Phi \)

While \(\Phi(z_o) \) gives the energy distribution of all coexisting eddies at \(z_o \), \(\Phi^w_{cross} \) indicates the energy contributed by only those eddies at \(z_o \) that have coherence at the wall (i.e. are ‘wall-attached’). We attempt to explain this difference by first investigating the cross-correlations, \(R_{u_o u_r} \). Figure 2(a) shows the positive and negative isosurfaces of \(R_{u_o u_r} \) considered from a correlation volume, \(R_{u_o u_r}(\Delta x, \Delta y, z_r, z_o) \), obtained for \(z_o^+ \approx 2.6 \sqrt{Re_r} \) and \(15 \leq z_r^+ \leq 150 \) for dataset \(S_1 \). The plot is essentially similar in concept to figure 1 of Sillero et al. (2014). Considering a wall-parallel plane at \(z_r = z_o \) in this correlation volume gives a 2-D \(R_{u_o u_r} \) map which is analogous to study the variation in \(R_{u_o u_r} \) and the corresponding \(\Phi_{cross} \).
to the experimental 2-D correlation obtained via the probe arrangement shown in figure 1(a) and plotted at $z_r^+ \approx 2.6\sqrt{Re_r}$ in figure 2(b). Now, by considering a wall-parallel plane at $z_r^+ \approx 15$ in figure 2(a), we get a 2-D map of u-correlation between the log ($z_r^+ \approx 2.6\sqrt{Re_r}$) and the near-wall ($z_r^+ \approx 15$) region. An experimental analogue of such a correlation is reconstructed with the probe arrangement shown in figure 1(iii) and is plotted in figure 2(b) at $z_r^+ \approx 15$. A qualitative comparison between the respective $\tilde{R}_{u,\tilde{u}}$ maps from the two datasets shows good consistency: (i) The length and width of a particular $\tilde{R}_{u,\tilde{u}}$ contour level reduces as z_r^+ is varied from z_r^+ towards the wall. This is consistent with the observations of del Alamo et al. (2004), who attributed this decrease to the absence of the contributions from wall-detached eddies as $z_r^+ \to 0$. (ii) The positive u-correlations at the spanwise centre ($\Delta y = 0$) are flanked by the negative correlations on either side, which extend all the way from the log-region to the wall. This is representative of the adjacent wall-attached low- and high-momentum zones responsible for the streaky pattern in the TBL (Hutchins & Marusic 2007; Hwang & Sung 2018).

A 2-D Fourier transform of the respective wall-parallel $\tilde{R}_{u,\tilde{u}}$ planes in figures 2(a,b), following (1.2), gives the corresponding 2-D spectral energy distribution plotted in figures 2(c,d). In each of these plots, Φ and Φ_w^{cross} as a function of the wavelengths λ_o are plotted on the left and right, respectively. The energy distribution in Φ_w^{cross} is restricted to large λ_z and λ_y, with negligible energy in the small scales: $\lambda_z \lesssim 14z_o$, $\lambda_y \lesssim 2z_o$, which is unlike the scenario observed for Φ. This can be explained by $z_o^+ \gg z_r^+$, meaning that only physically large wall-attached eddies would appear in $\Phi_w^{\text{cross}}(z_o)$. In the forthcoming subsection, we compare $\Phi(z_o)$ and $\Phi_w^{\text{cross}}(z_o, z_r)$ obtained from the two datasets.

3.2. Low- versus high-Re_r 2-D spectra

Figure 3(a) shows the energy spectra for $z_o^+ \approx 2.6\sqrt{Re_r}$ and various z_r^+ at a constant energy level of 0.2 for the low-Re_r dataset (S_1). Also shown are dot-dashed magenta and dashed blue lines which represent the square-root and linear relationship, respectively. As discussed by del Alamo et al. (2004) and Chandran et al. (2017), constant-energy contours of Φ follow a linear relationship ($\lambda_y \sim \lambda_z$) only in the small-scale region: λ_z/z_o, $\lambda_y/z_o < 10$. It changes to a square-root relationship ($\lambda_y \sim \lambda_z^{1/2}$) at larger scales, suggesting a failure of self-similarity at low Re_r. On the other hand, if we consider the cross-spectra, the constant-energy contours in the same large-scale range depart from the square-root towards a linear behaviour as z_r approaches the wall (i.e. for Φ_w^{cross}). This suggests that the energetic wall-attached eddies are predominantly self-similar. Further, this self-similar trend is obscured in Φ by energy contributions from the wall-detached eddies. It is obvious, however, that a larger scale separation (i.e. higher Re_r) would better highlight the changing trend with z_r.

Figure 3(b) shows constant-energy contours (~0.2) of Φ and Φ_w^{cross} from the high-Re_r dataset, E_1, with the range of scales increased by almost a decade. Consistent with the observations made by Chandran et al. (2017), for the 2-D spectrum Φ, the square-root relationship for the intermediate range of scales deviates towards a relatively higher power law at $\lambda_z \sim 100z_o$ and $\lambda_y \sim 15z_o$, with the large scales having an average aspect ratio of $\lambda_z/\lambda_y \approx 7$ (indicated by a dark yellow line). According to Chandran et al. (2017), this ratio is significant since the large-scale energetic structures in a ZPG TBL become self-similar only after evolving into such large aspect ratios. As opposed to Φ, the energetic ridge of Φ_w^{cross} is seen to follow $\lambda_z/\lambda_y = 7$ along its
Figure 3. (a, b) 2-D energy spectra for \(z_o^+ \approx 2.6 \sqrt{Re_e} \) and various \(z_r^+ \) at a constant energy level of 0.2 for datasets (a) \(S_1 \) and (b) \(E_1 \). Light yellow background indicates \(\lambda_y/z_o > 14 \).

(c) Schematic of the AEH-based model considered, shown here having three distinct hierarchies of self-similar wall-attached eddies, with the largest eddy (in black) of the order of \(\delta \). \(\mathcal{L} \) and \(\mathcal{W} \) denote the length and width of an eddy hierarchy, respectively.

(d) 2-D spectra obtained from the AEH-based model for \(Re_e \approx 15,000 \) and \(z_o^+ \approx 2.6 \sqrt{Re_e} \). Solid black contour is qualitatively equivalent (~0.5(\(\Phi_{AEH} \)max)) to the one in (b). In (a, b, d), dot-dashed magenta, dashed blue and solid yellow lines denote \(\lambda_y/z_o \sim (\lambda_x/z_o)^{1/2} \), \(\lambda_y/z_o \sim \lambda_x/z_o \) and \(\lambda_x/\lambda_y = 7 \) relationships, respectively.

Entire stretch with negligible energy distribution in the scale range where \(\Phi \) contours vary as \(\lambda_y/z_o \sim (\lambda_x/z_o)^{1/2} \). The high-Re \(\Phi_w^{cross} \) hence provides convincing evidence of the self-similarity of wall-attached eddies. The fact that the energetic structures contributing to \(\Phi_w^{cross} \) are restricted to \(\lambda_x > 14 z_o \) (highlighted by yellow background), which is consistent with the streamwise inner-scaling limit of self-similar wall-attached structures (Baars et al. 2017), further adds credence to our claim. Given that \(\Phi_w^{cross} \) contours follow \(\lambda_x/\lambda_y \approx 7 \) and \(\lambda_x > 14 z_o \), present analysis suggests \(\lambda_y > 2 z_o \) as the plausible spanwise inner-scaling limit for the wall-attached self-similar eddies.

The experimentally obtained \(\Phi_w^{cross} \) is qualitatively similar to the 2-D energy spectrum (\(\Phi_{AEH} \)) computed from a flow field consisting purely of self-similar wall-attached eddies, as shown in figure 3(d). \(\Phi_{AEH} \), here, is obtained using an AEH-based model.
Two-dimensional cross-spectrum in turbulent boundary layers

(Perry et al. 1986; Baidya et al. 2017; Chandran et al. 2017) where the log-region is statistically represented by continuous hierarchies of representative eddies whose geometric sizes scale with z_o and whose probability density varies inversely with z_o. The idea is illustrated in figure 3(c), where, for clarity, the model is depicted in a discretized form with three distinct hierarchies. Heights of the smallest and largest eddies are taken as 100 viscous units and δ, respectively, with each eddy inclined with respect to x at 45$^\circ$ (Deshpande et al. 2019). The aspect ratio of the eddy hierarchy is roughly equivalent to the ratio of the large scales observed in the high-Re_t results. Figure 3(d) plots the 2-D spectrum generated from this model at conditions similar to dataset E_1: $Re_t \approx 15,000$ and $z_o^+ = 2.6\sqrt{Re_t}$. It can be noted that the high-Re_t Φ_w^{cross} contours show a good correspondence with Φ_{AEH} contours, which follow the $\lambda_x/z_o \sim \lambda_x/z_o$ relation given the imposition of self-similarity.

We extend this qualitative comparison between Φ_w^{cross} and Φ_{AEH} to investigate their scaling in the context of the spectral-overlap arguments of Perry et al. (1986). According to their arguments, the energy contribution from self-similar eddies would follow both outer-flow scaling (δ-scaling) and inner-flow scaling (z_o-scaling) in the wavelength range corresponding to $\sim O(\delta)$ and $O(z_o)$, respectively. These scaling arguments are illustrated in figure 4 using Φ_w^{cross} and Φ_{AEH}, for all z_o^+ corresponding to E_1 (table 1), wherein the wavelengths are scaled with δ (figure 4a) and z_o (figure 4b) respectively. $\Phi(z_o)$ is also plotted at the same z_o^+ to demonstrate the effectiveness of the wall filter. A noteworthy observation from figure 4 is that both Φ_{AEH} and Φ_w^{cross} contours exhibit the δ- and z_o-scalings in a similar wavelength range. This is suggested by the overlapping constant-energy contours for the respective spectra.
R. Deshpande, D. Chandran, J. P. Monty and I. Marusic

at various z_o^+. Further, these contours indicate an energy distribution predominantly in the large-eddy region (Chandran et al. 2017), where they closely follow the $\lambda_x/z_o \sim \lambda_y/z_o$ relationship. This supports the claim that Φ_w^cross predominantly consists of the contribution from the self-similar eddies that comply with Townsend’s AEH. This contribution can be seen to decrease for both Φ_{AEH} and Φ_w^cross as distance from the wall increases, with energy at $z_o^+ \approx 0.158^+$ (light shaded contours) effectively representing the contribution only from the tall wall-attached structures extending beyond the log-region. In the case of Φ, on the other hand, the z_o-scaling is also observed in the small scales, which are predominantly wall-detached and hence do not show up in Φ_w^cross. However, the wavelength range exhibiting δ-scaling is similar to that observed for Φ_w^cross.

3.3. Is a wall filter sufficient to extract purely self-similar structures?

Referring to the discussion in § 1, on the studies by Baars et al. (2017) and Hwang & Sung (2018), $\Phi_w^\text{cross}(z_o)$ may be interpreted as the wall-filtered subset of $\Phi(z_o)$. Recent studies by Baars & Marusic (2020) and Yoon et al. (2020) show that not all wall-attached structures exhibit self-similarity, and some of them may be geometrically non-self-similar. Given the qualitative resemblance between Φ_w^cross and Φ_{AEH} (§ 3.2), it is worth investigating here if the energy contributions isolated via the wall filter correspond purely to self-similar structures, or there are also contributions from the non-self-similar structures. To this end, we probe the energetic ridges (Chandran et al. 2017) of Φ and Φ_w^cross as self-similarity requires the slope (m) of the ridge to be equal to one ($\lambda_y \sim \lambda_x$). Here, the energetic ridge of the spectrum is computed by identifying the spanwise wavelength, λ_y, corresponding to the maximum value of the spectrum at each streamwise wavelength, λ_x. Additionally, Chandran et al. (2017) has shown that the slope of the ridge translates as the ratio of the plateaus in the 1-D streamwise-u-spectrum to those in the 1-D spanwise-u-spectrum. Here, the 1-D streamwise and spanwise spectra are obtained by integrating the 2-D spectrum along λ_y and λ_x, respectively.

Figure 5(a) shows the energetic ridges of Φ and Φ_w^cross for $z_o^+ \approx 2.6\sqrt{Re}$, while figure 5(b) shows the respective 1-D spectra. A_{1x} and A_{1y} denote the peaks in the 1-D streamwise and spanwise spectra, respectively, while A'_{1x} and A'_{1y} refer to the peaks in the 1-D streamwise and spanwise cross-spectra, respectively. These peaks conform to the scale range where the 1-D spectrum is expected to plateau at very high Re (Chandran et al. 2017), and is hence used as a reference over here for analysis purposes. Direct computation of m, from the ratio of the 1-D spectra peaks, shows a difference from 0.7 (for Φ) to 0.85 for Φ_w^cross, suggesting a relatively greater contribution from self-similar structures to Φ_w^cross. A change in slope is also evident from the comparison between the energetic ridges of Φ and Φ_w^cross. Figure 5(c) plots m, directly computed from A_{1x}/A_{1y} and A'_{1x}/A'_{1y} for Φ and Φ_w^cross, respectively, at all z_o^+ corresponding to E_1 (table 1). Here, A_{1x}/A_{1y} can be seen decreasing with an increase in z_o^+. This is consistent with the observations of Chandran et al. (2017), who linked this trend with the AEH prediction on the decrease in self-similar eddy population with distance from the wall (Townsend 1976). Interestingly, A'_{1x}/A'_{1y} on the other hand remains approximately constant (≈ 0.85) at all z_o^+. This suggests that the variation of A_{1x}/A_{1y} with z_o^+ is most likely dictated by the contributions from the wall-detached eddies, which are predominantly small, but can be either self-similar or non-self-similar (Marusic & Monty 2019; Yoon et al. 2020).

The increment in m towards 1.0, when comparing Φ and Φ_w^cross, confirms that the wall filter does indeed filter out energy contributions from the non-self-similar...
structures which are wall-detached. However, the fact that \(m \approx 0.85 \) and not 1.0 suggests that \(\Phi_{\text{cross}}^w \) still consists of contributions from wall-attached non-self-similar structures. This can be better understood on investigating the ridge for \(\Phi \) and \(\Phi_{\text{cross}}^w \) (figure 5a) in the scale range: \(\lambda_x \gtrsim 7\delta \), \(\lambda_y \sim \delta \), where it appears to plateau at a constant \(\lambda_x \) and grows only in \(\lambda_y \) for both the spectra. The energetic ridge in this scale range is representative of the energy contribution from the \(\delta \)-scaled superstructures (Hutchins & Marusic 2007; Chandran 2019), which are known to have \((\lambda_x)_\text{max} \) up to 20\(\delta \) but spanwise width restricted to \(\lambda_y \sim \delta \). The overlap suggests that \(\Phi_{\text{cross}}^w \), like \(\Phi \), also consists of energy contributions from the superstructures which, although wall-attached, cannot be categorized as self-similar structures. The presence of these \(\delta \)-scaled non-self-similar wall-attached structures has been noted previously by Baars et al. (2017) as well as very recently by Yoon et al. (2020), who also described these structures to be tall and reminiscent of the superstructures. The \(\Phi_{\text{cross}}^w \) contour for \(z_o^+ \approx 0.15\delta^+ \) (figure 4a), which is centred at \(\lambda_x \sim 7\delta \) and \(\lambda_y \sim \delta \), can be considered representative of the energy contributions from these tall non-self-similar structures. The present analysis thus suggests that this contribution would have to be ‘filtered’ out from the wall-attached energy (at lower \(z_o^+ \)) to obtain the 2-D spectral distribution purely from the self-similar eddies. Our conclusion aligns with the recent work of Baars & Marusic (2020), who in addition to a wall filter, also proposed a log-filter in order to isolate the energy contributions from the wall-attached self-similar eddies to the 1-D streamwise spectra. Construction of a robust log-filter, however, is challenging since it requires measurements to be conducted in a physically thick boundary layer and/or at even higher \(Re_\tau \) than reported in the present study (Baars & Marusic 2020).

4. Concluding remarks

The present study investigates the 2-D cross-spectrum of \(u \) in a ZPG TBL for \(Re_\tau \) spanning \(O(10^3) \text{--} O(10^4) \). Special emphasis is laid on the cross-spectrum (\(\Phi_{\text{cross}}^w \))
representing coherence between a log \(z_o\) and a near-wall reference, which depicts the energy distribution across a range of wall-attached eddies existing at \(z_o\), and hence is a subset of the full 2-D spectrum \(\Phi(z_o)\). Removal of the energy contributions from wall-detached eddies results in \(\Phi^w_{cross}\), at high \(Re_\tau\), having negligible energy contribution in the scale range where otherwise a \(\lambda_y/z_o \sim (\lambda_x/z_o)^{1/2}\) behaviour is noted for \(\Phi\). Further, the energetic large scales contributing to \(\Phi^w_{cross}\) follow a \(\lambda_y/z_o \sim \lambda_x/z_o\) power law more closely than seen for \(\Phi\). This supports the hypothesis on the obscured view of the self-similar trend for \(\Phi\), at finite \(Re_\tau\), being a result of limited scale separation between various eddies following dissimilar scalings. Further, \(\Phi^w_{cross}\) closely resembles the qualitative 2-D spectrum obtained from an AEH-based model \(\Phi_{AEH}\), in terms of a scale-specific energy distribution as well as obedience of the self-similar scaling laws, giving strong evidence of self-similarity ingrained in the TBL. It is shown, however, that \(\Phi^w_{cross}\) does not represent energy contributions purely from self-similar eddies. At least one more filter is required to remove the contributions from wall-attached non-self-similar structures.

Acknowledgements

The authors wish to acknowledge the Australian Research Council for financial support and thank the authors of Sillero et al. (2014) for making their DNS data available. The authors are also grateful to the anonymous reviewers for their helpful comments which improved the quality of the manuscript.

Declaration of interests

The authors report no conflict of interest.

References

Two-dimensional cross-spectrum in turbulent boundary layers

