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Coherent structures in the linearized impulse
response of turbulent channel flow
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We study the evolution of velocity fluctuations due to an isolated spatio-temporal
impulse using the linearized Navier–Stokes equations. The impulse is introduced as
an external body force in incompressible channel flow at Reτ = 10 000. Velocity
fluctuations are defined about the turbulent mean velocity profile. A turbulent eddy
viscosity is added to the equations to fix the mean velocity as an exact solution,
which also serves to model the dissipative effects of the background turbulence on
large-scale fluctuations. An impulsive body force produces flow fields that evolve
into coherent structures containing long streamwise velocity streaks that are flanked
by quasi-streamwise vortices; some of these impulses produce hairpin vortices. As
these vortex–streak structures evolve, they grow in size to be nominally self-similar
geometrically with an aspect ratio (streamwise to wall-normal) of approximately
10, while their kinetic energy density decays monotonically. The topology of the
vortex–streak structures is not sensitive to the location of the impulse, but is dependent
on the direction of the impulsive body force. All of these vortex–streak structures are
attached to the wall, and their Reynolds stresses collapse when scaled by distance
from the wall, consistent with Townsend’s attached-eddy hypothesis.

Key words: turbulence modelling, turbulent boundary layers

1. Introduction

Linear processes play an essential role in the subcritical transition to turbulence
(Henningson & Reddy 1994; Waleffe 1995) and to the sustenance of turbulence (Kim
& Lim 2000) in wall-bounded shear flows. Linear analyses involve decomposing the
velocity fields into a base flow and perturbations about the base flow; for transition to
turbulence, the base flow is the steady laminar solution, while for fully turbulent flows,
the appropriate choice for the base flow is the turbulent mean velocity (Reynolds &
Tiederman 1967). The turbulent mean velocity is linearly stable, and the coupling term
in the linearized Navier–Stokes equations (LNSE) is responsible for the sustenance
of turbulence structures, as shown by Kim & Lim (2000). In more recent work,
McKeon & Sharma (2010) exposed the nature of the linear processes to be that of
selective amplification of certain modes (which tend to be travelling waves localized

† Email address for correspondence: sillingworth@unimelb.edu.au
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Structures in linearized impulse response of turbulent channel flow 1191

around a critical layer in their analysis), allowing for a substantial reduction in the
dimensionality (number of degrees of freedom) of high-Reynolds-number turbulence
(Moarref et al. 2013).

A turbulent eddy viscosity is often introduced into the LNSE to fix the turbulent
mean velocity profile as an exact solution of the equations, and to model the
dissipative effect of the small scales of turbulence on the large-scale perturbations
(Reynolds & Hussain 1972). The eddy-viscosity-enhanced linearized Navier–Stokes
equations (eLNSE) have been successful in describing several features of wall-
bounded turbulence. For instance, Del Álamo & Jimenez (2006) and Pujals et al.
(2009) showed that dominant turbulence structures are captured by the eLNSE as the
perturbations with the largest transient growth; Hwang & Cossu (2010b) extended
these to study the response to harmonic and stochastic forcing, and showed the
existence of inner and outer peaks in spanwise size of maximally amplified structures,
as well as a self-similar range between the two peaks. Illingworth, Monty & Marusic
(2018) and Towne, Yang & Lozano-Durán (2018) have demonstrated that the addition
of an eddy viscosity to the linear operator significantly improves the performance of a
linear estimator. Hwang (2016) suggested that the eddy viscosity enhancement could
also help reconcile the inner–outer interaction (Mathis, Hutchins & Marusic 2009)
in the near-wall region. A review of LNSE and eLNSE models for wall-bounded
turbulence has recently been presented by McKeon (2017).

The impulse response completely characterizes a linear dynamical system in
the time domain. In the context of the linearized dynamics of turbulence, this
involves studying the response to nonlinearities that are localized in both space and
time. Using the impulse response to study coherent structures has the advantage
of parametrizing their evolution without the need to impose a priori either their
wall-parallel dimensions (i.e. fundamental Fourier modes in the streamwise and
spanwise directions) or a phase relationship between the Fourier modes to give
overall structure. Several researchers have applied the impulse response or similar
tools to turbulent flows. Although not using the impulse response directly, Landahl
(1990) argued that the near-wall dynamics of turbulence can be considered as the
linear response to spatio-temporally localized nonlinear terms because of the high
intermittency of wall-normal velocity fluctuations.

The seminal work of Huerre & Monkewitz (1985) used the impulse response to
determine the convective or absolute nature of a flow based on whether the disturbance
decayed or grew for large times at all points in the flow. Jovanović & Bamieh (2001)
used the impulse response to study the evolution of perturbations about a laminar base
flow. Luchini, Quadrio & Zuccher (2006) did this for turbulent flows by introducing
white noise at the wall in a direct numerical simulation (DNS) and computing space–
time correlations at Reτ = 180. Codrignani (2014) extended the DNS-based study to
different wall-normal locations for the impulse at a slightly lower Reynolds number
of Reτ = 150. More recently, Eitel-Amor et al. (2015) investigated the evolution of
hairpin vortices at a higher Reynolds number of Reτ = 590, using the eLNSE as well
as DNS to include a fully turbulent background. They found that the evolution of a
single hairpin vortex observed in the turbulent DNS was well represented by the eddy-
viscosity-enhanced LNSE; however, the linear model failed to capture regeneration,
consistent with the earlier observations of Kim & Lim (2000). Farano et al. (2017)
also noted the transient nature of hairpin vortices and explained their regeneration in
the framework of a nonlinear, self-sustaining cycle.

In this paper, the low computational cost of the eLNSE model is exploited to extend
these investigations of the impulse response to turbulent flows at higher Reynolds
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numbers; we use Reτ = 10 000 to allow for a decade of wall-normal extent of the
log layer, although computations at higher Reτ are also feasible. The aims of the
work are to investigate (i) if the impulse response captures the vortex–streak structure
known to be important to turbulence (Jiménez & Moin 1991; Hwang 2015), (ii) the
prevalence of the hairpin vortex (Adrian 2007), and (iii) the geometrical scaling of
the coherent structures and associated turbulent stresses as they evolve in time. The
numerical formulation for computing the impulse response is presented in § 2, and the
results for nine different cases of impulses are shown in § 3. In § 4, we summarize the
principal observations of this paper and discuss the limitations of the present model.

2. Numerical formulation
The flow under consideration is incompressible channel flow. A Cartesian coordinate

system is employed, where x, y and z represent the streamwise, spanwise and
wall-normal directions, respectively. Following Reynolds & Hussain (1972), a triple
decomposition is performed on the velocity field, utotal = [U(z), 0, 0] + u + u′,
where U(z) is the turbulent mean velocity, u is a large-scale perturbation, and u′
represents the small-scale turbulent fluctuations. Both u′ and the perturbation vector
u have components [u, v, w]T, where u is the streamwise velocity, v is the spanwise
velocity and w is the wall-normal velocity. We are interested in the evolution of these
perturbations about a specified turbulent mean. The turbulent mean, U(z), is computed
by integrating an integrand containing the turbulent eddy viscosity, (−uτReτη)/(νT/ν),
from η=−1 to z. Here, z is the wall-normal coordinate non-dimensionalized by the
channel half-height such that the channel walls are at z = ±1, η is a proxy for the
non-dimensionalized wall-normal coordinate, Reτ is the Reynolds number based on
the friction velocity uτ , and νT is the total eddy viscosity. The total eddy viscosity
νT = νt + ν contains the turbulent eddy viscosity νt and the molecular viscosity ν,
and is approximated using the semi-analytical expression of Cess (1958) as reported
by Reynolds & Tiederman (1967):

νT =
ν

2

[
1+

κ2Re2
τ

9
(1− z2)2(1+ 2z2)2

{
1− exp

(
Reτ (|z| − 1)

A

)}2
]1/2

+
ν

2
, (2.1)

where the von Kármán constant κ = 0.426 and the constant A = 25.4. We note that
these values were optimized for the turbulent mean velocity profile at Reτ = 2003 in
Hoyas & Jiménez (2006) but have also been used for friction Reynolds numbers as
high as Reτ = 1010 in Moarref et al. (2013).

We investigate the evolution of perturbations due to a spatio-temporally impulsive
body force, which is considered to represent an idealized bursting event. This spatio-
temporal impulse, δ̃(x − x0, t), is factorized into impulses along each direction and
time as

δ̃(x− x0, t)= δ(x)δ(y)δ(z− z0)δ(t), (2.2)

where δ is the Dirac delta function. The impulse is introduced at x= y= t= 0, with
a variable wall-normal location z0. The Fourier transform of the impulse along x and
y produces a coefficient of unity for each Fourier mode.

A momentum impulse along the direction (mxêx + myêy + mzêz), with ês being the
unit vector along direction s ∈ {x, y, z}, enters the evolution equations for any Fourier
mode ei(kxx+kyy) as follows:

∂tφ̂ = Aφ̂ + B f̂δ(t),
û= Cφ̂,

}
(2.3)
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where the state φ̂ = [ŵ, η̂]T contains the Fourier coefficients of wall-normal velocity
and wall-normal vorticity, and f̂ (z) = [mxδ(z − z0), myδ(z − z0), mzδ(z − z0)]

T is the
wavenumber-independent Fourier coefficient for the impulsive body force (which
models an idealized bursting event in the present work). The operators A, B and C
are dependent on the wavenumbers of the Fourier mode, and are presented below:

A=

[
∆−1LOS 0
−ikyU′ LSQ

]
, C =

1
k2

x + k2
y

 ikxD −iky
ikyD ikx

k2
x + k2

y 0

 ,
B=

[
−ikx∆

−1D −iky∆
−1D −(k2

x + k2
y)∆

−1

iky −ikx 0

]
.


(2.4)

Here the prime and D represent wall-normal differentiation, ∆=D2
− (k2

x + k2
y), and

the operators LOS and LSQ are

LOS = ikxU′′ − ikxU∆+ νT∆
2
+ 2ν ′T∆D+ ν ′′T(D2

+ (k2
x + k2

y)),

LSQ =−ikxU + νT∆+ ν
′

TD.

}
(2.5)

See chap. 10 of Jovanović (2004) for a similar investigation of perturbations about
the laminar flow; the operators B and C remain the same as in that study, while the
operator A is identical to the one used in Hwang & Cossu (2010b) to reflect the
linearization about the turbulent mean velocity and the introduction of the turbulent
eddy viscosity.

The velocity perturbations for any Fourier mode at time t due to an impulse
introduced at time t= 0 is calculated explicitly for any time t> 0, without resorting
to time marching, as

û=CeAtB f̂ , (2.6)

which is obtained by integrating (2.3). The impulse response is computed for a
spatially periodic flow with domain sizes 8π and 3π along the streamwise and
spanwise directions. The Fourier modes used to construct the field of perturbations are
integral multiples of the fundamental wavenumbers kx,0 = (2π)/(8π) for streamwise
and ky,0= (2π)/(3π) for spanwise directions. The modes are truncated so that higher
wavenumbers that are excluded have less than 0.001 % of the energy in the most
energetic Fourier mode; the number of Fourier modes needed to meet this truncation
criterion goes from (160, 192) modes along streamwise and spanwise directions
(counting positive and negative wavenumbers) at early times to (40, 40) modes at
later times.

Along the wall-normal direction, the Chebyshev collocation method is used.
To facilitate consistent discretization, the wall-normal Dirac delta function is
approximated by an exponential function in the wall-normal direction,

δ(z− z0)≈ fs0(z; z0) :=
K

2
√

πε
exp

(
−
(Reτ (z− z0))

2

4ε

)
, (2.7)

where z0 is the location of the impulse, and ε quantifies the width of the impulse.
We use ε = z+0 /4 to have consistent discretization of the exponential function in (2.7)
near the wall and in the core of the channel; here, z+=Reτ (1+ z) is the wall-normal
coordinate expressed in inner units and referenced from the bottom wall, so that the
bottom wall is at z = −1 and z+ = 0. The constant K in (2.7) is set so that the
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FIGURE 1. (Colour online) Coherent structures at times (from left to right) tUCL/h
from 1.42 to 41.2 in steps of 5.7 due to the impulses (from a to c) I30x, I30y and
I30z. Green–yellow isosurfaces are for streamwise perturbation velocity at +25 % of
instantaneous maximum (green) and −25 % of instantaneous maximum (yellow), with
their streamwise locations modified to facilitate visualization. Red–white–blue isosurfaces
are for swirling strength at 10 % of the instantaneous maximum (coloured by spanwise
vorticity), and are plotted with a wall-normal offset of 1 to avoid overlap with the
streamwise velocity isosurfaces.

function has an area of unity. The number of Chebyshev nodes used in the wall-
normal direction is 768; increasing this number to 1152 produces a relative change
in energy of less than 0.01 % for all Fourier modes and times considered here.

The operators A, B and C have been validated using the results of Pujals et al.
(2009) and Hwang & Cossu (2010b). The impulse response was separately validated
about a laminar base flow using the results in chap. 10 of the PhD thesis of Jovanović
(2004).

3. Results
The responses to impulses introduced at three different locations, z+≈ 30, z+≈ 500

and z=−0.5 (or z+ = 5000) at Reτ = 10 000 are computed at times tuτ/h from 0.05
to 1.5 in steps of 0.05, or tUCL/h from 1.42 to 41.2 in steps of 1.42. At each location,
the body force is introduced along each of the three coordinate axes, producing a total
of nine cases. For convenience, these cases will be identified with a name such as
I30x, where the ‘I30’ part refers to the forcing location being 30 inner units, and ‘x’
refers to the forcing direction. The names for the first six cases will start with ‘I30’
or ‘I500’, followed by the direction of the forcing, while the last three cases will start
with ‘O05’ followed by the direction.

3.1. Structure topology
The topology of the coherent structures produced by the impulse response at different
times is illustrated in figure 1, where isosurfaces of swirling strength and streamwise
velocity are plotted for I30x, I30y and I30z cases for eight different times: tUCL/h
from 1.42 to 41.2 in steps of 5.7. The coordinate axes are scaled unequally to facilitate
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FIGURE 2. (Colour online) Coherent structures due to the impulses at z+ = 500 (a–c)
and z = −0.5 (d–f ) along directions x (a,d), y (b,e) and z (c, f ) at time tUCL/h = 24.1.
Isosurfaces are as in figure 1, and swirling strength has a wall-normal offset of 1 as before
to avoid overlap with velocity isosurfaces.

visualization. The same isosurfaces are shown in figure 2 for the I500 and O05 cases,
but at only one time instant, tUCL/h= 24.1. The swirling strength is defined at each
point in the domain as the imaginary part of the complex eigenvalue of the velocity
gradient tensor (Zhou et al. 1999).

The coherent structure produced by the impulse contains streamwise velocity
streaks which are flanked or enclosed by quasi-streamwise vortices. These results
are reminiscent of earlier studies where the most amplified structures are streamwise
streaks which are forced by quasi-streamwise vortices (e.g. Del Álamo & Jimenez
2006; Pujals et al. 2009; Hwang & Cossu 2010a). The topologies of the streaks
and vortices change when the direction of the body force is changed. For example,
the contours of the swirl when the impulse is in the x- and z-directions have a
hairpin-like structure while the y case does not since it is not symmetric with respect
to the x–z plane. Changing the location of the forcing from z+ ≈ 30 to z+ ≈ 500,
however, does not result in a significant difference. Forcing at z = −0.5, on the
other hand, produces a more observable change in the structure of the perturbations,
especially when they extend into the top half of the channel. However, features such
as the number of streaks and vortices, and their relative arrangement, are unaffected.
All of the structures also appear to be attached to the wall; this becomes more clear
when Reynolds stresses are plotted in § 3.4.

In other studies, the linear dynamics of the Navier–Stokes equations generally
result in structures which are detached from the wall if eddy viscosity is not included
(e.g. McKeon & Sharma 2010). This occurs since structures are localized around
the wall-normal height where their phase speed c+ matches the local mean velocity
U+. The impulse response in the x-direction only is computed for the molecular
viscosity case, i.e. νT = ν, for all three wall-normal heights (these are denoted
I30xmol, I500xmol and O05xmol). As seen in figure 3, the wall-normal extents of
the structures are significantly smaller than those of their eddy viscosity counterparts
and only the z+ = 30 structures are attached to the wall. It should be noted that the
z axis has been rescaled in order to facilitate visualization.
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FIGURE 3. (Colour online) Coherent structures at times (from left to right) tUCL/h from
1.42 to 41.2 in steps of 5.7 due to the impulses (from a to c) I30xmol, I500xmol and
O05xmol. Isosurfaces are as in figure 1, and swirling strength has a variable wall-normal
offset to avoid overlap with velocity isosurfaces.

3.2. Physical scaling
The self-similarity of the structures can first be studied by considering their aspect
ratios. The streamwise size of the structures for the I30x case, for example, is
approximately 10 times greater than their wall-normal or spanwise size. Geometric
self-similarity, furthermore, is nominally observed in the evolution of these vortex
structures. The self-similarity of the coherent structures can be seen more clearly by
projecting isosurfaces of streamwise velocity (at 25 % of instantaneous maximum)
to the x–z and x–y planes. These are illustrated in figure 4 for the I30x case,
which has a single dominant streak. The projections show an approximate collapse
in rectangular boxes of aspect ratio 10 (also shown in figure 4). Conversely, the
molecular viscosity isosurfaces, plotted in figure 5, are not self-similar, as the structure
gradually becomes significantly longer in the streamwise direction compared to its
spanwise or wall-normal lengths.

The aspect ratios of the structures for all nine eddy viscosity cases are summarized
in table 1. These are measured for the final instant in time tUCL/h=41.2 for the lower
wall-normal heights and tUCL/h= 14.2 for the z=−0.5 case since the structure grows
beyond the channel centreline for large tUCL/h. The particular value of tUCL/h does
not affect these values significantly since, as seen in figure 4, the aspect ratios are
roughly constant over time. The results are similar for z+= 30 and z+= 500 but differ
for z=−0.5. Impulses introduced at the lower wall-normal heights produce structures
which have a streamwise to spanwise ratio of the order of λx/λy∼ 8 whereas the ratio
for the z=−0.5 case is of the order of λx/λy ∼ 2. These results are consistent with
those of Del Álamo & Jimenez (2006), Lozano-Durán, Flores & Jiménez (2012) and
Hwang (2015). Structures that originate nearer the wall share characteristics of very-
large-scale motion (VLSM) while the structures in the outer layer have length scales
similar to large-scale motion (LSM). The aspect ratio of the structures generated by
impulses in the other directions is slightly more difficult to measure since they do not
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FIGURE 4. (Colour online) Isocontours of streamwise velocity (25 % of maximum) for
the I30x case projected on the y= 0 plane (a) and on the z= 0 plane (b) at times tUCL/h
from 8.52 to 42.7 in steps of 1.42; (c,d) show these contours scaled by streamwise size
(1x) and shifted to x= 0, projected on y= 0 (c) and z= 0 (d). Contours are coloured to
show evolution in time in the overlaid contours in the bottom panels. Rectangles of aspect
ratio 10 are also plotted (dotted lines) to highlight the aspect ratio of the structures.
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FIGURE 5. (Colour online) Isocontours of streamwise velocity (25 % of maximum) for the
I30xmol case projected on the y= 0 plane (a) and on the z= 0 plane (b) at times tUCL/h
from 8.52 to 42.7 in steps of 1.42; (c,d) show these contours scaled by streamwise size
(1x) and shifted to x= 0, projected on y= 0 (c) and z= 0 (d). Contours are coloured to
show evolution in time.

contain a single velocity streak. The spanwise width is measured across all velocity
streaks contained in the structure. The ratio λx/λy decreases from 8 to 5 for the I30
and I500 cases while it remains roughly constant between 2 and 3 for the O05 cases.
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Case I30x I30y I30z I500x I500y I500z O05x O05y O05z

1x/δh 11.6 12.0 11.9 11.7 11.8 11.9 3.00 5.01 5.36
1x/1y 8.20 5.00 4.85 8.20 4.80 4.76 2.04 3.05 2.37

TABLE 1. Aspect ratios of the vortex structures for the nine cases considered.

Case c+ eddy c+ molecular U+

z+ = 30 19.8 15.5 12.7
z+ = 500 20.4 19.9 19.9
z=−0.5 25.6 26.2 26.2

TABLE 2. Comparison of the convection velocity c+ of the structures with and without
eddy viscosity to the local mean velocity at the wall-normal height z+ where the impulse
is generated.

3.3. Convection velocity
The convection velocity c+ of the structures is computed by tracking the position of
the maximum streamwise velocity |u|max at the wall-normal location where the impulse
was introduced. The results for the x impulse case are summarized in table 2 where
the convection velocity of the structures in the molecular viscosity cases matches the
mean velocity at the same wall-normal height. Notably, c+>U+ for the z+= 30 case,
which is consistent with McKeon & Sharma (2010). The convection velocity of the
structures generated with eddy viscosity does not agree perfectly with the local mean
velocity, a trend that was also observed in Zare, Jovanović & Georgiou (2017).

It can be concluded that one of the primary effects of the eddy viscosity is to
weaken the critical layer mechanism. Eddy viscosity tends to smooth the spatial
support of the most amplified disturbances, or resolvent modes, over a greater
wall-normal extent. The optimal disturbances which excite them are also spread
over a larger 1z, signifying that an impulse will probably trigger significantly more
resolvent modes than it would without the presence of eddy viscosity. In the molecular
viscosity case, only the optimal modes located at the critical layer are activated by
the impulse.

3.4. Reynolds stresses
The self-similarity of the eddy viscosity case only is further probed by considering the
Reynolds stresses scaled by the height of the coherent structures (distance from the
wall). For the periodic domain under consideration, the Reynolds stresses are defined
as

Iij

(
1+ z
δh

, t
)
:=

K
u2
τ

kx,0

2π

ky,0

2π

∫ 2π/kx,0

x=0

∫ 2π/ky,0

y=0
ui

(
x, y,

1+ z
δh

, t
)

uj

(
x, y,

1+ z
δh

, t
)

dx dy.

(3.1)
Here, all wall-normal distances are referenced from the wall (hence the (1 + z)
dependence). The distances are scaled by δh, which represents the wall-normal height
of the coherent structure, and is defined as the maximum height from the bottom wall
of the |u| = 0.25|u|max isosurface. The height of the structure is set to 1 whenever
the isosurface extends into the top half of the channel. The constant K is chosen
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FIGURE 6. (Colour online) Reynolds stresses for impulses at z+=30 (a–c), z+=500 (d–f )
and z=−0.5 (g–i) with forcing along x (a,d,g), y (b,e,h) and z (c, f,i) at times tUCL/h from
5.7 to 42.7 in steps of 2.84. Panels show I11 with scale on the bottom x-axis, blue —— to
red —— for increasing time; and I13 with scale on the top x axis, black —— to grey ——
for increasing time, – – – for structures with δh 6 0.5 and · · · · · · otherwise. The average
locations of the peaks of I11 (cyan – · – · –) and I13 (magenta – · – · –) are also shown. All
curves are truncated to ignore the top half of the channel (z> 1). Insets show near-wall
streamwise energy: I11/max(I11) on the x-axis against z+ on the y-axis in log scale; note
that z+ here is not scaled by δh.

such that the maximum of −I13 is 1. This scaling of the Reynolds stresses is similar
to the eddy intensity functions of Townsend (1976), which is reasonable considering
that the coherent structures in the impulse response are reminiscent of the attached
eddies in Townsend’s attached-eddy hypothesis.

Reynolds stresses are shown for the nine cases of impulsive forcing in figure 6.
Notably, the Reynolds stresses are smaller for the z=−0.5 cases, which is consistent
with the fact that the structures are shorter in the x-direction and are associated
with weaker streamwise velocity perturbations. For all cases except O05x, the
coherent structures have non-zero streamwise energy at z+ ∼ 10 (shown in inset),
with I11/max(I11) being greater than 10 %, thus showing that they are all attached
to the wall. The shear intensity, I13, is consistently negative, except for very tall
structures with δh > 0.5 in the core region of the channel. The locations of the
peaks of I13 show good collapse, and this peak is located further away from the
wall than the peak of I11. The peaks of I11 also show good collapse of the peak
locations, but not in the peak magnitudes. The similarities in these three aspects –
wall-attachedness, negative I13 and relative location of I13 and I11 peaks – amongst
the different impulse cases demonstrates that there is an underlying structure to the
topology of the vortex–streak structures.
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FIGURE 7. (Colour online) Evolution of total (– – –) and streamwise (· · · · · ·) kinetic
energy density for impulses introduced at different locations: z+≈ 30 (a), z+≈ 500 (b) and
z=−0.5 (c). For each location, the plots show energy due to impulses along streamwise
(+), spanwise (×) and wall-normal (C) directions. Markers correspond to times where
coherent structures are plotted in figure 1.

While the coherent structures exhibit self-similarity, they also decay quickly as
shown in figure 7, where the streamwise and total kinetic energy density are shown for
all nine impulses. The kinetic energy density is defined for each velocity component,
Eui , as

Eui :=
kx,0

2π

1
2

ky,0

2π

∫ 2π/kx,0

x=0

∫ 2π/ky,0

y=0

∫ 1

z=−1

(
ui

uτ

)2

dx dy dz, (3.2)

with the total kinetic energy density E being their sum, E=Eu+Ev +Ew. For the I30
and I500 cases, the energy in the perturbations reduces by a few orders of magnitude
by the time the structures reach the core of the channel (δh ' 0.5). For the near-wall
case, the total energy is predominantly due to streamwise velocity for the range
of times considered here. For the impulses further away from the wall, however,
there is significant energy in the cross-stream components. As the location of the
impulse moves further away from the wall, the energy in the cross-stream components
remains significant quite late into the decay. We reason that these differences arise
due to the local differences in the mean shear and the eddy viscosity; due to the
large mean shear near the wall, cross-stream velocities extract a large streamwise
perturbation velocity from the mean velocity, while the cross-stream components
themselves dissipate due to the eddy viscosity. For impulses away from the wall, the
mean shear is significantly weaker, leading to slower extraction of streamwise velocity
perturbation energy from the mean velocity. A detailed investigation of the early-time
evolution of these perturbations is needed to shed light on these mechanisms.

4. Conclusion and outlook
The impulse response of the eddy-viscosity-enhanced linearized Navier–Stokes

equations (eLNSE) shows spatially growing vortex–streak structures that have
approximate geometric self-similarity, illustrated here at Reτ = 10 000. For the
molecular viscosity case, the coherent structures are no longer self-similar and
resemble a critical layer mechanism, particularly when the impulse is introduced
at z+ = 500 and z = −0.5. This was consistent with the convection velocity of
the structures which matched the local mean velocity. The coherent structures for
eLNSE are quite similar to the vortex–streak structures known to be important to
turbulence (Jiménez & Moin 1991; Halcrow et al. 2009; Hall & Sherwin 2010;
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Hwang 2015). These structures have an aspect ratio (streamwise size to wall-normal
size) of approximately 10, which is close to the experimental observations of aspect
ratios of attached eddies in the log layer (reported to be ≈14 based on linear
coherence by Baars, Hutchins & Marusic (2017) for boundary layers). The topology
of the vortex streak structure does not change when the forcing is moved from
z+ ≈ 30 to z+ ≈ 500, but is dependent on the direction of the impulsive body force.
This trend is also observed for forcing at z=−0.5, albeit with noticeable differences
in the shape of these structures as they extend into the top half of the channel.

Including an eddy viscosity, the coherent structures due to all nine impulses
considered here evolve to have non-zero energy extending down to z+ ∼ 10, i.e. they
are all attached to the wall. This includes the cases where the forcing is introduced
at z = −0.5. For the molecular viscosity case, the structures are localized around
the critical layer. The coherent structures for all cases also produce a negative
Reynolds shear stress I13, which peaks further away from the wall than I11. These
observations are consistent with the supposed prevalence of attached eddies and the
significance of ejection and sweeping events in turbulence. In short, irrespective of
the location and direction of the impulse, the resulting structures are vortex–streak
structures that are wall-attached and self-similar with negative I13 and an aspect ratio
of approximately 10. Considering this robust behaviour of the impulse response,
we can expect that employing a spatio-temporally distributed body forcing would
also produce similar structures. This provides more direct evidence, albeit under the
approximation of the eLNSE model, for wall-attached hairpin-like vortices flanking
velocity streaks in high-Reynolds-number flows.

The energy decay seen in the impulse response needs further clarification, since the
large-scale structures appear to have very little energy density, which was also noted
by Eitel-Amor et al. (2015). This hurdle could possibly disappear when, instead of
response to isolated impulses, an appropriate sum of impulse responses is used; such
forcing would represent the response to some spatio-temporally distributed forcing
instead of a spatio-temporally localized forcing. Indeed, the Orr–Sommerfeld–Squire
operator employed here is capable of producing energy growth that is larger than
is needed to capture turbulence statistics (see figure 16 of Zare et al. 2017). It is
worth noting that the spatio-temporally distributed forcing that must be considered to
compensate for the energy decay cannot be the actual Reynolds shear stresses, since a
part of these stresses has been absorbed into the eddy viscosity. It would be interesting
to determine such forcing, which would be an analogue of the work of Zare et al.
(2017) for a flow field decomposed into self-similar coherent structures instead of
Fourier modes. Unfortunately, no numerical schemes are presently available, as far
as the authors are aware, that could achieve this; further limitations arise from the
increasing difficulty to obtain spatio-temporally resolved measurements with increasing
Reynolds number.

An alternative approach to constructing turbulence fields with the present coherent
structures is the attached-eddy model of Perry & Marusic (1995), which describes
turbulent fluctuations as a superposition of self-similar attached eddies with a
prescribed spatial distribution. The geometrically self-similar vortex–streak structures
found in this work have the potential to be used as the building blocks in the
attached-eddy model; this would bypass the need to prescribe the spatio-temporal
distribution of the forcing. However, preliminary calculations (not included in this
paper) show that the ratio of the peaks of the streamwise kinetic energy to the negative
of the shear stress, max(I11)/max(−I13), due to the present coherent structures are
higher, by a factor of order 10, than are needed to match the slopes of the Reynolds
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stresses in a fully turbulent flow using the attached-eddy model. This difference
possibly suggests that the required attached-eddy velocity field requires more than the
linear response considered here. This could include modifications to the linear operator
or the inclusion of nonlinear interactions. However, these remain open issues that
require further investigation. Even so, the robustness of the coherent structures found
using the computationally cheap eLNSE model shows good potential in identifying a
fundamental self-similar basis to describe turbulence dynamics.
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