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ABSTRACT 

The interaction between large and small scale motions 

from the point of pressure fluctuation is studied. Using the 

small pressure probe, both the static pressure and wall 

pressure fluctuations were measured inside the zero-

pressure gradient boundary layer at relatively high 

Reynolds numbers. How the large scales in outside affect 

the small scales near wall is analyzed by means of 

statistical method.  High amplitude positive and negative 

pressure fluctuations are also analyzed which associate 

with coherent motions inside the boundary layer. Another 

interesting aspect is the amplitude modulations of pressure 

and this topic is reported in this paper. 

 

INTRODUCTION 

We have developed a small pressure probe and 

measured both static and wall pressure simultaneously in 

turbulent boundary layers up to Reynolds numbers based 

on the momentum thickness 21000. The statistical features 

were already reported in the previous studies [1,2]. Here, 

in this paper, we investigate the instantaneous feature of 

turbulence character, especially the large scale and small 

scale interaction of pressure fluctuations. In Fig.1, we plot 

the pressure intensity profile, which shows the logarithmic 

relation;  

pprms ByAp 


)/log()( 2  ,           (1) 

where 
pA and 

pB are constant 522.Ap  , 302.Bp  , but 

pB depends on flow field. Here, y is a distance from the 

wall,  is a boundary layer thickness and subscript + 

indicates the normalization by inner variables. This 

relation is similar with that observed in the intensity of 

stream-wise velocity component predicted by attached 

eddy model [3,4];  

uurms ByAu 


)/log()( 2  ,               (2) 

where 
uA is constant 25.1uA but 

uB  depends on flow 

field. This velocity logarithmic relation was derived by 

Perry et al. [4] based on the Townsend’s attached eddy 

hypothesis. The basic Townsend’s idea said [3],“It is 

difficult to imagine how the presence of the wall could 

impose a dissipation length-scale proportional to distance 

from it unless the main eddies of the flow have diameters 

proportional to distance of their “centres” from the wall, 

because their motion is directly influenced by its presence. 

In other words, the velocity fields of the main eddies, 

regarded as persistent, organized flow patterns, extend to 

the wall and, in a sense, they are attached to the wall.” 

This idea was extended by Perry et al [4] that the 

distribution of eddies with a population density inversely 

proportional to distance from the wall. And in their model, 

they propose that 2)(


rmsu  is in proportion to the 

logarithmic of distance from the wall.  

 From the recent high-Reynolds number experiments, 

it was found that large scale motions in overlap region 

have significant interaction with the motions close to the 

wall [5]. A series of researches by Melbourne university 

group have reported the detailed properties of this 

interaction. This process is conceptually expressed as 

“footprint”. We generally believe the attached eddy 

hypothesis relates with this footprint. The large-scale and 

small-scale interactions, or footprint, are characterized by 

statistical methods, such as space-time correlation, 

conditional sampling, joint-probability density functions 

etc. Among these, one possibility is the amplitude 

modulation method [6]. Although there are some 

discussions about the ability of this method [7], we apply 

this to the pressure fluctuation and discuss the similarity 

and difference with that of velocity fluctuations.  

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Square of pressure intensity normalized by inner 

variables at distance /y  from the wall. The spatial 

resolutions of probes are corrected by PDF shapes.  

 : 11260Re 
,  : 16190Re 

,  : 20940Re 
. 

Solid line is direct numerical simulation (DNS) data from 

Schlatter et al. (2010) at 4060Re 
. 
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EXPERIMENTAL CONDITIONS 

We measure pressure fluctuations by a technique 

developed in our group that uses a standard static-pressure 

tube probe (Fig. 2) attached to a small condenser 

microphone. The amplitude and phase delay associated 

with the resonance are carefully corrected. The detailed 

procedure is explained in [1,2].  

The schematic view of pressure probe is shown in 

Fig.2, in which four static pinholes spaced 90 apart in the 

circumferential direction and located 12mm from the tip. 

The diameter of pinhole is 08.0 mm. The tube outer 

diameter and material thickness are 3.01 d mm 

and 05.02/)( 21  ddh mm, respectively. The 

experiments were performed in the MTL wind tunnel at 

KTH and large wind tunnel at Melbourne university. A 

probe position in the wind tunnel is shown in Fig. 3. Here, 

a specially designed wall-normal traversing system is used 

that protrudes from the plate and allows us to traverse the 

range 20  y , where  is the boundary layer 

thickness.  

For the static pressure measurement we set the free-

stream velocity to three different values ( 200 U ,30 , 40  

m/s), and the Reynolds number was varied up to 

21000R . Streamwise velocities were measured by a 

standard single hotwire, and the wall shear stress was 

obtained by oil film interferometry. The free stream 

intensities remained smaller than 0.02%.  

 

 

 

 

 

 

 

 

Fig.2 Schematic view of pressure probe. 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Configuration of probes in the test section of wind 

tunnel. 

 

 

RESULTS AND DISCUSSIONS 

A single-point amplitude modulation coefficient, 

defined as the correlation coefficient between the filtered 

envelope of the small-scale fluctuations, )(


sL pE , and 

the large-scale component, 

Lp , is calculated by  

)(//)()( ,.

  srnsLrmsLsLL pEppEpyAM  ,   (3) 

Here, the lower subscript rms means the root mean 

square of fluctuating quantities. To obtain the term in Eq.3, 

the pressure fluctuation is decomposed into the large scale 


Lp and the small scale 

sp , by choosing the cut-off wave 

lengt 
th . The filtered envelope of small-scale 

contribution was obtained by via a Hilbert transformation.  

 In Fig.4 the amplitude modulation coefficients are 

plotted against the distance from the wall. The coefficient 

increases toward the wall, but it is almost constant in the 

overlap region and extends into the outer region. For the 

case of velocity signal, AM shows the increasing trend 

toward the wall, it is almost constant in 15030  y  

just below the log-region. From these trends, pressure has 

a different character of velocity fluctuations. That is, the 

large scale interacts with small scale in a different way in 

pressure. It is noted that the sign of AM is negative inside 

the boundary layer, or the large scale interact negatively 

with small scales. Close to the wall, the coefficient 

becomes positive but it has a small value. This means the 

interaction from the outer scale to the wall region is little. 

These are very interesting and unique features in pressure 

fluctuations. The similar analysis has already performed in 

wall pressure signal. It has been discussed that the large 

scale effect on the wall pressure for a long time. However, 

the present analysis of AM does not support clearly the 

large scale contributions. This may be discussed at the 

conference.  

 The cut-off wavelength is a key parameter for this 

analysis. The wave number
th  is determined based on the 

pre-multiplied spectrum contours. It shows the large and 

small scale energetic modes at position y as a function of 

wave numbers. However, for the simplicity, the cut-off 

wave numbers are set as 10,5,2,  th
in this 

analysis. In these high Re number experiments, there is 

little effect of 
th  on amplitude modulation coefficients.  

  

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Amplitude modulation coefficient of pressure  

        ( 11260R ) 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Amplitude modulation coefficient of velocity. 

( 11260R ) 
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As mentioned previously, the pressure intensity shows 

the logarithmic relation of y (Eq.1). It is another 

interesting point for us to investigate how large scales 

contribute to the pressure intensity profile and attached 

eddy model can predict the logarithmic relation of 

pressure. The instantaneous pressure fluctuations are 

divided into large and small scales by filtering at cut-off 

frequency 
th and the pressure intensity was reconstructed 

from smaller and larger wave numbers separately. The 

results are plotted in Fig.6. The detailed things are 

presented at the conference, but the significant difference 

from the velocity was found, that is, the logarithmic 

relation is realized mainly by the small-scale fluctuations 

in case of pressure.  

      In Fig.7 probability density functions are shown. 

Small scale fluctuations have a negative long tail, which is 

a typical characteristic of pressure, but the large scale 

fluctuations obey the Gaussian distribution. This feature is 

less dependent of cut-off frequency. Because the negative 

long-tail is associated with small-scale eddies, the small 

scale structures play an important role in pressure 

fluctuations. These features are consistent with the results 

in Fig.6.  

In summary, the logarithmic relation of pressure 

(Eq.1) may not the product of attached eddy model. But 

the small scale structure’s contribution is significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 Pressure intensity profile in the boundary layer. 

( 16170R ) The contribution from smaller and larger 

scales are separated by the stream-wise wave number . 

 

 

 

 

 

 

 

 

 

 

Fig.7 Probability density functions of pressure in the 

boundary layer at 1.0y , 16170R . Pressure is 

normalized by its standard deviations. The contribution 

from smaller and larger scales are separated by the stream-

wise wave number. In left figure, cut-off wavenumber is 

boundary layer thickness, in the right it is ten times  

boundary layer thickness.  

 

The experimental data were measured with the help of 

Prof. Henrik Alfredsson, Dr. S. Imayama, Dr. R. Orlu,    

Dr. H. Hutchins and other research members in KTH and 
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