Large coherence of spanwise velocity in turbulent boundary layers

C. M. de Silva
The University of Melbourne
Victoria 3010, Australia
desilvac@unimelb.edu.au

Kevin
The University of Melbourne
Victoria 3010, Australia
dev.kevin@unimelb.edu.au

R. Baidya
The University of Melbourne
Victoria 3010, Australia
baidyar@unimelb.edu.au

N. Hutchins
The University of Melbourne
Victoria 3010, Australia
nhu@unimelb.edu.au

I. Marusic
The University of Melbourne
Victoria 3010, Australia
imarusic@unimelb.edu.au

Abstract
This study investigates the spatial signature of spanwise velocity coherence in turbulent boundary layers. A series of unique large field-of-view multi-camera particle image velocimetry (PIV) experiments are conducted in a planar arrangement at a friction Reynolds number of \(Re_f \approx 2600 \). The experiments are configured to capture streamwise/spanwise slices of a turbulent boundary layer in both the logarithmic and wake regions. Consistent with numerical observation of Sillero et al. (2014), we observe a pronounced oblique pattern of spanwise velocity coherence with an orientation dependent on the sign of the spanwise velocity component. This behaviour is sufficiently strong to be distinguished in the instantaneous flow fields and mostly obvious in the outer most part of the layer. Additionally, we observe that this oblique arrangement dictates the alignment of the intermittent turbulent bulges, which leads to a pronounced impact on the geometry of the turbulent/non-turbulent interface. Finally, we test whether a boundary layer constructed using a model based on the attached eddy hypothesis can produce similar behaviour for the coherence of spanwise velocity. Comparisons between the model and experimental velocity fields reveal some degree of similarity with both exhibiting coherent regions of spanwise velocity that are arranged diagonally.

Introduction
The structural nature of turbulent boundary layers has been the subject of many investigations. Recent summaries on these structural features are discussed by Marusic & Adrian (2012) and Herpin et al. (2013). Over the last decade the presence of large-scale motions on the order of the boundary layer thickness have received considerable interest. However, a large number of these studies have focused on the coherence of the streamwise velocity component, and subsequently coherent regions in the other velocity components remain largely unexplored. This is particularity true for the spanwise velocity component.

One distinct feature reported recently for the spanwise velocity is the existence of large coherent regions in the outer region of turbulent boundary layers (Sillero et al., 2014). These features are best described with reference to figure 1, which shows a representative example from the present PIV experiment. The colour contours correspond to spanwise velocity fluctuations, \(\nu \), which are shown on a streamwise/spanwise plane at a wall-normal height of \(z/\delta \approx 1 \). Here, boundary layer thickness \(\delta \) corresponds to wall-normal location, where the mean velocity is 99% of the free-stream velocity. Qualitatively, it is evident that the \(\delta \)-scaled coherent regions of spanwise velocity in the outer region of a boundary layer are oriented in an oblique arrangement. Specifically, regions of positive and negative \(\nu \) appear to be counter-oriented at oblique angles, and have characteristic lengths in excess of \(O(\delta) \) in both the spanwise and streamwise directions. Therefore, although these features are easily distinguishable when the FOV is very large, most prior PIV experiments have insufficient spatial extents to capture these large-scale motions. Moreover, the few experiments that have large spatial extents, particularly on streamwise/spanwise planes generally focus on the logarithmic region of boundary layers, where the largest coherent regions of streamwise velocity appear to reside (Westerweel et al., 2013). The PIV experiments with very large spatial extents targeted at the logarithmic and wake regions presented herein offer a promising approach to carefully examine these large-scale motions. However, the approach is not without its own difficulties; some structures are known to commonly persist for streamwise distances exceeding \(10 \delta \) (Hutchins & Marusic, 2007). Capturing the full extent of these features with PIV requires multiple cameras to obtain sufficient spatial resolution over a large spatial domain (de Silva et al., 2014).

Encouraged by recent observations from numerical databases (Sillero et al., 2014), this study aims to understand the mechanisms that may explain the large-scale oblique patterns of \(\nu \) in turbulent boundary layers. We begin with a description of the PIV experiments. Thereafter, a discussion on the structural arrangement of \(\nu \) is presented as a function of wall-normal location and Reynolds number.

Throughout this work, the coordinate system \(x, y \) and \(z \) refers to the streamwise, spanwise and wall-normal directions, respectively. Corresponding instantaneous streamwise, spanwise and wall-normal velocities are represented by \(U, V \) and \(W \), respectively. Overbars and \(\langle \cdot \rangle \) denote average quantities and the superscript \(+ \) refers to normalisation by inner scales. For example, we use \(U^+ = U/U_\tau \) for velocity, where \(U_\tau \) is the friction velocity.

Description of experiments
The experiments are performed in the High Reynolds Number Boundary Layer Wind Tunnel (HRNBLWT) at the University of Melbourne. The tunnel consists of a large development length of approximately 27m, offering the capability of achieving high Reynolds numbers at relatively low free-stream velocities. This provides a uniquely thick boundary layer at \(Re_\tau \) up to 25000, re-
Figure 1: Colour contours of spanwise velocity fluctuations, v of a turbulent boundary layer. Results are presented on a streamwise/spanwise plane at $z/\delta \approx 1$ at $Re_\tau \approx 2600$. (a) and (b) shows the same flow field decomposed by the sign of v, where (a) shows only contours where $v < 0$ and (b) when $v > 0$. The black dashed lines correspond to $\pm 45^\circ$.

Figure 2: Experimental setup used to conduct large field of view planar PIV experiments in the HRNBLWT to capture a streamwise/spanwise plane. The red solid line corresponds to the combined field of view captured from the multi-camera imaging system at the geometric centre of the log-region ($z \approx 0.6Re_\tau^{3/4}$), and the red dashed lines correspond to the higher wall-normal locations ($z/\delta \approx 0.4$, 0.8 and 1) captured.

resulting in a larger measurable viscous length scale (hence less acute spatial resolution issues) (Nickels et al., 2005). Unlike prior PIV campaigns in the HRNBLWT (de Silva et al., 2014), which are tailored to achieve the highest Re possible from the facility, the present experiments are configured to obtain snapshots of very large scale structures of $O(10\delta)$ with sufficient fidelity. Accordingly, the experiments are conducted at the upstream end of the test section ($x \approx 5$ m), where the boundary layer is thinner (with a thickness of $\delta \approx 90$ mm). We note that δ is still large relative to many boundary layer facilities, but small compared to that achievable further downstream in the HRNBLWT. In order to capture relatively well-resolved velocity fields with a streamwise extent of $O(10\delta)$, the field of view (FOV) is constructed by stitching eight high-resolution 14 bit PCO 4000 PIV cameras. The cameras are arranged (see figure 2) to quantify velocity fields on a streamwise/spanwise – hereafter referred to as the xy plane. The red solid and dashed lines in figure 2 show the combined field of view at different wall-normal locations from the eight cameras, which spans approximately 13δ in the streamwise direction and 3δ in the spanwise direction. Each camera has a resolution of 4008×2672 pixels, therefore the pixel size is $\sim 65\mu m$ per pixel, respectively. Measurements are acquired at 10 m/s and the xy planes are captured at four different wall-normal locations spanning the geometric centre of the logarithmic and wake regions of the flow. A summary of the flow parameters of the experimental databases is provided in table 1.

To maintain a constant z/δ across the long streamwise domain of the xy plane, the laser sheet is tilted at a very shallow angle to accommodate the growth rate of the boundary layer (which closely approximates to a linear growth over this streamwise extent). Seeding particles are injected in close proximity to the blower fan, which is then allowed to circulate throughout the entire laboratory to obtain a homogeneous seeding density across the test section.
To explore the influence of spatial averaging further, following Lee et al. (2016), we spatially box filter the DNS database at matched normalized wall-normal location \(z/\delta \approx 0.6 \), \(z/\delta \approx 0.4 \), \(z/\delta \approx 0.8 \), and \(z/\delta \approx 1 \) to match the interrogation window size and laser sheet thickness.

Table 1: Flow parameters of experimental data. The friction velocity \(U_t \) is computed at the middle of the FOV.

<table>
<thead>
<tr>
<th>Wall-normal location ((m/s))</th>
<th>(U_\infty)</th>
<th>(Re_t)</th>
<th>(\nu/U_t)</th>
<th>(\delta)</th>
<th>PIV images</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z^* \approx 0.6 Re_t^{3/4})</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z/\delta \approx 0.4)</td>
<td>10</td>
<td>2500</td>
<td>42</td>
<td>0.09</td>
<td>3000</td>
</tr>
<tr>
<td>(z/\delta \approx 0.8)</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z/\delta \approx 1)</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Experimental and processing parameters for the PIV experiments

- Laser sheet thickness: \(\approx 1\text{mm or } \approx 24^+ \)
- Particle size: \(\approx 1-2 \mu m \)
- Seeding: Polyamide particles
- Flow medium: Air
- Field of view: \(\approx 1.3m \times 0.25m \)
- Depth of field: \(\approx 5mm \)
- Optical magnification: \(\approx 65\mu m/\text{pixel} \)
- Interrogation window size: \(32 \times 32 \text{ pixels or } \approx 50^+ \)
- Vector Overlap: 50%
- Vectors per image: \(\approx 5 \times 10^5 \)

Validation

In order to quantify the quality of the databases from the present work, figure 3 presents mean velocity and turbulence intensity profiles. The \(\triangle \) symbols correspond to results from PIV database at different wall normal heights, and the solid red lines correspond to a recent DNS database at \(Re_t \approx 2500 \) (Sillero et al., 2013). The dashed black line in (b-c) corresponds to statistics from the \(Re_t \approx 2500 \) DNS database filtered to match the spatial resolution of the PIV measurement. We note that box filter size is chosen to match the interrogation window size and laser sheet thickness. The results are shown by the black dashed (—) lines in figure 3(b-c), which corresponds to the turbulence intensity levels obtained from the box-filtered DNS velocity fields. Good agreement is observed between the PIV and filtered DNS statistics, confirming that the discrepancy observed in the near-wall region is largely due to spatial attenuation from the PIV measurements. Results presented in figure 3 are normalised by \(U_\infty \) however, normalisation by \(U_t \) also provides similar findings (not reproduced here for brevity).

As a final note, since we employ a low magnification level, particle diameters are \(\approx 1-2 \) pixels. This size is less than that recommended for PIV experiments (Adrian & Westerweel, 2011), and therefore can lead to pixel-locking of the velocity fields.
Figure 4: Wall-parallel slices of the correlation function of the spanwise velocity, R_{vv}. Rows present results at different wall-normal locations: (a) $z \approx \delta$, (b) $z^+ = 0.6Re_e^{3/4}$. Left columns presents the unconditional R_{vv}, and the middle and right columns present R_{vv} when $v < 0$ and $v > 0$, respectively.

Figure 5: Instantaneous colour contours of kinetic energy deficit, K, on a logarithmic scale. Results are presented on a xy plane at $z/\delta = 1$ for the same velocity field shown in figure 1. The solid black line indicates the location of the TNTI computed as an iso-kinetic energy surface using a threshold of $K_0 = 10^{-3} \left(\frac{1}{2} U_\infty^2 \right)$.

Results

To quantify the strong persistent structural arrangement of coherent regions of spanwise velocity, figure 4 presents two-point correlation function of the spanwise velocity, R_{vv}, at two representative wall-normal locations. The left column correspond to the unconditional normalised autocorrelation, $R_{vv}(\mathbf{x}, \mathbf{x}') = \langle v(\mathbf{x})v(\mathbf{x}') \rangle / \sigma_v^2$, where \mathbf{x}' is the reference point and \mathbf{x} is the moving point. Normalisation here is by the corresponding standard deviation. In similar fashion, the middle and right columns of figure 4 present the autocorrelation, R_{vv}, conditioned on the sign of the spanwise velocity fluctuations following:

$$R_{vv}(\mathbf{r}, \mathbf{r}') | v(\mathbf{r}') < 0 = \frac{\langle v(\mathbf{r})v(\mathbf{r}') \rangle | v(\mathbf{r}') < 0 } {\sigma_v^2 | v(\mathbf{r}') < 0 }$$

and

$$R_{vv}(\mathbf{r}, \mathbf{r}') | v(\mathbf{r}') > 0 = \frac{\langle v(\mathbf{r})v(\mathbf{r}') \rangle | v(\mathbf{r}') > 0 } {\sigma_v^2 | v(\mathbf{r}') > 0 }$$

The results computed in the edge of boundary layer (figure 4a) clearly show that regions of positive and negative v appear to be statistically counter-oriented at oblique angles, in agreement with the instantaneous inspections (see figure 1). These findings also affirm prior observations from numerical databases (Sillero et al., 2014). Very similar correlation maps to those produced at $z/\delta = 1$ are also observed at $z/\delta = 0.8$ (not plotted here). Meanwhile, relatively closer to the wall (figure 4b), R_{vv} appears not to exhibit such...
Figure 6: Conditional-averaged maps of kinetic energy $\langle K \rangle / (U_{\infty}^2 / 2)$ on a logarithmic scale. Results are presented on a xy plane at $z/\delta \approx 1$. (a) All turbulent bulges included; (b,c) when the bulge yield negative or positive spanwise velocity on average. Colour levels are the same as figure 5.

a pronounced tendency, which also concurs with observations from figure 1. However, the remaining characteristically squarish shape closer to the wall suggests that a superposition between two diagonals may still be present. In any case, it is evident that the oblique arrangement of the spanwise velocity appears clearer further away from the wall. Further, if one only includes the strongest v fluctuations the diagonal pattern has an increasingly stronger signature on the oblique coherence of v.

Encouraged by the fact that spanwise velocity regions exhibit strong oblique behaviour, we suspect that turbulent bulges (Robinson, 1991) and the corresponding turbulent/non-turbulent interface TNTI (Corrsin & Kistler, 1955) may also display a tendency to be obliquely aligned from the main flow direction. First to detect the TNTI we employ a kinetic energy threshold, which has been shown previously to be well-suited to spatially locate the TNTI from PIV databases (see Chauhan et al. (2014); de Silva et al. (2013b)). In order to associate the non-turbulent outer region with zero kinetic energy, we compute the kinetic energy in a frame moving with the free-stream, i.e. the defect kinetic energy and is defined according to

$$ K = \frac{1}{2} \left[(\bar{U} - U_{\infty})^2 + \bar{V}^2 \right]. $$

Figure 5 shows a sample PIV image and the interface determined based on the local defect kinetic energy, K, using a threshold of $K_0 = 10^{-3} \left(U_{\infty}^2 / 2 \right)$. This threshold yields an interface that agrees very well with the location where turbulent and the non-turbulent flow are visually observed to separate. Next, we examine conditionally averaged statistical properties in the near vicinity of these turbulent bulges. To perform this, a frame of reference attached to the centroid of each region is employed as the conditioning point (i.e. the location at which $\Delta x, \Delta y = 0$). Figure 6(a) represents the average kinetic-energy in the near-vicinity of the detected turbulent bulges at $z/\delta \approx 1$ (i.e about their centroids in figure 5). In figure 6(b,c) however, we include only regions where the average spanwise velocity within each bulge is either negative or positive. These results indicate that the orientation of turbulent bulges is indeed affected by the oblique coherence of v, and the streamwise-aligned representation shown in figure 6(a) is a superposition between equally frequent yawed turbulent bulges. Although not reproduced here, we note that these yawed bulges can also be observed three-dimensionally from the numerical databases of de Silva et al. (2013a).

Attached Eddy model

Based on our observations for the coherence in v, and inspired by the attached eddy hypothesis (Townsend, 1976), here we test if A-shaped eddies, which essentially are pairs of inclined vortices, distributed randomly in the plane of the wall can produce similar behaviour for the coherence of v. To construct the synthetic velocity fields, a packet of hairpin vortices is used as a representative eddy. Here, the representative eddy captures the bulk features of the average eddy shape, and we have chosen a representative eddy similar to that described in Marusic (2001), where multiple eddies are aligned in the streamwise direction to form packets (see also recent works by Baidya et al. (2014); Woodcock & Marusic (2015); de Silva et al. (2016). More extensive details on the computational process to generate the synthetic databases and scaling of the velocity fields can be found in de Silva et al. (2016).

A wall-parallel slice of one such synthetic velocity field of spanwise velocity fluctuations, v, is shown in figure 7. The results are presented at a Reynolds number and wall height that are comparable to the experimental velocity field shown in figure 1. Qualitatively, the synthetic and experimental velocity fields appear to be somewhat comparable. One notable difference is the lack of small scale activity in the model as it comprises only of wall-attached eddies whose growth is set by a geometric progression based on the distance from the wall. Nevertheless, the oblique pattern of v appears to be present from the model. Therefore, the model might provide some clues to the apparent obliqueness in v. However, further refinement of the representative structures in the model would be necessary in order to better capture the instantaneous flow features. For example, the present model only guarantees the preferential oblique alignment of pairs of positive and negative v regions, however, the experiments appear to visually exhibit v coherence for much longer extents (see figure 1).

Conclusions and outlook

This paper examines the large-scale oblique spatial organisation of the spanwise velocity component in turbulent boundary layers. To this end, a set of multi-camera PIV measurements are described to capture a sufficiently large spatial domain in excess of ten times the boundary layer thickness. Targeted inspections in the wake region using quantitative measures of correlation functions have shown a strong preferential alignment at ±45°, based on the sign of the spanwise velocity. The alignment also appears to be more discernible with increasing wall-normal location. Further, we observe that the oblique spatial arrangement appears to coincide with the organisation of the intermittent turbulent bulges, which leads to a pronounced impact on the geometry of the turbulent/non-

$\Delta x/\delta$ $\Delta y/\delta$ $\Delta h/\delta$

(a) $v < 0$ only

(b) $v > 0$ only

(c) $v > 0$ only

2A-2
turbulent interface.

To compliment the experimental observations from this study, synthetic datasets are generated by following the attached eddy models described in Marusic (2001), where the boundary layer is conceived as a collection of randomly located hairpin packets. These synthetic datasets are shown to generate an oblique spatial arrangement for coherent regions of v similar to those observed from experiments. Hence, these results indicate that the structures that underpin the oblique spanwise velocity coherence might have length-scale distributions similar to those described in the attached eddy work of Perry and co-workers.

REFERENCES

Figure 7: Instantaneous streamwise/spanwise plane of v from a AEM velocity field in the wake region of a boundary layer. (a) $v < 0$ and (b) $v > 0$. The black dashed lines correspond to $\pm 45^\circ$.