
J. Fluid Mech. (2016), vol. 802, pp. 690–725. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.474

690

Entrainment at multi-scales across the
turbulent/non-turbulent interface in an

axisymmetric jet

Dhiren Mistry1,2,†, Jimmy Philip3, James R. Dawson2 and Ivan Marusic3

1Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
2Department of Energy and Process Engineering, Norwegian University of Science and Technology,

N-7491 Trondheim, Norway
3Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia

(Received 2 November 2015; revised 18 May 2016; accepted 12 July 2016;
first published online 10 August 2016)

We consider the scaling of the mass flux and entrainment velocity across the
turbulent/non-turbulent interface (TNTI) in the far field of an axisymmetric jet at high
Reynolds number. Time-resolved, simultaneous multi-scale particle image velocimetry
(PIV) and planar laser-induced fluorescence (PLIF) are used to identify and track
the TNTI, and directly measure the local entrainment velocity along it. Application
of box-counting and spatial-filtering methods, with filter sizes ∆ spanning over two
decades in length, show that the mean length of the TNTI exhibits a power-law
behaviour with a fractal dimension D ≈ 0.31–0.33. More importantly, we invoke a
multi-scale methodology to confirm that the mean mass flux, which is equal to the
product of the entrainment velocity and the surface area, remains constant across the
range of filter sizes. The results, within experimental uncertainty, also show that the
entrainment velocity along the TNTI exhibits a power-law behaviour with ∆, such that
the entrainment velocity increases with increasing ∆. In fact, the mean entrainment
velocity scales at a rate that balances the scaling of the TNTI length such that the
mass flux remains independent of the coarse-grain filter size, as first suggested by
Meneveau & Sreenivasan (Phys. Rev. A, vol. 41, no. 4, 1990, pp. 2246–2248). Hence,
at the smallest scales the entrainment velocity is small but is balanced by the presence
of a very large surface area, whilst at the largest scales the entrainment velocity is
large but is balanced by a smaller (smoother) surface area.

Key words: jets, turbulent flows, wakes/jets

1. Introduction
A thorough understanding of turbulent entrainment has been a long-standing

challenge in fluid mechanics. Turbulent entrainment represents the transport of
non-turbulent fluid across the boundary between the turbulent and non-turbulent
regions of a flow. The turbulent entrainment process and the mechanisms that control
the transport of mass, momentum, and scalars from a turbulent region of a fluid to
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FIGURE 1. (Colour online) Instantaneous scalar concentration field of the far field of a
turbulent jet at Re= 25 300, shown in logarithmic contour scaling. The TNTI is denoted
by the blue line, and the coordinate along the TNTI, s, is also presented. Note the absence
of unmixed fluid within the jet.

a non-turbulent region are also of widespread interest in science and engineering.
The early studies of Brown & Roshko (1974), Dahm & Dimotakis (1987) and
Liepmann & Gharib (1992) attributed entrainment to the role of large-scale eddies in
a process known as engulfment, in which parcels of irrotational fluid are enveloped
by large-scale turbulent structures and brought into contact with turbulent fluid.
However, later investigations by Mathew & Basu (2002), Westerweel et al. (2005),
Taveira et al. (2013), and others did not find significant amounts of unmixed fluid
within the turbulent fluid (see figure 1). Similarly, da Silva, Taveira & Borrell
(2014) report that ‘bubbles’ of irrotational fluid that are found inside of the turbulent
region are the same as the weakly rotational pockets of fluid found within fully
developed isotropic turbulence simulations. These findings indicate that entrainment
predominantly happens at the edges of the turbulent/non-turbulent interface (TNTI)
rather than inside the turbulent core. More generally, there is some ambiguity when
ascribing a length scale to engulfment processes (e.g. encasing parcels of unmixed
fluid), because this process is difficult to measure and quantify. For clarification, in
this paper we define engulfment as a predominantly inviscid entrainment process that
is characterised by its association with large-scale motions.

There is much greater consensus that viscous and molecular diffusion at the
smallest scales near the TNTI is responsible for the transfer of vorticity and scalar
concentration to irrotational and unmixed fluid, respectively: a process known as
viscous nibbling. The concept of viscous nibbling was first suggested by Corrsin &
Kistler (1955), and has been supported by simulations and experiments by Mathew &
Basu (2002), Westerweel et al. (2005), da Silva & Taveira (2010), Holzner & Lüthi
(2011), Taveira et al. (2013), and Wolf et al. (2013). These studies have shown that
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irrotational fluid particles in the non-turbulent region of the flow acquire vorticity
near the TNTI over length, velocity and time scales that are representative of the
smallest scales of the flow. However, it is also important to note that the local
entrainment rate along the TNTI is in fact decorrelated from the local dissipation
field (Holzner & Lüthi 2011). In other words, local entrainment along the TNTI
proceeds at the smallest scales of the flow, but it is not strongly influenced by the
small-scale turbulence.

If the local entrainment is decoupled from the small-scale turbulence, then it is
perhaps reasonable to expect that a full description of the entrainment process will
need to account for multi-scale interactions, as suggested by Sreenivasan, Ramshankar
& Meneveau (1989), Mathew & Basu (2002), Philip & Marusic (2012), and van
Reeuwijk & Holzner (2014). Townsend (1976, p. 232) provides a succinct description
of entrainment as a multi-scale process:

[T]he development of vorticity in previously irrotational fluid depends in
the first place on viscous diffusion of vorticity across the bounding surface.
Since the rate of entrainment is not dependent on the magnitude of the
fluid viscosity, the slow process of diffusion into the ambient fluid must
be accelerated by interaction with the velocity fields of eddies of all sizes,
from the viscous eddies to the energy-containing eddies so that the overall
rate of entrainment is set by large-scale parameters of the flow.

In this regard, we cannot rule out the influence of the large scales on entrainment;
we may only rule out the physical process of ‘engulfing’ parcels of fluid. However,
as stated earlier, it is not straightforward to delineate the role of the large scales on
entrainment. For example, along the TNTI in a turbulent jet and a shear-free flow,
it has been shown that the inviscid contribution to entrainment is much weaker than
the viscous contribution (Holzner & Lüthi 2011; Wolf et al. 2012). In comparison,
other researchers have found evidence that suggests that the large scales influence
the overall entrainment rate in a range of turbulent flows. Moser, Rogers & Ewing
(1998) report a larger growth rate in a forced-temporal wake compared to the unforced
case. Forcing induces large-scale modulations in the topology of the shear layers, and
therefore increases the surface area of the TNTI (e.g. Bisset, Hunt & Rogers 2002,
Mathew & Basu 2002). Similarly, Krug et al. (2015) observed a greater entrainment
rate in an unstratified flow compared with a stratified flow; they also attributed this
greater entrainment rate to the increased surface area of the TNTI. Conversely, altering
the smallest scales of the flow by changing the viscosity does not modify the overall
entrainment rate (Townsend 1976). The influence of the large scales on entrainment
was also observed by Philip & Marusic (2012), who applied a large-scale hairpin
model, in a manner similar to Nickels & Marusic (2001), that was able to recover the
mean entrainment rate in a round, turbulent jet. The hairpin model correctly predicted
the radial inflow of non-turbulent fluid, which determines the overall entrainment rate,
despite neglecting the small scales of the flow. These studies allude to an entrainment
process in which viscous nibbling adjusts to the imposed entrainment rate defined by
the large scales of turbulence. One way in which the large scales may modulate the
entrainment rate is to generate a large surface area over which viscous nibbling may
act to mix the turbulent and non-turbulent fluid (Mathew & Basu 2002).
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1.1. The multi-scale nature of the TNTI surface area
The multi-scale nature of turbulence may be characterised from a fractal perspective.
Mandelbrot (1982) describes fractal self-similarity as ‘[invariance] under certain
transformations of scale’. One result of this self-similarity is the non-trivial scaling
of the area of a turbulent surface as a function of the measurement resolution. This
surface scaling (or contour scaling in two dimensions) is commonly measured using
box-counting techniques; this technique is described in § 4.1. It is suggested that there
is an intermediate range of scales between the dissipation scales and the inertial scales
over which the box count along a turbulence isosurface scales as N ∼ ∆−D3 , where
∆ is the box side length and D3 is a universal fractal dimension (e.g. Sreenivasan
& Meneveau 1986). The first experimental evidence to support the fractal nature of
turbulence was presented by Sreenivasan & Meneveau (1986) and Sreenivasan et al.
(1989) for a range of shear flows such as jets, wakes, and boundary layers. However,
these early experiments were performed at only moderate Reynolds numbers that
were limited by a narrow scale separation, which introduces some ambiguity when
attempting to establish a universal fractal dimension for any turbulent flow (Dimotakis
& Catrakis 1999; Catrakis 2000). Another uncertainty is the apparent dependence
of the threshold value of the interface, and the methods used to evaluate the fractal
dimension (Sreenivasan 1991; Zubair & Catrakis 2009). For these reasons, it has been
suggested that the fractal dimension of a turbulent surface may be scale-dependent
rather than exhibit a constant scaling (Miller & Dimotakis 1991; Catrakis & Dimotakis
1996). However, evidence of a scale-dependent fractal dimension may be attributed
to finite Re and effects from the large scales, amongst others (see Zubair & Catrakis
2009 and references therein). Addressing these concerns, work by de Silva et al.
(2013) implemented high-resolution PIV, with a large dynamic range, to examine the
scaling of the TNTI of a high-Reynolds-number turbulent boundary layer. de Silva
et al. (2013) report that the fractal dimension of the TNTI is scale-independent and
falls in the range D3=2.3 to 2.4 using a box-counting and a spatial-filtering technique.
Similar fractal dimensions are also observed by Chauhan et al. (2014b) in the TNTI
of a turbulent boundary layer, and by Zubair & Catrakis (2009) in separated shear
layers but for general scalar isosurfaces. It has therefore not yet been resolved as to
whether a constant fractal scaling exists in free-shear flows. One of the aims of this
paper is to address this question for the case of an axisymmetric, turbulent jet.

1.2. Motivation for the present study
Whereas previous studies have primarily focused on the topology of the TNTI
surface, in the present study we also consider the physical fluxes and rates of
entrainment across the TNTI. This is achieved by considering the global and local
entrainment in an axisymmetric, turbulent jet. The global entrainment is typically
calculated using the mean TNTI surface area and the ensemble-averaged radial
velocity (Morton, Taylor & Turner 1956). Comparatively, the local entrainment is
typically calculated using the highly corrugated instantaneous TNTI surface area
and the local entrainment velocity at each point along the surface; this definition
of the net mass entrainment may be written as ρVnS. Here, ρ is the constant fluid
density, which we shall henceforth ignore, and S is the TNTI surface area. The mean
entrainment velocity, Vn =

∫∫
(−vn) da|TNTI/

∫∫
da|TNTI , is the integral of the local

entrainment velocity (vn) over the TNTI surface, which is then ensemble-averaged
over many realisations (denoted by an overline, ( )). The local entrainment velocity
is defined more precisely in § 2.5, but we simply note here that a negative vn implies
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mass flux into the turbulent region, or a positive entrainment. Measurement of Vn

has only recently become possible with direct numerical simulations (DNS) and
high-resolution experiments (Holzner & Lüthi 2011; Wolf et al. 2012; van Reeuwijk
& Holzner 2014; Krug et al. 2015). For velocity fields on a two-dimensional (2D)
axisymmetric plane in an axisymmetric jet, such as that studied in this paper, the
mean entrainment velocity is approximated with

Vn ≡


∫ Ls

0
(−vn)rI ds∫ Ls

0
rI ds

. (1.1)

In this expression the integration is performed along the TNTI (schematically shown
in figure 1), where Ls is the length of the interface, and rI is the radial location of
the TNTI; details regarding this 2D approximation are discussed later in the paper.

A multi-scale analysis is necessary to connect global and local entrainment. Indeed,
the notion that entrainment is a multi-scale phenomena has been proposed by
Meneveau & Sreenivasan (1990), who suggest that total flux across the TNTI should
be constant and scale-independent,

Vν
n Sν = VA

n SA = Vn(∆)S(∆)= constant. (1.2)

Here, the superscript ν represents the viscous flux, superscript A represents the
advective flux (at the ensemble-averaged mean-flow level), and ∆ is the filter
size (see for example appendix D in Philip et al. (2014) for further details). In
other words, Vν

n is the mean entrainment velocity at the smallest scales (with the
corresponding highly corrugated surface area, Sν), VA

n is the mean entrainment velocity
at the largest mean scales (with SA, the smooth mean surface area), and Vn(∆) and
S(∆) the corresponding quantities at intermediate length scales. The scaling rate
in (1.2) was tested by Philip et al. (2014), but they were not able to confirm it
because of the effect of limited spatial resolution on their ‘indirect’ estimation of
the entrainment velocity. In this paper we overcome this limitation by implementing
an interface-tracking technique that directly measures the entrainment velocity and is
unaffected by spatial resolution; this technique is detailed in § 2.5.

The primary aims of this paper are (i) to confirm the scale-independent mass-
flux hypothesis (1.2); this not only requires high Re, but also a high-resolution
measurement system that is capable of interface tracking. Equation (1.2) illustrates
the intrinsic roles of S(∆) and Vn(∆) in testing the scale-independent mass-flux
hypothesis. For this reason, we also seek to (ii) understand the scaling of the TNTI
surface area, S, and to (iii) understand the scaling of the mean entrainment velocity,
Vn. Although the scaling of S(∆) has been presented as a constant power-law (fractal)
scaling, there is yet to be clear consensus on this finding, because of suggestions of
a scale-dependent (non-constant) power-law scaling (e.g. Miller & Dimotakis 1991).
We aim to use our high-Re flow and novel measurement system to shed light on this
matter. Examining the scaling of the mean entrainment velocity, Vn, inherently leads
us to look deeper into relationship between the local entrainment velocity (vn) and
the radial position of the TNTI (rI), at multi-scales.
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FIGURE 2. (Colour online) Schematic of the arrangement of (a) the water tank, (b) jet
nozzle, (c) pumps, (d) dyed-fluid reservoir, (e) laser, ( f ) laser-sheet-forming optics, (g)
PIV high-speed cameras, and (h) PLIF high-speed camera (not shown).

1.3. Organisation of the paper
To achieve these aims we have implemented a multi-scale technique that spatially
filters the velocity and scalar fields, and evaluates the mass-flux rate at different
length scales. The multi-scale approach requires a large-scale separation and a high
dynamic range to capture it. This is achieved with the experimental set-up that is
first described in § 2. We then discuss the identification criterion for the TNTI and
the planar measurement of the local entrainment velocity, vn, along the TNTI. In § 3
a comparison is made between local and global descriptions of the mean entrainment
rate in turbulent jets. Furthermore, we present an alternative method of calculating
the entrainment rate in jets by considering a conditional velocity distribution at the
TNTI; this is similar to the technique introduced by Chauhan, Philip & Marusic
(2014a) for entrainment in turbulent boundary layers. The scaling of the TNTI length,
mass flux, and entrainment velocity are presented in § 4. In this last section we
confirm the hypotheses of Meneveau & Sreenivasan (1990) and Philip et al. (2014)
that the entrainment velocity does indeed scale inversely to the TNTI length to give
a scale-independent mass flux.

2. Experimental methods
2.1. Apparatus

Experiments were performed in a water tank 7 m in length with a cross section of
1 m× 1 m and transparent acrylic side walls to provide optical access. A schematic
is provided in figure 2. A round nozzle with an exit diameter d = 10 mm and
flow conditioning via a series of wire meshes, honeycomb grid, and a fifth-order
polynomial contraction was used to produce a top-hat velocity profile at the jet exit;
the nozzle was positioned 520d away from the end wall of the tank. A separate
reservoir containing dyed fluid for the scalar measurements was used in combination
with a pump to supply the jet, which produced Reynolds numbers of Re = 25 300
(based on d and Ue, the average nozzle-exit velocity) and Reλ = 260 (measured
at the jet centreline, see table 1). A constant volumetric flow rate was maintained
throughout the experiments, as determined from the pressure drop across a calibrated
orifice plate. The streamwise, radial and spanwise coordinates are denoted by x, r and
z, with component velocities denoted by u, v and w as usual. The scalar concentration
is represented by φ.

available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.474
Downloaded from http:/www.cambridge.org/core. The University of Melbourne Libraries, on 09 Sep 2016 at 03:09:17, subject to the Cambridge Core terms of use,

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.474
http:/www.cambridge.org/core


696 D. Mistry, J. Philip, J. R. Dawson and I. Marusic

Reynolds number Re 25 300
Turbulent Reynolds number Reλ 260
Jet-exit velocity Ue 2.53 m s−1

Dissipation (x= 50d) ε 0.0088 m2 s−3

R.m.s. axial velocity (x= 50d) u′0.5 7.85× 10−2 m s−1

Kolmogorov length scale (x= 50d) η 0.10 mm
Taylor microscale (x= 50d) λ 3.31 mm
Jet half-width (x= 50d) bu,1/2 43.63 mm
Large PIV/PLIF FOV – 200 mm× 200 mm
Small PIV FOV – 45 mm× 45 mm
LFOV PIV resolution, vector spacing 1x 40η, 10η
SFOV PIV resolution, vector spacing 1x 12η, 3η
PLIF pixel spacing – 2η
Laser-sheet thickness 1z 15η
LFOV particle-image separation time δt 3 ms
SFOV particle-image separation time δt 2 ms
Vector/scalar field separation time 1t 1 ms
No. vector/scalar fields – 32 724

TABLE 1. Experimental parameters and measured length, velocity and time scales of the
turbulent jet. Note that here Re = Ued/ν, Reλ = u′0.5λ/ν, ε = 15ν(∂u/∂x)2, η = (ν3/ε)1/4,
and λ= u

√
15ν/ε; these quantities are measured at the jet centreline.

Two experimental set-ups of particle image velocimetry (PIV) and planar laser-
induced fluorescence (PLIF) measurements were implemented. The first used a very
large-scale field of view (FOV) to measure bulk flow characteristics that are presented
in § 2.2. The second set-up used a multi-scale arrangement that was obtained using
large-scale and small-scale FOVs, and is described in detail in § 2.3. This latter set-up
is used to investigate the entrainment process in the turbulent jet.

2.2. Flow characterisation
Flow-characterisation experiments using PIV and PLIF are used to confirm that this
flow does indeed follow classic scaling laws for free, turbulent jets. Even though
these experiments are different from the experiments described in § 2.3, the set-up and
processing methods are similar, and will be described in detail in § 2.3.

Figure 3 presents the normalised mean and r.m.s. velocity and scalar profiles in
the far field of the jet. These profiles are measured across 30d of streamwise extent,
starting from x/d = 35. There is very good collapse of the profiles when normalised
by the jet half-width, b1/2, and they are also in good agreement with the mean
profiles of Panchapakesan & Lumley (1993), as denoted by the red lines in figure 3,
and with the scalar profiles of Lubbers, Brethouwer & Boersma (2001), as denoted
by the blue lines. The collapse of the mean and r.m.s. profiles across a span of
streamwise distances indicates that the jet achieved self-similarity in the far field. The
slight increase in the data scatter in the radial velocity profile, v/Uc, in figure 3(b)
is an artefact of the coarse PIV measurement resolution rather than actual flow
non-uniformities. Similarly, the slight asymmetry of the φ′2

1/2
profile (figure 3f ) is

attributed to the attenuation of laser energy intensity through the fluorescent dye; the
laser beam travels from the r< 0 side of the jet. Corrections using the Beer–Lambert
law are applied to the PLIF images, which yield the symmetric profile of φ in
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FIGURE 3. (Colour online) Self-similar profiles of the jet, normalised by the local
centreline velocity (Uc) and scalar concentration (φc), and the local jet half-width (b1/2);
the radial location from the jet centreline is given by r. Mean profiles of (a) axial
velocity, (b) radial velocity, and (c) scalar concentration. Respective r.m.s. profiles of (d)
axial velocity, (e) radial velocity, and ( f ) scalar concentration. The red lines denote the
self-similar profiles reported in Panchapakesan & Lumley (1993), and the blue lines denote
the scalar profiles reported in Lubbers et al. (2001).

figure 3(c). However, limitations of this normalisation technique becomes apparent

when considering higher-order statistics. A similar asymmetry of the φ′2
1/2

profile has
also been observed in comparable PLIF measurements of a turbulent jet by Fukushima,
Aanen & Westerweel (2002). The limitations of the PLIF image correction do not
significantly affect the TNTI and entrainment velocity measurements in §§ 2.4–2.5
because the TNTI identification does not involve high-order scalar statistics, and the
FOV only considers half of the radial extent that is shown in figure 3(c, f ).

Further confirmation of the self-similar behaviour of the turbulent jet is presented
in figure 4. As expected for free jets, the inverse of the centreline velocity, Uc, in
figure 4(a) scales linearly with streamwise distance, x. The scaling coefficient for the
centreline velocity (see Pope 2000, p. 100) is B = 5.87, and is in good agreement
with Hussein, Capp & George (1994), who report B = 5.8–5.9. For comparison we
also consider an integral measure of the velocity that is defined by Um=M/Q, where
M is the momentum flux and Q is the volumetric flow rate. Variables M and Q are
defined in appendix B. The inverse of this integral velocity, Um, also exhibits linear
scaling with streamwise distance. In figure 4(b) we present the inverse scaling of the
mean centreline scalar concentration, φc. This quantity is normalised by an arbitrary
constant, φβ , because the source scalar concentration could not be measured at the
measurement location. The inverse centreline scalar profile exhibits linear scaling with
streamwise distance, which is consistent with self-similar scaling (Fischer et al. 1979).
Also included in figure 4(b) is the scaling of the global integral mass flux, which is
defined as

ṁ= 2πρ

∫ ∞
0

ur dr. (2.1)
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FIGURE 4. (Colour online) (a) Inverse centreline axial velocity decay profile (Uc, circles)
and integral velocity decay profile (Um, squares). Ue = 2.53 m s−1 represents the
nozzle-exit velocity of the jet. (b) Inverse centreline scalar concentration decay profile
(φc, circles), and the global integral mass-flux rate profile (squares) defined by (2.1).
(c) Measures of the local mean jet width. Points are down-sampled for clarity.

Although the upper limit of the integral is at infinity, we integrate this expression up to
the edge of the PIV field of view. The overall entrainment rate of the jet is determined
from the streamwise gradient of the mass flux, dṁ/dx; figure 4(b) shows that this rate
is measured to be 5.15 kg m−1 s−1. We note that this bulk global measurement of
entrainment comes as a stringent check when we measure entrainment using small-
scale information, which is carried out later in the paper.

Profiles of the spreading rate of the jet are plotted in figure 4(c), in which we
present both the scalar (bφ) and axial velocity (bu) spreading rates of the time-averaged
flow field. The half-widths (bφ,1/2 and bu,1/2) are measured as the radial distance from
the centreline to the points at which the mean velocity and mean scalar concentration
decay to half of the local centreline values; the e−1 profile widths (bφ,e−1 and bu,e−1)
are measured in a similar manner. These jet width spreading rates are in good
agreement with the summarised data found in Pope (2000). We also consider an
integral measure of the jet width that is defined as bm =Q/

√
M; this measure of the

jet width scales linearly with streamwise distance, x. In addition to the mean scaling
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FIGURE 5. (Colour online) (a) The instantaneous scalar concentration field, shown in
logarithmic scaling in the background, with the TNTI denoted by the black line. The
instantaneous velocity vectors from the LFOV PIV camera are superimposed onto the
figure in red; only every fourth velocity vector is shown for clarity. Along the TNTI we
plot the local entrainment velocity, vn, in grey. The length of the grey vn vectors and
the red velocity vectors are scaled differently. The box (black dashed lines) indicates the
spatial extents of the higher-resolution PIV. (b) As in (a) but for the higher-resolution
SFOV PIV camera.

in the far field, we also evaluate the turbulence statistical quantities at the primary
measurement location (x/d= 50). These quantities are summarised in table 1.

2.3. Simultaneous PIV/PLIF measurements
Simultaneous, time-resolved, planar multi-scale-PIV/PLIF measurements were taken
in the far field at x/d = 50 in the streamwise–radial (x–r) plane. The measurement
set-up described here is used for the entrainment velocity analysis discussed in this
paper. A two-camera set-up was implemented for the PIV measurements. A large
field of view (LFOV) region of flow was captured with one camera, whilst a small
field of view (SFOV) focusing on the region around the TNTI was captured by
the second camera. The measurement regions of the PIV cameras are illustrated in
figure 5 (also see figure 2). To track the evolution of the TNTI in time, simultaneous
PLIF measurements were performed using rhodamine 6G (Sigma-Aldrich Co. LLC)
as the passive dye; this dye exhibits maximum light absorptivity at 525 nm and
maximum light emissivity at 555 nm (Crimaldi 2008). The molecular diffusivity rate
of rhodamine 6G is 1.2 × 10−10 m2 s−1 and the Schmidt number of the scalar field
is Sc= 8000. Although the Batchelor scale, ηB= 1.1 µm, is too small to capture, we
are primarily interested in the scaling of the mass flux across the inertial range rather
than resolving the fluxes at the very smallest scalar scales. This is reflected in the
fact that we apply spatial filters to the velocity and scalar data.

For the PIV measurements the flow was seeded with 10 µm silver-coated, hollow
glass sphere particles (Dantec Dynamics A/S). A single high-speed 527 nm Nd:YLF
laser (Quantronix Darwin Duo) illuminated both the particles and dye. The laser
beam was passed through a series of beam-collimating spherical optics (Thorlabs
Inc.) before passing through plano-concave cylindrical lenses to form a light sheet
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of thickness 1.5 mm. The laser-sheet thickness was selected to approximately
match the in-plane resolution of the PIV. Notch filters were placed in front of
the 1024 × 1024 pixel high-speed cameras (Photron SA1.1) to separate the PLIF
signal from the intensity field produced by Mie scattering of particles for the PIV
measurement. The velocity and scalar fields were recorded at 1 kHz, which gives a
vector/scalar field spacing (1 ms) that captures the smallest temporal evolutions of the
flow as determined by the Kolmogorov time scale, τ = 10.7 ms. Each experimental
run consisted of 5457 sequential images that generate 5454 time-resolved velocity and
scalar fields; six runs were performed to yield a total of 32 724 vector/scalar fields.
The use of a high-repetition laser also allowed us to optimise the particle-image
separation times independently for the LFOV PIV (δt = 3 ms) and SFOV PIV
(δt=2 ms) measurements. PIV processing was performed using DaVis 8.2.2 (LaVision
GmbH). We implemented multi-pass processing in which the interrogation windows
are shifted and deformed as per the previous cross-correlation pass. The initial
particle-image correlations were performed with 64 × 64 px2 interrogation windows,
followed by 32× 32 px2 windows for the SFOV PIV, and then 24× 24 px2 for the
LFOV PIV.

The scalar concentration data were captured by each pixel of the PLIF camera
sensor to give 1024 × 1024 points of data across the FOV. It is necessary to
downsample this data to match the vector spacing of the LFOV and SFOV for
analysis of scalar fluxes. Alternatively, it is possible to interpolate the velocity field
onto the same grid as the scalar field. However, this would become computationally
expensive and would require impractical amounts of computer memory (Aanen 2002).
To downsample the scalar images we first apply a low-pass second-order Butterworth
filter to eliminate wavenumber fluctuations that are larger than the spatial resolution
of the PIV fields. The low-pass filter technique has the added advantage of more
effectively removing the random, high-frequency camera noise from the scalar images.
The filtered scalar fields are then interpolated (bilinear interpolation) onto a grid that
matches the PIV measurements.

An example of the data captured with the set-up described here is presented
in figure 5. The use of this multi-scale experimental set-up makes possible the
measurement of a large dynamic range from the small scales (SFOV) to the integral
length scales (LFOV) of the flow. In combination with PLIF, we simultaneously
measure the scalar field that is used to identify the TNTI. Details of the measurement
resolution and data-set description are given in table 1. From the 32 724 vector and
scalar fields we extract 1080 equally spaced fields with which we calculate the results
presented in § 4.

2.4. Identification and some characteristics of the turbulent/non-turbulent interface
Isosurfaces of vorticity are commonly used in DNS and particle-tracking experiments
to identify the TNTI (Holzner et al. 2007; da Silva & Pereira 2008; Wolf et al. 2012;
van Reeuwijk & Holzner 2014). However, a surrogate marker for the turbulent region
is required for planar measurements that only capture one component of vorticity. We
use isocontours of the scalar concentration field, φ, to identify the TNTI. This marker
has been used previously in a mixing layer DNS by Sandham et al. (1988) and in
planar experiments on a jet by Westerweel et al. (2009). The scalar concentration field
(Sc=1) has also been shown to agree very well with the 3D vorticity field by Gampert
et al. (2014) in the DNS of a temporal mixing layer. Following these researchers, we
identify the TNTI by applying a threshold to the scalar concentration field that has
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FIGURE 6. (a) Mean scalar concentration φ̃ conditioned on points over the whole
domain that satisfy φ > φt, where φt is a given scalar threshold value. (b) Conditional
mean spanwise vorticity magnitude |̃ωz|. (c) Conditional mean turbulent kinetic energy k̃.
(d) Conditional mean axial velocity ũ. Plots (a–d) are presented with logarithmic scaling.
Plots (e–h) represent the derivative df̃ /dφt of the conditional profiles in plots (a–d). The
derivative profiles are presented with linear scaling.

been normalised by the local mean centreline concentration value, φ/φc. An empirical
process is used to identify the threshold value that best represents the TNTI. This
is achieved by evaluating the area-averaged values of four variables across all the
points inside the region where the local scalar concentration is larger than the given
threshold value, φ > φt. For a given variable, f , the conditional average at threshold
φt is defined as

f̃ (φt)=

∫
( f da)|φ>φt∫

da|φ>φt

. (2.2)

Evidently, any such quantity will be a function of φt, and we look for a distinct
change in such quantities as φt is varied. Similar techniques have been suggested by
Prasad & Sreenivasan (1989) and Westerweel et al. (2002) for identifying the TNTI
using scalar fields. The variables that we measure are: (i) scalar concentration, φ/φc,
(ii) spanwise vorticity magnitude, |ωz|, (iii) turbulence kinetic energy, k, and (iv)
streamwise velocity, u. Area-averaged distributions of these quantities are presented
in figure 6(a–d). Points that exceed the scalar concentration threshold but exist outside
of the primary scalar region (i.e. islands of scalar concentration present in the ambient
fluid region) are not included in the calculation of the conditional averages. Points
that are less than the scalar concentration threshold but exist within the primary
scalar region (i.e. holes in the turbulent region) are included in the calculation of the
conditional averages. That φ̃ is much larger than the scalar threshold, φt, in figure 6(a)
is to be expected because the area average includes the turbulent region, for which
the scalar concentration is typically O(φc); see also Westerweel et al. (2002) and
their figure 4.

We identify the interface between the turbulent and non-turbulent regions by
determining the scalar threshold that coincides with the inflection points of the
conditional mean value profiles in figure 6(a–d); this process has similarities to
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FIGURE 7. Conditionally averaged profiles of (a) scalar concentration, φ, and (b) spanwise
vorticity magnitude, |ωz|, along an axis that is locally normal to the TNTI. The narrow
region over which a jump in the scalar concentration profile occurs is denoted by the
vertical grey bar (xn ± λ).

that described by Prasad & Sreenivasan (1989). We identify each inflection point
by considering the derivative of the conditional profiles, df̃ /dφt, which is shown in
figure 6(e–h). The scalar concentration, spanwise vorticity and axial velocity exhibit
inflection points at φt/φc = 0.18. The turbulence kinetic energy, k, field exhibits
an inflection point at a lower threshold (φt/φc = 0.17). This may be attributed to
the presence of irrotational fluctuations in the non-turbulent region of the flow. We
therefore use the inflection point of the scalar concentration, spanwise vorticity and
velocity fields to identify the TNTI, for which φt/φc = 0.18. This scalar threshold is
applied to each centreline-normalised, instantaneous scalar concentration field. The
TNTI is extracted by applying the contour function in Matlab (MathWorks) and
selecting the longest continuous isocontour. ‘Islands’ of scalar concentration that
exist outside of the turbulent region and ‘holes’ of un-dyed fluid inside the turbulent
region are excluded from analysis pertaining to the TNTI. The justification for this
is presented later in this section.

The conditionally averaged profiles (denoted by 〈∼〉TNTI) presented in figure 7
confirms that the Sc� 1 passive scalar successfully demarcates the turbulent region
of the flow. In this figure we present the conditionally averaged profiles profiles
of φ and |ωz| that are calculated along coordinates that are locally normal to the
TNTI, xn. In some instances xn crosses another point along the TNTI; this results in
another transition from turbulent to non-turbulent fluid or vice versa. Points beyond
any secondary crossings of the TNTI are excluded from the conditional average.
In figure 7 we observe a jump in the scalar concentration profile across the TNTI,
xn = 0. The region over which the scalar concentration jump occurs, denoted by the
vertical grey bars, is approximately 2λ. However, this measured thickness is strongly
influenced by spatial resolution; resolution of the order of the Batchelor scale is
required to recover the true scalar gradient across the TNTI. More importantly,
however, we observe that the spanwise vorticity profile in figure 7(b) exhibits a
jump that coincides with the jump in scalar concentration. The spanwise vorticity
magnitude is non-zero in the non-turbulent region (xn<0) due to particle displacement
measurement error in PIV (Westerweel et al. 2009). In any case, the fact that the
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FIGURE 8. (Colour online) (a) PDFs of the TNTI radial position, rI , for short streamwise
sections x/d ± 2.5 across values shown in legend; the radial positions are normalised by
the nozzle-exit diameter, d. (b) PDFs of the TNTI radial height for same streamwise
sections as (a), but the radial positions are normalised by local jet velocity half-width,
bu,1/2. A Gaussian fit is shown in the dashed red line.

spanwise vorticity exhibits a steep jump across the isocontours that are defined from
the scalar concentration field indicates that a Sc � 1 passive scalar is a reliable
marker of the turbulent region in the jet flow discussed here. In other words, the
passive dye is not decoupled from the vorticity field. The TNTI is a region of finite
thickness across which the vorticity smoothly transitions from the non-turbulent levels
to the magnitude of the turbulent region (Taveira & da Silva 2014; Chauhan et al.
2014a). Therefore, the scalar threshold that we identify (φ/φc= 0.18) falls within the
finite thickness of the TNTI, as given by the sharp transition in spanwise vorticity in
figure 7(b).

One of the consequences of the self-similarity of the flow is that the distribution
of the TNTI radial position, rI , is also self-similar (Bisset et al. 2002; Westerweel
et al. 2005; Gampert et al. 2014; Chauhan et al. 2014b). Here, the subscript I denotes
values along the interface. The self-similarity of the TNTI radial position is confirmed
in figure 8, in which we present (a) the PDFs of the radial position of the TNTI
across short streamwise spans of the flow, and (b) the PDFs of the radial position
normalised by the local jet half-width. The normalised PDF profiles in figure 8(b)
are approximately Gaussian (red dashed line) and exhibit good collapse over 30d of
streamwise extent. Moreover, the mean radial position of the TNTI scales linearly
with streamwise distance, as shown in figure 4(c). The TNTI is much wider than the
usual measures of the e−1 and half-widths of jets, which suggests these latter spatial
locations (bu,e−1 and bu,1/2) remain in the turbulent region.

The planar intersection of the measurement plane with the turbulent jet yields
‘holes’ in the turbulent region and detached eddies (‘islands’) in the non-turbulent
region. Without access to volumetric information, we cannot infer if the holes are
engulfed parcels of irrotational fluid or if the holes are connected to the ambient
region. Similarly, the detached eddies that are isolated in the non-turbulent region
may be completely detached from the turbulent region or may be attached but in
a different azimuthal plane. With regards to the ‘holes’, researchers have found
very little irrotational fluid within the turbulent region of different shear flows (see
the Introduction). Indeed, we determine that the percentage of the turbulent area that
contains engulfed fluid only amounts to 0.44 %. The engulfed fluid area is determined
by measuring the number of points within the turbulent region that exhibit a scalar
concentration that is less than the TNTI scalar threshold of φ/φc = 0.18. This
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FIGURE 9. (Colour online) Depiction of the measurement of the local entrainment velocity,
vn, using time-resolved velocity and scalar data. A description of this process is given in
§ 2.5. Note that the interface-normal vectors n≡ (∇φ/|∇φ|)I in (c) are pointing into the
turbulent region.

definition of engulfed fluid follows from the ‘scalar cut-and-connect’ description
given by Sandham et al. (1988). The size of the turbulent region is given by the
number of points between the centreline of the jet and the TNTI; we exclude detached
eddies in the measurement of the total turbulent area. We also evaluate the area of
the detached eddies in the non-turbulent region. This is determined by measuring the
number of points in the non-turbulent region that exhibit a scalar concentration that
is greater than the TNTI scalar threshold. The area of detached eddies amounts to
0.86 % of the turbulent area. It this paper we disregard holes in the turbulent region
and detached eddies in the non-turbulent region from our analysis because these
features constitute less than 1 % of the measured flow area and may be considered to
have a negligible effect on the presented results. The box-counting results presented
in § 4.2 neglects the ‘holes’ and ‘islands’ that are present in the instantaneous fields;
only boxes that intersect the TNTI contour are counted.

2.5. Entrainment velocity: measurement technique and characterisation
The motion of the TNTI in the laboratory frame of reference is attributed to (i)
the local flow field advecting the turbulence in space, and (ii) the spreading of the
turbulent region due to the entrainment of non-turbulent fluid. The former represents
the local fluid velocity along the TNTI and the latter represents the entrainment
velocity, vn, along the TNTI. To isolate the local entrainment velocity we must
subtract the effects of the local fluid velocity from the motion of the TNTI. This
requires simultaneous tracking of the TNTI and measurement of the surrounding
velocity field. We achieve this by implementing high-speed PLIF to identify and track
the TNTI, whilst simultaneously measuring the fluid velocity using the high-speed
PIV. This process is similar to the ‘graphical’ approach of Wolf et al. (2012), who
employed 3D particle-tracking data in a relatively low-Re ≈ 5000 turbulent jet flow.
We present a series of plots in figure 9 that illustrate the process used to calculate
the local entrainment velocity. The entrainment velocity is obtained by subtracting the
local fluid velocity from the net interface motion, and a description of this process
is given below.

(1) Consider the TNTI at two points in time: figure 9(a) shows the scalar
concentration field (background contours) and the corresponding TNTI (thick
black line) at an arbitrary time, t0. The TNTI at time t0 + δt will have moved
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because of the sum of the local flow advection and the local entrainment. This
second interface is shown in purple, with the local fluid velocity, uI , interpolated
along the interface (purple vectors).

(2) Subtract local advection: We subtract the effects of local advection by displacing
the second interface (purple line) by distance −uIδt; the resultant shifted-interface
is presented as the green line in figure 9(b). Compared with the interface at t0+ δt
(purple line), the advection-subtracted interface (green line) exhibits much closer
overlap with the original interface at t0 (black line).

(3) Calculate normal distance: We finally calculate the local entrainment velocity by
considering the local normal distance, δ` · n, from the original interface (black)
to the advection-subtracted interface (green): vn = (δ` · n)/δt; see figure 9(c).
The black arrows in this final plot represent the local normals along the original
TNTI that are calculated by n≡ (∇φ/|∇φ|)I . Note that the interface normals are
pointing into the turbulent region.

Selecting the interface-separation time, δt, for the entrainment velocity calculation
requires an empirical approach, and depends on the data set and flow-type being
considered. This approach is described in appendix A. Briefly, the measurement of
the local entrainment velocity along the TNTI is affected by the random errors in the
PIV and PLIF measurements, and the effects of out-of-plane motion. We implement
a sensitivity analysis to determine the δt that minimises the r.m.s.-fluctuations of
vn and also exhibits a mean entrainment velocity that is insensitive to changes in
δt. The combination of these two criteria minimises the errors of the entrainment
velocity calculation. From this approach we select δt/τ = 1.68 for the LFOV data and
δt/τ = 0.65 for the SFOV data; these interface-separation times are used across all
filter sizes, ∆ (the filtering analysis is explained further in § 4.1). That this method
does indeed accurately capture the local entrainment velocity is supported by the
PDF of entrainment velocity, P(vn), presented in figure 10(a). The distribution of vn
is qualitatively in very good agreement with the PDFs from 3D measurements by
Holzner & Lüthi (2011), Wolf et al. (2012), and Krug et al. (2015). The negative
skewness of the PDF indicates the preference for the outward growth of turbulence
into the non-turbulent region, which is as expected for a turbulent jet. Furthermore,
the distribution of vn is non-Gaussian, as evidenced by the wide tail of the PDF in
comparison with the Gaussian distributions shown by the red line in figure 10(a).

Notice that, in order to understand Vn in (1.1), we must explore the relationship
between vn and rI , or more specifically how vn changes depending on the distance at
which the TNTI is located. We clarify this using the conditionally averaged value of
vn on rI , vn|rI . If we denote P(vn, rI) as the joint PDF of vn and rI , and P(rI) as the
PDF of rI , from the well-known result, P(vn|rI ) P(rI)= P(vn, rI) (e.g. Papoulis 1991):

vn|rI P(rI)=
∫
vn P(vn, rI) dvn. (2.3)

Evidently, the left-hand side of (2.3) is only a function of rI , and represents the
average value of vn at a given rI . Integrating (2.3) over all possible values of rI
will result in the ensemble average value of vn along the TNTI, vn

TNTI . The dark
(black) line in figure 10(b) shows the left-hand side of (2.3), the area under which is
equal to vn

TNTI . Recall that negative vn implies that fluid is being entrained into the
turbulent region. The vertical dashed–dotted line shows the average radial position of
the TNTI, or

∫
P(rI) drI . It is clear that most of the entrainment is occurring at a

radial location that is closer to the jet centreline than the mean position, and we also
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FIGURE 10. (Colour online) Characteristics of the entrainment velocity (vn) along the
TNTI. (a) PDF of vn, P(vn), including both the SFOV (♦) and LFOV (E) measurements.
A Gaussian distribution (red line) is superimposed on the PDF. (b) The entrainment
velocity conditioned on the radial location of the TNTI (rI), vn|rI P(rI) (dark line). The
light (grey) line represents vn

TNTIP(rI).

observe slight ‘detrainment’ (positive vn) far from the jet centreline. This undoubtedly
shows a strong dependence of vn on rI . In fact, if we assume (incorrectly) that vn

and rI are independent, i.e. P(vn, rI) = P(vn)P(rI), then the right-hand side of (2.3)
reduces to vn

TNTIP(rI). This quantitatively is shown in figure 10(b) by the light (grey)
line, and by comparing it with the dark line visually illustrates the dependence of vn

on rI .

3. Measurement of the local and global mass fluxes

This section introduces different methods of estimating the mass-flux rate, dΦ/dx,
to characterise the spreading of the jet. The purpose of this section is to compare
interpretations of the mass-flux rate in a broader context. We present definitions
for (1) the local mass-flux rate, (2) the global integral mass-flux rate, and (3) the
mass-flux estimates from the global entrainment hypothesis. Furthermore, in § 3.1 we
employ an unconventional technique that calculates the entrained mass-flux rate based
on a velocity distribution conditioned on the TNTI. This procedure provides a unique
view of mean entrainment based on the average TNTI location. Note that ascertaining
the agreement between the numerical values for the local and global mass-flux rates
is crucial before proceeding with any multi-scale measurement procedure. In fact,
calculation of global and local mass-flux rates is the first step towards checking the
validity of (1.2).

(1) The local mass-flux rate represents the instantaneous flux that occurs along
the TNTI. In three dimensions, this would represent the product of the local
entrainment velocity and the TNTI surface area (1.2). The local 2D mass-flux
rate is similarly evaluated by integrating the entrainment velocity, vn, along a
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dΦ/dx Local† Global∗ Cond. avg.‡ Cond. avg.‡ Cond. avg.‡

Equation (3.1) (3.2) (3.3) (3.3) (3.3)
Mass flux 8.88× 10−4 8.20× 10−4 8.10× 10−4 8.63× 10−4 7.10× 10−4

rate (m2 s−1)

Entrainment 0.032 0.052 0.051 0.037 0.052
coefficient (α)

Radial boundary TNTI Integral u, e−1 TNTI u, 1/2
Spreading rate (b) 0.157 0.127 0.107 0.157 0.092

TABLE 2. Comparison of the mass-flux rates using the local and global entrainment
definitions. † Mass-flux rate is directly obtained by the knowledge of the local entrainment
velocity (vn) and integrating it over the filtered TNTI (∆ = 15.6λ) using (3.1); α is
calculated from α=Vn/Uc, where Vn is defined by (1.1). ∗ After calculating the mass-flux
rate from (3.2) using the mean streamwise velocity, α is obtained from (3.3) and the
measured spreading rate, bu,e−1 . The integral radial boundary, bm, is determined from the
expression bm =Q/

√
M; these symbols are defined in appendix B. ‡ For these cases, the

entrainment coefficient, α=1v/Uc, is directly obtained from the conditional radial velocity
profiles in figure 11, which is then used in conjunction with the relevant spreading rate,
b (figure 4), to calculate the corresponding mass-flux rates.

planar intersection with the TNTI,

dΦ
dx

loc

= 1
Lx

∫ Ls

0
(−vn)rI ds. (3.1)

In this expression Lx is the streamwise extent of the measured TNTI, Ls is the
length of the instantaneous TNTI, and s is the coordinate along the TNTI. The
negative sign is added to the entrainment velocity because positive entrainment
(i.e. a growing turbulent region) corresponds to negative vn, since the orientation
of the interface-normal, n, points towards the turbulent region. Recall that the
overline indicates ensemble average over all the different realisations. The results
for the local mass-flux rate are presented in § 4 and summarised in table 2 under
dΦ/dx: local.

(2) The global integral 2D flux rate is evaluated using a modified form of the mass-
flux rate integral for a round jet that was presented in (2.1),

dΦ
dx

glob

= d
dx

(∫ ∞
0

ur dr
)
, (3.2)

where u is the time-averaged axial velocity. Data from separate flow-characteri-
sation experiments, presented in figure 3(a), provide u, from which we determine
(dΦ/dx)glob = 8.20× 10−4 m2 s−1 for the jet flow discussed here. For reference,
we provide the integral (top-hat) width in table 2 that is defined as bm=Q/

√
M

(see figure 4c).
(3) An alternative global 2D mass-flux rate is evaluated using the entrainment

hypothesis described in Morton et al. (1956) and Turner (1986). The modified
entrainment hypothesis for the 2D mass-flux rate is

dΦ
dx

entr

= b(x)αUc(x), (3.3)
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FIGURE 11. (Colour online) (a–c) Mean profiles conditioned on radial distance from
isocontours of u/Uc = e−1 (black circles) and u/Uc = 0.5 (light blue squares). (d–f ) As
above, but conditioned on radial distance from the TNTI (isocontours of φ/φc = 0.18).
(a,d) Conditionally averaged axial velocity profile, (b,e) mean vorticity profile given by
Ωz = ∂〈u〉/∂r, (c, f ) conditionally averaged radial velocity profile.

where b(x) is a streamwise-dependent jet width and α is the entrainment
coefficient.

Early studies of entrainment, often undertaken using single-point measurements,
calculated α in (3.3) by using the mass-flux rate from (3.2) and the measured profiles
of bu,e−1(x) and Uc(x). Using the scaling rates for the jet flow that are presented
in figure 4, bu,e−1 = 0.107(x − x0) and Uc = 5.87Ued(x − x0)

−1, we measure an
entrainment coefficient of α = 0.052. This value is in good agreement with Fischer
et al. (1979, p. 371), who report α= 0.0535 for round jets, and also falls within the
range α = 0.05–0.08 reported by Carazzo, Kaminski & Tait (2006).

We now introduce a more representative derivation of the entrainment coefficient
based on the definition that the entrainment velocity is the rate ‘at which external fluid
flows into the turbulent flow across its boundary’ (Turner 1986). This is achieved by
directly measuring the velocity at which non-turbulent fluid flows into the turbulent
region, in a manner similar to Chauhan et al. (2014b); a description of this process
follows.

3.1. Entrainment calculations based on conditional mean velocity distributions

Applications of the entrainment hypothesis commonly use the e−1-width (based on
velocity) as a characteristic jet width. In this section we evaluate the conditionally
averaged velocity distributions about instantaneous e−1-isocontours. Consider a planar,
instantaneous snapshot of the axial velocity field in the far-field region of a jet where
the axial velocity along radial planes is normalised by the local mean centreline
velocity. We may identify a contour along the points that satisfy u/Uc = e−1, similar
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to the way we measure the TNTI. We then apply conditional averaging in a manner
similar to Westerweel et al. (2002) to evaluate the fluid behaviour on either side of the
contour, although in the immediate vicinity of the e−1-contours the flow on both sides
are turbulent. To do this we measure the longest contour along u/Uc= e−1 and select
the outermost points along the contour such that the contour does not come back on
itself (i.e. the streamwise coordinates along the contour are monotonic). Points along
the radial coordinate, r, from the contour are extracted for each instantaneous field and
normalised using local mean quantities, such as the mean centreline velocity and jet
half-width. These instantaneous profiles are finally averaged to generate conditionally
averaged profiles along radial coordinates from the e−1-isocontours. The resultant
profiles for the axial velocity, mean vorticity, and radial velocity are presented in
figure 11(a–c) (black circles).

Along isocontours of u/Uc = e−1 we observe the presence of a strong shear layer,
as illustrated by the jump in axial velocity in figure 11(a). Internal shear layers have
also been reported in turbulent boundary layers by Adrian, Meinhart & Tomkins
(2000) and Eisma et al. (2015), and in isotropic turbulence by Hunt, Eames &
Westerweel (2014). We determine the width of this shear layer by calculating the
mean vorticity profile, Ωz = ∂〈u〉/∂r, in figure 11(b) and measuring the distance
across the vorticity peak. The shear layer width is defined as the distance to and
from where the peak starts to appear on either side of (r − rI) = 0, as highlighted
by the grey region. We are interested in the rate of radial inflow across this shear
layer, which represents an alternative definition of the entrainment velocity. The
radial velocity jump measured in figure 11(c) is determined to be 1v = 0.051Uc.
Thus, direct measurement of the radial inflow across the u/Uc = e−1 boundary in
the turbulent jet gives an entrainment coefficient α = 0.051. Note that this value is
consistent with the entrainment coefficient measured from mean-flow quantities and
(3.3) (α= 0.052) and also the published values of Fischer et al. (1979) (α= 0.0535).
Using the entrainment coefficient measured from the conditional velocity profile and
(3.3), we determine a 2D mass-flux rate of (dΦ/dx)entr = 8.10× 10−4 m2 s−1, which
is in very good agreement with (dΦ/dx)glob that is measured using (3.2).

An alternative means of applying the entrainment hypothesis is to consider the
jet width defined by the TNTI, bTNTI . We follow the above-described conditional
averaging procedure to determine the radial inflow velocity across the TNTI; this
is presented in figure 11(d–f ). The measured entrainment coefficient for the TNTI
in figure 11( f ) is determined to be α = 0.037. Combining this coefficient with the
spreading rate of the TNTI (bTNTI = 0.157(x− x0), figure 4c) and (3.3) we measure a
2D mass-flux rate of (dΦ/dx)entr = 8.63× 10−4 m2 s−1.

For comparison, we also determine the 2D mass-flux rate using the velocity half-
width contours. Equation (3.3) is applied to the velocity half-width of the jet, where
bu,1/2 = 0.092(x− x0), and α= 0.052 is determined using the same process as above
from the conditional radial velocity profile in figure 11(c). This combination gives a
mass-flux rate of (dΦ/dx)entr = 7.10× 10−4 m2 s−1.

Results for mass-flux rates and entrainment coefficients using different methods are
summarised in table 2. The mass-flux rates determined from these different methods
are reasonably close to each other, except for the last column (bu,1/2), which is
understandably lower because the average location of the half-width is far inside the
turbulent region (see figure 4c). It is also worth noting that α from both the local and
conditionally averaged methods for the TNTI are similar (α ≈ 0.03), which is lower
than the usual value of α ≈ 0.05 because the e−1-contour is interior to the TNTI.
Recently, there have been applications of kinetic energy and momentum conservation
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equations to understand the physical components of the entrainment coefficient (e.g.
Kaminski, Tait & Carazzo 2005, Craske & van Reeuwijk 2015) following the seminal
work of Priestley & Ball (1955). In appendix B we apply this approach for evaluating
α to the extent made possible from the present experimental data.

4. Multi-scale entrainment results
In this section we investigate the scaling of the TNTI surface area, or in our case

of 2D fields the TNTI length (Ls), the mass-flux rate (dΦ/dx), and the entrainment
velocity (Vn) as functions of the filter size (∆). The main aims of this section are to
demonstrate that (i) TNTI surface area exhibits a power-law scaling (S∼∆−D), (ii) the
local mass-flux rate is independent of scale (dΦ loc/dx= dΦ∆/dx= dΦglob/dx), and (iii)
the entrainment velocity scales at a rate that is the inverse of the TNTI length scaling
(Vn ∼ ∆D). First, we introduce the spatial-filtering techniques that are implemented
in this study. We then present our results on the scaling of the TNTI length with
the use of a box-counting technique and a spatial-filtering technique. The multi-scale
FOV correction is then discussed, which is necessary for the subsequent mass-flux and
entrainment velocity results.

The interface length scaling is measured using the scalar fields from the PLIF data
set; these points are denoted by triangles (A) in the figures to follow. The mass-flux
rate and the entrainment velocity scaling are measured using the combined multi-scale-
PIV and PLIF data sets; these points are denoted by squares (@) for SFOV data and
circles (E) for LFOV data. We also assess the sensitivity of these scaling results on
the scalar threshold that identifies the TNTI by considering different scalar thresholds.
We evaluate the scaling results for scalar thresholds of φ/φc = 0.14 (light pink) and
φ/φc= 0.22 (light blue); these values are ±20 % of the TNTI threshold (φ/φc= 0.18)
determined in § 2.4.

4.1. Data filtering procedure
We follow the procedure of Philip et al. (2014) to implement a spatial-filtering
technique to evaluate the entrainment scaling. The instantaneous velocity and scalar
concentration fields are filtered with box-averaging filters across a range of filter sizes,
∆. This is achieved with the convolution of the velocity and scalar fields with filter
G∆, û∆ = u ∗G∆, where

G∆(r)=
{

0, |r|>∆/2,
1/∆2, |r|<∆/2. (4.1)

The multi-scale-PIV measurements allow for over two decades of filter size scaling
from ∆/λ = 0.11 to ∆/λ = 16. We apply the same threshold (φ/φc = 0.18) across
all ∆ to identify the TNTI. The effects of spatial filtering are shown in figure 12,
which compares instantaneous scalar concentration (a–c) and spanwise vorticity (d–f )
fields, and the respective TNTI (blue lines) for different filter sizes. Figure 12(d–f )
shows that the scalar interface closely encloses the spanwise vorticity field of the
turbulent jet. That the scalar concentration boundary and vorticity boundary do indeed
overlap is also illustrated in figure 7, in which we show that the jump in φ across the
TNTI coincides with a jump in |ωz|. Hence, the scalar concentration threshold chosen
for this study successfully isolates the turbulent from the non-turbulent (irrotational)
regions.
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FIGURE 12. (Colour online) Comparison of three different filter lengths applied to an
instantaneous scalar concentration field (a–c) and the spanwise vorticity fields |ωz| (d–f ).
The TNTI is depicted by the thick blue line and is determined using the φ/φc = 0.18
threshold. The scalar concentration fields are shown in logarithmic scaling.

4.2. Scaling of the TNTI surface area
The box-counting technique applied to turbulent surfaces is commonly used to
determine the fractal dimension of a surface (e.g. Mandelbrot 1982 and Sreenivasan
& Meneveau 1986). This process counts the number of boxes (N) of side width ∆
that occupy the TNTI, which is then repeated for a large range of box sizes. We
apply the box-counting technique to all 1080 scalar fields, the results of which are
presented in figure 13(a). The box widths span from a few Kolmogorov length scales
to beyond the jet half-width. A least-squares fit applied in the range 0.3λ6∆6 10λ
determines that the TNTI exhibits a fractal dimension of D2= 1.33, where N ∼∆−D2 .
This scaling of the TNTI jet agrees well with the recent fractal scaling results of
surfaces in a turbulent boundary layer presented by de Silva et al. (2013), who report
a fractal dimension of D2= 1.31 for the TNTI measured in a turbulent boundary layer.
More generally, de Silva et al. (2013) report that the fractal dimension of the TNTI
in a boundary layer falls within the range D2 = 1.3 to 1.4. This is also supported by
Chauhan et al. (2014b), who report a fractal dimension of D2 = 1.3, and by Zubair
& Catrakis (2009), who report a fractal dimension for scalar isocontours in a shear
layer flow of D2= 1.3. For a planar intersection with a fractal surface, the 3D fractal
dimension is given by D3 ≡ D2 + 1 = 2.33 (see Mandelbrot 1982), which also is
in very good agreement with the theoretical analysis of Sreenivasan et al. (1989)
based on the Kolmogorov similarity hypothesis, where D3 = 7/3 and is determined
by assuming a Reynolds-number-independent entrainment rate. In addition, the fractal
dimension does not change for the φ/φc = 0.18 ± 20 % scalar thresholds that are
also considered; these data are shown in light pink and light blue. Hence, the fractal
dimension is not particularly sensitive to the particular choice of threshold for the
TNTI.
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FIGURE 13. (Colour online) (a) Box counting applied to the TNTI from the full resolution
scalar images. The vertical grey bars in the background indicate the Kolmogorov length
scale, η, the Taylor microscale, λ, and the jet half-width, bu,1/2, at 50d from left to right,
respectively. (b) The scaling of the mean TNTI length, Ls

TNTI , with box-filter size, ∆. The
expected scaling of Ls

TNTI ∼∆−1/3 is plotted as a grey dash-dotted line for comparison.

Figure 13(b) presents an alternative means of measuring the fractal dimension
of a 2D boundary. A similar procedure is also applied to the TNTI in turbulent
boundary layers by de Silva et al. (2013). We spatially filter each instantaneous scalar
concentration field at each filter size, ∆, and directly measure the corresponding
mean length of the TNTI, Ls

TNTI . The interface length is expected to scale as
Ls

TNTI ∼ ∆1−D2 , because Ls
TNTI ∼ ∆N. In figure 13(b) we apply a least-squares fit

between 0.5λ < ∆ < 3λ that measures a fractal dimension of −0.31 (D2 = 1.31),
which is in good agreement with the box-counting technique, for which D2 = 1.33.
The interface length scaling for φ/φc = 0.18± 20 % also agrees well with the TNTI
data; this supports the idea that the interface length scaling is not dependent on a
specific scalar threshold for the TNTI. Note that the ‘tailing-off’ effect for very small
and large filter lengths in figure 13(b) is indicative of the fact that the fractal scaling
ceases to exist beyond those limits. In any case, our primary interest is the scaling
rate across the inertial range, for which the data exhibit almost a decade of linear
scaling on the log–log plot in figure 13(b).

It is worth mentioning that Sc � 1 isoscalar surfaces will exhibit two distinct
scaling regimes: a viscous advective regime (with a suggested fractal scaling of 7/3)
that is the focus of this paper, and a diffusive viscous regime that exists between
the Batchelor length scale and the Kolmogorov length scale (Sreenivasan et al. 1989;
Sreenivasan & Prasad 1989). It is expected that the diffusive viscous regime exhibits
a different fractal dimension, DB = 2.65, with experimental measurements suggesting
DB ≈ 2.7 at a relatively low Re = 1500 (Sreenivasan & Prasad 1989). The results
presented in figure 13 do not exhibit the steeper power-law scaling that is expected
for the latter regime. This is because the results presented in figure 13 are limited
by the spatial resolution of the scalar concentration field, which is larger than the
Kolmogorov length scale.
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FIGURE 14. (Colour online) (a) PDF of the radial position of the TNTI, normalised by
the local jet velocity half-width, bu,1/2; the red line represents a Gaussian fit and the
dot-dashed line is the mean interface position (rI

TNTI/bu,1/2 = 1.79). The greyed region
represents the radial extents of the SFOV PIV. (b) Instantaneous scalar concentration field
of the LFOV with the SFOV extents shown in the white dashed line. The coloured section
of the plot represents the LFOV entrainment velocity points along the TNTI (green) that
are used in comparisons of the 2D flux rate and entrainment velocity with the SFOV data.

4.3. Correction for SFOV data
A compromise of the multi-scale PIV arrangement is that while the LFOV captures
the full radial extent of the TNTI, the SFOV cannot, which instead focuses on
a smaller region and providing higher resolution. Figure 14(a) shows a PDF of
the radial position of the TNTI normalised by the local velocity half-width. The
measurement area of the SFOV is represented by the greyed region. It is apparent
that the SFOV PIV does not capture the entrainment that occurs when the TNTI is
far from the turbulent core (rI/bu,1/2 > 2). In the following analysis we compare the
SFOV and LFOV entrainment scaling across the same radial extent to account for
any bias introduced by the TNTI moving out of the FOV. In other words, we present
scaling results from the LFOV that are calculated using points that are within the
radial confines of the SFOV. This data processing step is illustrated in figure 14(b),
in which the spatial extent of the LFOV (full image) is compared with that for the
SFOV (shown in the white dashed square). The coloured section of the plot represents
the radial span in which the LFOV data are used for comparison with the SFOV data.
In figure 15 (to be discussed in §§ 4.4 and 4.5), the LFOV data points that are from
the limited radial extents are shown in hollow black circles whereas data measured
across the full radial extent of the LFOV are shown in filled grey circles. The SFOV
data are represented by the hollow black squares.

4.4. Mass-flux rate across the TNTI at multi-scales
As discussed in the introduction (see (1.2)), the theoretical analysis of Meneveau
& Sreenivasan (1990) and Philip et al. (2014) suggests that the mass flux across
the TNTI should be independent of scale. To test this hypothesis, we first filter
the velocity and scalar fields and determine the TNTI from the filtered fields
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FIGURE 15. (Colour online) (a) The scaling of the local 2D flux rate (3.1) for the
SFOV (squares) and LFOV (circles) data; the horizontal dashed line represents the global
2D flux rate (3.2). The hollow black markers indicate data measured within the radial
limits shown in figure 14 and the hatched lines indicate the span of the minimum and
maximum measured mass-flux rates. The filled grey markers indicate the LFOV flux rate
data measured across the full radial extent of the FOV. (b) The scaling of the mean
entrainment velocity, Vn, normalised by the local mean centreline velocity, Uc. The hatched
region represents the entrainment coefficient range from figure 11( f ), and (3.3) with
(dΦ/dx)glob.

at different filter sizes, ∆, as discussed in § 4.1. Subsequently, we calculate the
entrainment velocity along the TNTI at varying filter sizes, vn(∆), as detailed in
§ 2.5. Mass-flux rates at different length scales, dΦ∆/dx can be found from the
right-hand side of (3.1), where the different quantities are now functions of ∆.
Figure 15(a) shows dΦ∆/dx as a function of ∆, and it is evident that the mass
flux is scale-independent. The hollow markers from the multi-scale measurements
fall within the range (10.78 ± 0.30) × 10−4 m2 s−1 (hatched grey region) across a
range of over two decades in scale. Hence, these results support the aforementioned
scale-independent mass-flux hypothesis defined in (1.2). In other words, the mass flux
across the contorted (long) TNTI at small scales agrees with the mass flux across the
smooth (short) TNTI at large scales. The mass-flux scaling for φ/φc = 0.18 ± 20 %,
shown in light pink and light blue, are also independent of filter size, ∆. This further
evidences that the constant mass-flux scaling result is less dependent on a specific
scalar threshold.

For comparison, we also plot the global integral mass-flux rate, dΦglob/dx =
8.20 × 10−4 m2 s−1 (horizontal grey dashed line), which is determined using (3.2).
The observed discrepancy between the local mass-flux rate (hollow black markers)
and the global mass-flux rate in figure 15(a) is attributed to the bias error of the
limited radial extent of the SFOV measurements. That our measurements do indeed
accurately measure the turbulent entrainment is confirmed by the mass-flux rates
that are determined using the full radial extent of the LFOV measurements (filled
grey markers). In this case, the local mass-flux rate measured across the full FOV in
figure 15(a) is in excellent agreement with the global flux rate from (3.2). Note that
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there is a slight increase in the mass-flux rates with filter size for ∆> 7λ, which is
artefact of the effect of the spatial-filtering technique on the mean radial position of
the TNTI. This is discussed further in appendix C, but we simply note here that this
effect does not change the fractal dimension of the scaling that we observe across
the viscous advective regime.

4.5. Scaling of the entrainment velocity
In addition to the mass-flux scaling, we are also interested in evaluating the scaling
of the mean entrainment velocity, Vn. From (1.2), the entrainment velocity is expected
to scale inversely to the TNTI surface area or length scaling. Measurement of the
entrainment velocity scaling was first attempted by Philip et al. (2014), although
they fell short in showing the scaling, primarily because of resolution issues with
their experiments. Here, we evaluate the mean entrainment velocity in figure 15(b)
to determine the scaling of Vn along the TNTI for different filtered fields; the
entrainment velocity is calculated using the integral in (1.1). Note that for each filter
size, ∆, the entrainment velocity is recalculated employing the procedure described in
§ 2.5 with the filtered PIV and PLIF data. We also normalise the entrainment velocity
by the local mean centreline velocity to draw comparisons with the entrainment
coefficient, α, obtained using the entrainment hypothesis. A least-squares fit between
0.5λ < ∆ < 3λ determines that the entrainment velocity scales as Vn ∼ ∆0.31, which
is indicative of a power-law behaviour of the entrainment velocity. We exclude the
outlying points consistent with the data shown in figure 13(b). Thus, within the
experimental uncertainty, these results support the conclusion that the entrainment
velocity scales at a rate that balances the interface length scaling, Ls

TNTI ∼ ∆−0.31.
It is for this reason that we observe a constant mass-flux rate in figure 15(a). We
anticipate that the effect of improved spatial resolution on this result would be that
the measured entrainment velocity would continue to follow the black dashed line
in figure 15(b) to smaller mean values of Vn for smaller ∆, and possibly a different
slope with filter size in the viscous-diffusive regime.

Interestingly, at filter lengths of O(101λ) the mean entrainment velocity from the
full radial extent data (filled grey symbols) approaches the entrainment coefficient
calculated in § 3 (α = 0.035–0.037), shown by the hatched lines in figure 15(b). The
use of a large spatial filter generates a flow field that approaches the time-averaged
field, which forms the basis of the global entrainment calculation (Philip et al.
2014). The small discrepancy between the local and global entrainment coefficients
is attributed to the dependency that exists between the entrainment velocity and the
radial height of the TNTI. This is illustrated by evaluating the ensemble-averaged
entrainment velocity, vn

TNTI , which does not take into account the dependence between
vn and the radial height of the interface that exists in the mean entrainment velocity,
Vn (see (1.1) and figure 10). The scaling of the ensemble-averaged entrainment
velocity, vn

TNTI , is presented in figure 19(b) in appendix C. The magnitude of vn
TNTI

at a given filter size is greater than Vn shown in figure 15(b). This is because the
largest entrainment velocities (most negative) occur when the TNTI is closer to the
jet centreline. Hence, in the expression

∫
(−vn)rI ds (1.1), larger (more negative)

values of vn are offset by smaller values of the radial term, rI . There is much
better agreement between vn

TNTI for large ∆ (grey symbols) and the entrainment
coefficient (hatched lines) if we simply consider the ensemble-averaged entrainment
velocity in figure 19(b). This supports the description by Philip et al. (2014) in which
entrainment at very large ∆ is completely dominated by the advective flux, which is
the sole contribution to global entrainment in the RANS (time-averaged) formulation.
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FIGURE 16. (Colour online) Effect of filtering on the characteristics of the entrainment
velocity, vn(∆), along the TNTI. (a) PDF of vn, P(vn). Gaussian distribution is shown
by the solid grey line. (b) Entrainment velocity conditioned on the radial location of the
TNTI, rI . The dashed lines represent vn

TNTIP(rI) at different ∆, similar to the light (grey)
line in figure 10 for the unfiltered case. The dash-dotted line represents the mean radial
location of the TNTI.

Finally, we present in figure 16 the effect of filtering on the PDF of vn and its
relation to rI . This is similar to figure 10, except with a range of filter sizes. The
PDF in figure 16(a) shows a reduction of mostly positive vn (detrainment) due to
filtering. In figure 16(b) we present the entrainment velocity conditioned on the TNTI
radial location (solid lines). The dashed lines represent vn

TNTIP(rI), which (incorrectly)
assumes that vn and rI are independent. It is clear from this figure that the conditioned
profiles (solid lines) occupy a larger area with increasing ∆, corresponding to an
increasing entrainment velocity. Also, with increasing filter size, figure 16(b) provides
evidence of reduced vn at the farthest distances from the TNTI, and the consequent
concentration of entrainment towards the mean TNTI position.

We have shown in this section that the magnitude of the entrainment velocity is
scale-dependent (figure 15b), and exhibits a power-law scaling that is the inverse
of the scaling of the TNTI length, as proposed by Meneveau & Sreenivasan (1990)
and Philip et al. (2014). At the very largest scales (∆∼ bu,1/2) the mean entrainment
velocity is approximately (0.03–0.04)Uc, whereas at the smaller scales (∆ ∼ η) the
mean entrainment velocity is closer to 0.01Uc. Consistent with the constant mass-flux
rate observed in figure 15(a), we observe that the entrainment velocity is small at the
smallest scales, but is balanced by the presence of a very large surface area. In the
same way, the entrainment velocity is large at the largest scales, but is balanced by
a smaller (smoother) surface area.

5. Summary and conclusions
We evaluated the scale dependence of the mass-flux rate and entrainment velocity

across the turbulent/non-turbulent interface in an axisymmetric jet. This is achieved
with time-resolved, simultaneous multi-scale-PIV/PLIF measurements taken in the
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far field. This novel experimental arrangement made possible the identification and
tracking of the TNTI, and the measurement of the local entrainment velocity along it.
The multi-scale-PIV measurements were necessary to achieve a dynamic range that
measured the interface length, mass flux, and entrainment velocity across two decades
of scale. The turbulent jet exhibits Reynolds numbers of Re= 25 300 and Reλ = 260,
which are higher than most comparable studies of the TNTI and entrainment processes
in turbulence. A large Reynolds number is necessary to achieve a distinct scale
separation from the viscous scales up to the inertial scales.

Consistent with previous experimental and numerical investigations, we use the
scalar concentration field of a Sc� 1 passive scalar to identify the TNTI. The specific
scalar concentration threshold that represents the TNTI is empirically determined with
the use of a conditional averaging approach. We show that there exists a jump in
the spanwise vorticity magnitude across the isocontours of scalar concentration that
represent the TNTI; this illustrates the effectiveness of using a Sc � 1 passive
scalar to identify the boundary of the vorticity field. The interface-tracking technique
described in § 2.5 is shown to be capable of measuring the local entrainment velocity
along the TNTI. The advantage of this technique is that the local entrainment
velocity, at the scale of the measurement, can be measured without requiring spatial
resolution that resolves the Kolmogorov length scales of the flow. In other words, the
interface-tracking technique is not resolution-dependent, which is a necessary feature
in order to establish the scaling of the entrainment velocity.

A comparison is drawn between the well-established interpretation of global
entrainment from an integral, entrainment hypothesis approach and the local
entrainment along the TNTI. We show that the entrained mass-flux rates (dΦ/dx)
calculated from the local approach along the TNTI (3.1) exhibit good agreement with
the mass-flux rate obtained from the global calculation (3.2). This comparison also
demonstrates that the magnitude of the entrainment coefficient (α) is dependent on
the entrainment approach and the selected characteristic jet width. We also estimate
the mass-flux rates using radial velocity profiles that are conditioned on the TNTI.
This hybrid approach yields mass-flux rates and entrainment coefficients that agree
well with the global and local methods.

The multi-scale entrainment hypothesis of Meneveau & Sreenivasan (1990) suggests
that the mass-flux rate across an interface should be constant across all length scales.
More concretely, this theory states that

dΦ
dx

loc

= dΦ
dx

∆

= dΦ
dx

glob

= const., (5.1)

where the filter length scale, ∆, represents any intermediate length scale. This
expression is equivalent to (1.2), for which the mass-flux rate is decomposed into
the scale-dependent surface area, S(∆), and entrainment velocity, Vn(∆). Evidence of
a scale-independent mass-flux rate had not been observed in any physical scenario,
primarily because of the demanding experimental and analysis techniques. These
limitations are addressed in the experimental set-up and the entrainment velocity
measurement technique implemented in this study. We first use two independent
methods to show that the surface area, S, exhibits a multi-scale behaviour with a
fractal dimension that falls in the range D3 ≈ 2.31–2.33, where S ∼ ∆−D ≡ ∆2−D3 .
More specifically, application of a box-counting technique to the TNTI yields a
power-law exponent of D2 ≡ D3 − 1 = 1.33, and application of a spatial-filtering
technique yields a power-law exponent for the TNTI length of D = 0.31, where
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Ls
TNTI ∼∆−D≡∆1−D2 . Thus, the multi-scale behaviour of the TNTI across the inertial

range favours a constant power-law fractal behaviour, in agreement with de Silva
et al. (2013), rather than a scale-dependent behaviour (Miller & Dimotakis 1991).

We invoke a multi-scale analysis to evaluate the scale dependence of the entrainment
velocity, Vn(∆). We report that the entrainment velocity exhibits a power-law scaling
given by Vn ∼ ∆0.31. From this scaling we show that the entrainment coefficient,
α(∆) ≡ Vn/Uc, is also scale-dependent and ranges from α ≈ 0.01 for ∆ ≈ η (small
scales) up to α ≈ 0.03–0.04 for ∆ ≈ bu,1/2 (large scales). Moreover, the entrainment
coefficient at the largest filter size agrees well with the entrainment coefficient
determined using the global (integral) definition of entrainment. The primary outcome
of this study is experimental evidence that confirms that the mass-flux rate across
the TNTI is independent of scale: Vn(∆)S(∆)= const. This is indeed satisfied when
we consider the mass-flux rate along the TNTI (5.1), and also when we consider the
combined power-law behaviours of Vn(∆) and S(∆) found in our multi-scale analyses.
This result suggests that the entrainment velocity scales at a rate that balances the
scaling of the interface length, so as to make the net entrainment scale-independent.
This result lends support to the interpretation of the roles of viscous nibbling and
inviscid engulfment, in which nibbling is only active locally at the small scales, and
engulfment is only active at the large scales of the flow.
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Appendix A. Details of the entrainment velocity measurement: optimising δt and
errors due to radial motion

A.1. Optimisation of the time delay δt
We implement an empirical approach to determine the optimal interface-separation
time, δt, that minimises the errors that affect the planar measurement of the
entrainment velocity. These errors are: (i) the random error of the PIV and PLIF
measurement precision, and (ii) the effects of out-of-plane motion. The former error
is dominant at small δt and the latter is dominant at larger δt. The sensitivity analysis
described herein is similar to the selection process of the particle-image separation
time for planar PIV, as described in Poelma, Westerweel & Ooms (2006).

The r.m.s.-entrainment velocity, vn
′21/2

TNTI , is sensitive to increases in spurious vectors

that arise from the aforementioned errors. The profile of vn
′21/2

TNTI as a function of
δt is presented in figure 17(a) for a range of filter sizes (see § 4.1) for the LFOV
set-up. First, consider the shortest filter length (∆= 0.4λ), which is represented by the
filled blue circles. In the region δt/τ < 1.68 the r.m.s.-entrainment velocity decreases
with increasing δt because the larger spatial separation of the interfaces results in
an improved signal-to-noise ratio. The r.m.s.-entrainment velocity reaches a minima
at δt/τ = 1.68; beyond this point the r.m.s.-entrainment velocity increases because of
out-of-plane motion that misaligns the interfaces used to measure vn. This description
is further supported by considering the profile of the ensemble-averaged entrainment
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FIGURE 17. (Colour online) (a) Evaluation of the r.m.s.-entrainment velocity as a function
of the interface-separation time, δt/τ , for the range of the coarse-graining filter lengths, ∆,
shown in grey markers. Filter lengths ∆= 0.4λ (blue circles), ∆= 3.3λ (green triangles),
and ∆ = 12.0λ (red squares) are highlighted with filled markers. The vertical grey bars
indicate interface-separation times of δt/τ = 0.09, 1.68, 5.61. (b) The ensemble-averaged
entrainment velocity, −vn

TNTI , as a function of δt/τ .
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FIGURE 18. (Colour online) (a) An instantaneous scalar concentration field at t0
superimposed with the TNTI (purple line). (b,c) Same scalar concentration field as (a)
but superimposed with the TNTI at (b) t= t0 + 1.68τ and (c) t= t0 + 5.61τ (red lines).

velocity, −vn
TNTI , which is presented in figure 17(b). The entrainment velocity is a

function of interface-separation time for δt/τ < 0.5 and δt/τ > 1.68. In between these
regions the ensemble-averaged entrainment velocity plateaus, which indicates that the
vn-distribution has converged and is independent of δt.

Larger filter sizes (see green triangles and red squares in figure 17a) mask the errors
that arise from the out-of-plane motion. This is because the smaller convolutions of
the TNTI are filtered, which results in a TNTI that does not significantly change shape
with time. In figure 18 we present scalar concentration fields with the respective TNTI
for filter size ∆ = 0.4λ. The TNTI at an arbitrary time step, t = t0, is presented in
(a), and is denoted with a light purple line. The evolution of the TNTI at two later
points in time are shown in (b) and (c). The evolution of the interface between t= t0
and t = t0 + 1.68τ is discernible. That is, we can identify features of the TNTI at
t= t0 (purple line) that still exist in the TNTI at the later time. For a large separation
time, such as in figure 18(c), the effects of out-of-plane motion yield a TNTI (red
line) that is very different from the original interface (purple line). This illustrates the
limitations of using planar measurements to estimate the local entrainment velocity.
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FIGURE 19. (Colour online) (a) The scaling of the mean product of radius and TNTI
length, rILs

TNTI , with box-filter size ∆. The expected scaling of rILs
TNTI ∼∆−1/3 is plotted

as a grey dash-dotted line for comparison. (b) The scaling of the ensemble-averaged
entrainment velocity, vn

TNTI . The hatched region represents the entrainment coefficient
range from figure 11 and (3.3) with (dΦ/dx)glob.

For large filter sizes the smoothing effects of the filter mask the decorrelation of the
interface in the measurement plane. For this reason, we apply the interface-separation
time determined by the smallest filter size data for all filter sizes to measure the local
entrainment velocity along the TNTI. As shown in figure 17, the optimum interface
δt for the LFOV is 1.68τ and for the SFOV (not shown here) it is 0.65τ .

A.2. Comments on errors due to the neglected radial motion of the TNTI
Velocity fluctuations in the out-of-plane direction will transport the scalar field
through the measurement plane. This out-of-plane motion misaligns the measurement
points along the TNTI that are used to calculated vn, which adds uncertainty
to the entrainment velocity. We estimate the effects of out-of-plane motion by

considering the r.m.s.-spanwise velocity, w′2
1/2

, at the mean location of the TNTI,
rI

TNTI/bu,1/2= 1.79. Mean and r.m.s. profiles of a turbulent, round jet at Re= 1.1× 104

are available from the experiments of Panchapakesan & Lumley (1993). We use this
data to estimate the r.m.s.-spanwise velocity, because this velocity component is

not measured in the present study. Recall that our u′2
1/2

and v′2
1/2

measurements
are in excellent agreement with Panchapakesan & Lumley (1993), as presented in
figure 3. At the mean interface location (rI

TNTI) the data of Panchapakesan & Lumley

(1993) shows that w′2
1/2
/Uc≈ 0.07. In combination with the centreline velocity at the

primary measurement location in this study, Uc|50D=0.3116 m s−1, the r.m.s.-spanwise

velocity is determined to be w′2
1/2= 0.022 m s−1. This velocity represents the typical

velocity fluctuations in the out-of-plane direction that misalign the interface. The
typical out-of-plane displacement is estimated by using the interface-separation time
of δt/τ = 1.68 (18 ms) for the LFOV. Hence, we estimate that the TNTI is subjected
to out-of-plane displacements of δz= 0.39 mm= 3.9η. In comparison, the laser-sheet
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thickness is measured to be 15η (table 1), which is over three times the typical
displacements expected of the interface. Moreover, the out-of-plane fluctuations are
axisymmetric, which means the effect of interface misalignment is a random error.
For these reasons, the effects of out-of-plane motion are likely to be averaged out by
the finite thickness of the laser sheet and do not bias the mean results.

Appendix B. Comments on the entrainment coefficient incorporating the energy
equation

Craske & van Reeuwijk (2015) applied a kinetic energy and momentum conservation
approach to identify the source terms of the entrainment coefficient. Similar
approaches have been previously implemented by Priestley & Ball (1955) and
Kaminski et al. (2005). Craske & van Reeuwijk (2015) show that the entrainment
coefficient for a steady jet is determined by the balance between the production of
turbulence kinetic energy (δg) and the flux of turbulence kinetic energy (γg),

α0 =− δg

2γg
, (B 1)

where δg=PgQ2/M5/2 is the dimensionless energy production and γg=EgQ/M2 is the
dimensionless energy flux. Here, the volumetric flow rate is defined as Q= 2

∫ rd

0 ur dr
and the momentum flux is defined as M = 2

∫ rd

0 u2r dr. The energy production and
energy flux terms consist of mean, turbulent, and pressure components (left to right
on the right-hand side):

Pg = 4
∫ rd

0
u′v′

∂u
∂r

r dr+ 4
∫ rd

0
u′2
∂u
∂x

r dr+ 4
∫ rd

0
p
∂u
∂x

r dr, (B 2)

Eg = 2
∫ rd

0
u3r dr+ 4

∫ rd

0
uu′2r dr+ 4

∫ rd

0
(p− pd)ur dr, (B 3)

where pd is the ambient pressure and rd is a radial distance far from the centreline of
the jet. The mean components dominate the energy production and energy flux terms
in the above expressions. Craske & van Reeuwijk (2015) use DNS to evaluate the
entrainment coefficient α0 for a round, turbulent jet (Reλ= 100–135); they report that
α0 = 0.065–0.069 (high-Re to low-Re). This value range agrees well with the direct
measurement of the entrainment coefficient that is determined by

∂Q
∂x
= 2αM1/2, (B 4)

and falls within the range α= 0.05–0.08 that was surveyed by Carazzo et al. (2006).
Although we cannot measure α0 because we do not have access to the pressure

fields, we may estimate this entrainment coefficient using the mean and turbulent
quantities only; these are the first two terms on the right-hand side of (B 2) and (B 3).
Using the mean and turbulent quantities we determine that δg≈ δm+ δf =−0.194 and
γg≈γm+γf =1.547; these symbols are defined in Craske & van Reeuwijk (2015). The
energy flux term, γg, is larger than that of Craske & van Reeuwijk (2015) (γg= 1.416)
because of the missing pressure term. Accounting for the pressure contribution to the
energy flux (γp≈−0.18) would give a dimensionless energy flux, γg, that is in much
better agreement with the DNS. This missing pressure term explains why our estimate
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FIGURE 20. The spreading rate of the TNTI as a function of filter size, ∆. The spreading
rate, S, is determined from the expression bTNTI = S(x− x0)D.

for the entrainment coefficient, α0 ≈ 0.063, is slightly smaller than that reported by
Craske & van Reeuwijk (2015). Calculating α from (B 4) gives α = 0.073 for the
present study, which falls between the results of Craske & van Reeuwijk (2015)
(α0 = 0.065–0.069) and Panchapakesan & Lumley (1993) (α = 0.083); see Craske &
van Reeuwijk (2015, p. 518). It is apparent that these entrainment coefficients are
closer to α for the e−1-isocontours measured in § 3 rather than that for the TNTI, for
which the entrainment coefficient is α ≈ 0.03.

Appendix C. Additional fractal scaling results
The mean entrainment velocity (Vn) scaling in figure 15(b) accounts for the

dependence between the entrainment velocity and the radial location of the TNTI.
As shown in (1.1), the integrated entrainment velocity term is normalised by the
product of the TNTI radial location and the TNTI length, rILs

TNTI . In figure 19(a)
we demonstrate that this product scales as rILs

TNTI ∼ ∆−0.31, which agrees with the
scaling for Ls

TNTI shown in figure 13(b). The radius term is therefore not dependent
on the filter width and does not affect the entrainment velocity scaling presented in
figure 15(b).

The scaling of the ensemble-averaged entrainment velocity, vn
TNTI , is plotted in

figure 19(b). The magnitude of the ensemble-averaged entrainment velocity is greater
than the mean entrainment velocity shown in figure 15(b). This is because the largest
entrainment velocities (most negative) occur when the TNTI is closer to the jet
centreline (see figure 16). Hence, in the expression for Vn, larger values of vn are
offset by smaller values of the radial term rI . Interestingly, the term vn

TNTI measured
across the full radial extents (grey symbols in figure 19b) converges to the global
entrainment coefficient measured in § 3 using conditional profiles (α = 0.037, see
table 2). Thus, the advective fluxes discussed by Philip et al. (2014) that are active
at the largest scales (large ∆) do in fact coincide with the time-averaged entrainment
rate (i.e. global entrainment).

Appendix D. Spreading of the TNTI at multi-scales
The mass-flux rate scaling presented in figure 15(a) shows that there is a slight

trend for the largest filter points to tend to larger values. This is attributable to the
larger TNTI spreading rates for the large filter sizes, as shown in figure 20. Here, we
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plot the spreading rate bTNTI for the range of filter sizes considered. The spreading
rate of the mean TNTI position for ∆> 7λ is larger than that exhibited for smaller
filter sizes. Thus, the non-uniform spreading rates may have an affect on the mass-flux
integral defined in (3.1). However, this filtering effect does not affect the spreading
rates across the inertial range where we evaluate the power-law scaling. Hence, the
increase in bTNTI for ∆> 7λ does not affect the overall outcomes of this paper that
the mass-flux rate is independent of scale, and that the entrainment velocity scales at
an inverse rate to the TNTI length scaling.
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