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ABSTRACT

Longuet-Higgins originally recognised that the energy
flux defined by pressure work from the equations of
motion was not the same as the mean energy density
times the group velocity for planetary waves on a
beta-plane, This paper addresses a similar paradox for
continental shelf waves on an arbitrary shaped (in the
offshore direction) straight continental shelf. The
approach is to first examine a wavetrain solution to
the problem and then to use a multiple scale argument
which results in a solution as a group of waves
modulated about a central frequency ¢ and wavenumber
k. The paradox is resolved in both instances by noting
that a divergence free quantity J can be included in
the energy conservation equation to establish an
equivalence between the two definitions of mean energy
flux. For the wavetrain solution

I = g Llom"),, - 40 re (AN )T,

ky
where y is the offshore direction; h(y) is the depth;
A(k,y) is the complex stream function amplitude; o is
the frequency; and k is the wavenumber. For the
modulated group, the quantity J is given by J = J(y)
BB where B = B(X,T) is part of the shelf wave complex
stream function amplitude A(k,y)B(X,T) and X,T are the
long longshore and time variables respectively.

INTRODUCTION

Recent research into the definition of the energy
density and the energy flux of edge waves on a
linearly sloping continental shelf (Shillington, 1985)
has revealed that there are problems as to the "best"
definition of these properties. These difficulties are
similar to those that were originally recognised by
Longuet-Higgins (1964) for planetary waves on a beta-
plane. There are three basic ways in which to
calculate the mean energy flux in a wave system. The
first approach is to start directly from the primitive
equations; the second way is to start from the
governing wave equation , and the third approach is to
use a definition of the mean energy flux vector as the
mean energy density multiplied by the group velocity.
Whitham (1974) prqffrs the definition of the mean
energy flux vector F* as

.E E-gE'
and notes that the two approaches are identical for
linear wave systems, (c_ is the group velocity vector,
E is the mean energy density averaged over one wave-
length, o and k are the radian frequency and wave
number respectively.)

(1.1)

Longuet-Higgins (1964) showed that a definition of the
mean energy flux vector obtained directly from the
pressure wor_li for planetary waves on a beta-plane, did
not equal E~ as defined in equation (1.1). He then
resolved the apparent paradox by examining the
behaviour of a modulated group of planetary waves,
where it became clear that the two definitions of
energy flux were equivalent to within the addition of
a non divergent vector field. Other authors have
addressed similar difficulties in topographic
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planetary waves (e.g., LeBlond and Mysak, 1978).

Shillington (1985) discovered a similar paradox for
linear, long period edge waves trapped to the coast by
a linearly sloping continental shelf. Shillington and
Brundrit (1986) generalized these results to include
the case of arbitrary shaped offshore topography. In
this paper, we extend the results to include
continental shelf waves.

GENERAL EQUATIONS

The appropriate equations required to study freely
propagating continental shelf waves, are the shallow
water equations for a rotating fluid (e.g., Gill and
Schumann, 1974; LeBlond and Mysak, 1978):

u - fv+gn =0, (2:1)
Wi fise g'qy = (2.2)
ny + (h) + (W), =, (2.3)

where u, v are the vertically integrated x, y
components of velocity (we choose a right handed co-
ordinate system with x alongshore, y offshore and
f20),m the surface elevation, h(x,y) is the depth, f is
the Coriolis parameter, g is the gravitational constant
and subscripts represent partial differentiation. For
long period shelf waves, Gill and Schumann (1974) have
shown that the term v, is very much;smaller than u, and
can be neglected so %hat (2.2) represents geostrophic
balance. We prefer to retain it at this stage and show
later in the scaling how it could be neglected for long
shelf waves. We use the rigid 1id approximation, (Gi1T,
1982), and neglect 7. in comparison to other terms in
(2.1)-(2.3). Hence the system of equations can be
solved via the introduction of a stream function
Y(x.y,t) (e.g.,Leblond and Mysak, 1978) where

"’wy; hv =’VIX’

and equations (2.1) and (2.2) can be combined to give
the vorticity equation

hu =

(u, - v 0,

y X
i | -1 -2
[Ch™ 5y )y + (i) 1, - h7%h

where we now consider h = h(y) only, so that we are
dealing with a straight continental shelf that has no
variations in the x direction (alongshore). To obtain
an energy relation, multiply (2.4) by which after
some re-arrangement gives

[(?!h)'l[(’wy)2 + (’;JJX)ZJJt . [-h'lq/;xt + 5h‘2fhﬂ;2]x

¥ [-h'lvyt]y =0. (2.5)

In equation (2.5), it is natural to regard the
expression:

)t - f{vy +ux)
(2.4)

0,

E=(2n)7! [)? + (10°0, (2.6)

as the energ'y density; and the terms

X _ -1 -2 2
RS L



SHILLINGTON et al.

VA

F h 1byt (2.7)
as the components of the energy flux vector. Thus
equation (2.5) expresses the conservation of energy:

(2.8)

CONTINENTAL SHELF WAVES

We now consider a plane wave solution in the presence
of a continental shelf which has prescribed offshore
structure h(y) between the coast (y=0) and the open
sea (y¥9), but is straight in the longshore (x)
direction. The plane wavetrain
W = re [ Alx) exp ilky - at) 1,

where A is the complex amplitude , o is the frequency,
and k is the wavenumber of the wave, is a solution of
the governing wave equation for the stream function 7
in (2.4) for the prescribed topography h(y) provided
that

1 kf dh

2
(5 A+ (e - FIA = 0. (3.1)
Equation (3.1), together with the appropriate boundary
conditions poses an eigenvalue equation for the
eigenvalues o"(k) and eigen functions AV(y). The
boundary conditions are typically
hu 0 asy »0; and A >0 asy o,

so as to impose the trapping at the coast. Families of
solutions to this eigen equation can be recognised and
have been noted. (e.g., Buchwald and Adams, 1968;
Leblond and Mysak, 1978). It should be noted that the
eigen equation can be interpreted as a dispersion
relation once it is realised that the eigen equation
(3.1) puts severe constraints on the form of A(k,y)
which have been discussed for the edge wave problem by
Shillington and bLrundrit (1986). The dispersion
relation can be differentiated with respect to wave-
number k to give the group velocity which is directed
longshore. The constraints on the complex amplitude
A(k,y) will ensure that the expression for the group
velocity is both real and independent of y.

Following the same method as in Shillington and
Brundrit (1986), we can derive alternative dispersion
and group velocity relations as

kf dh

hl(kZaa® + a A" ) = s(hlraa*1 ) + Iy
Yyt T ly)y aftdy ™ °

with im [h'lA*Ay] = @, (3.2)

(s U—gz% +(§£)‘% g.g)AA*{h'l[g(AA*)ky-ZrE(AyA"k)]]y
(330
ENERGY RELATIONS
Using the plane wave solution
WY o=re[ Ay) exp i(kx - ot) ], (4.1)

we can write the mean energy density and mean energy
flux (averaged over the wave period)
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= ] * P *
E = (4h) [AyA y + k°AA T, (4.2)
E = (Can®ytng - (2n) " ko1an"; 0) (4.3)

where the overbar represents the time average, and use
has been made of relations (3.2) and (3.3). We can note
that the averaged version of the conservation of energy
(2.8) is

We would anticipate that the mean energy density will
move with the group velocity so that

which can also readily be confirmed.

voth offshore components of the two different forms of
the mean energy flux vectors are zero, but the
longshore components can be subtracted to give

do = -1

T L

=X
F - 8

[hl {om™), - acre (AN )7]
ky Yuy kot

on using (3.2) and (3.3). We are left with the result
that

- = 3 3
E—Eg_g-(a—y,——a—x)d, where
- * *
J="gy [(oAAY)}, - 4o re (A A )],
but V.F =c..vE.
u ﬁ Eg E

The mean energy flux does not equal the group velocity
times the mean energy density, although the mean energy
density does propagate with the group velocity.

MODULATED WAVES

It has been recognised that a proper discussion of
energy propagationmust touch on the propagation of a
group of waves modulated about a central frequency and
wavenumber. There are three reasons for this. Such a
solution has an identifiable area of generation; it can
be adapted to more physically realistic conditions; and
it directly confirms assumptions about propagation
velocities of wavetrains.

We shall adopt a multiple scale approach to the
propagation of a group of shelf waves, recognising that
there are fast and slow time scales and short and long
Tongshore length scales associated with the wave and
the group respectively.

We take L and T to be the short length scale and fast
time scale respectively, and % L and % T as the Tong
longshore length scale and slow time scale, where g is
a small ratio of fast to slow scales. We choose the
offshore length scale as 1. We then have two sets of
non-dimensional variables, (x*,y*,t*) scaled by L,1,T
and (x*,T*) scaled with slow variables % L and % T. We
choose horizontal velocity scales U,V for u,v; H as the
depth scale; and N as a scale for the free surface
displacement, with

5 = b



then the equations (2.1) (2.2) and (2.3), with the *
variables all properly scaled, become

* a a *
(B et b, T,)u =V +(gutEyp™ =0, (5.1)
1,2,3 95 ¥ * 3 . *
(o) (at-"“a_ﬁ" P tign® 0, (5.2)
2 * K 3 * k
("5—;"" EB—X‘J (h u ) + ﬁ'(h v ) =0, (5-3)
. * * k kK Kk Kk _x
with "l = rz (X Y :t ,K :T )!
u* T u*(X*’y*’t*IX*IT*)’ V* = V*(X*’y*it*’X*’T*)‘

This notation for the derivatives has been chosen to
conform with the operator approach which follows.
Henceforth dropping from the non-dimensional
variables, the governing non-dimensional wave equation
becomes

3
(g + Pt 8 + 52( + 2 (s + 2T v
'HZ y(5§'+ Egy)w =0, (5.4)
where & = 1/L. It is clear that for very long shelf

waves, as discussed by Gill and Schumann (1974), that
the first term in (5.2) can be neglected. (The "rigid
1id" approximation has also been invoked in (5.3) at
the outset.) Using the two time and length scales, we
can define a non-dimensional energy density scaled by
H U%, and a non-dimensional energy flux scaled by
fl.HUz. The ratio of the scales for energy flux and
energy density is fl.

A solution to the governing wave equation (5.4) in the
form of a slowly modulated wave group about a central
wavenumber k and frequency o is

Y = re[ C(X,y,T) exp i(kx - ot) ],
provided
-13
[(-io +£3Tnay (h 3§)+5(1k +E )h ]
= “Zdh(ik +£22)1 C(X,y,T) = 0. (5.5)

The solution to this equation must be valid for all
small €, including€= 0. Given the detail of the
offshore topography and the Tongshore wavenumber k, we
can anticipate that the solution will take the form of
a separable operator-function product

: 3
COy,T) = ALFUIK + €32), y1 B(XLT).  (5.6)
With €= 0, the equation (5.5) with solution (5.6)

inserted becomes

2=

Liogfn™ 3= ) + doRpdl - % h1 Atk yE =

This is now functionally separable and, for
appropriate boundary conditions, has the solution

= o(k),  ALF(iK), x] = A(K.x),
as provided in the dimensionless eigen system
equivalent to (3.1). Thus the detail of the operator A

is provided by the function A. To first order in € ,
the operator A is given by
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17, 3 _
AL(ik + egy), y1 = Alky) + [A(,y)]ka 3-,
so that C(X,y,T) = AB(X,T) is the properly determined
solution to (5.5). It can be shown that the zero order
eigen equation reduces to the form in (3.1), while the
first order equation becomes

[m(—H aymzﬁk) ) - fahyi ik 28 28
2
btk e ) @S L
or —% + gg i% =10, (5.7)

on using the dimensionless equivalent of the group
velocity relation. Thus the B part of the solution
travels at a velocity which is properly referred to as
the group velocity. Indeed the solution of (5.7) is

Bo=is(X - %% TYa
which shows that the group of waves
longshore without distortion.

is propagated

ENERGY RELATIONS FOR MODULATED SHELF WAVES

The complete combined zero and first order solution for
modulated continental shelf waves can be shown to take
the form

Y = re[A b exp i(kx - ot) 1, (6.1)

u=re[-h" (A U) exp i(kx - ot) ], (6.2)

v = re[h” (1k +c ) AL .exp i(ke=ot) s (6.3)
provided the extended eigen equation (5.5) is satisfied

by solution (5.6).

Once again the energy density and energy flux are
rapidly varying functions of the fast variables (y,t)
and these quantities are more usefully averaged over

the wave period to give (to first order in g)
E n [(4h]-1(Ayb)(A*yu*) + k2 (AB)(ABT) 1,62 (6.4)
o= rel-n A%k redn-io + eds] o2

(6.5)

+ tre[3h? g—;(AU}(A*u ) sirel AL (-io +e )A 5T

The energy relation can be simplified to give

By
Ay

) 0

<

at zero order in ¢ , and

5
37 (Eg) * (6.6)

Ul a>
>

(F,5) + 45 (F) =0,

to first order in €. Thus we will require the
following zero and first order terms from (6.4) and

(6.5)

2
+ 8%k 2 anMy 8",

m
n

-1 *
(4n) [AyA y

- 2 .
FXs [(4h2)'1hy -5 (2h) kel AR" us”,

mall
<
1]

=yre[ hlio AyA*:l B,
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3 ‘-k
kAy ﬁ(bb ) +

*9b

3 *
=(2h) " refoA T

Fly = AN B
y

* *3

- oA Ay B gyl, (6.7)

where A = A(k,y) and L = B(X,T).
dimensionless form of (4.2) and (4.3),
immediately be seen that

From the
it will

=0,

E -l *
= 3 y LB .

= Vg *'
th~! [(ona )y~ 40 re (AN )I]
' (6.8)
because E, takes the separable form E = Dly) bb*, and
because

e 8
aT

dg 3

*
dk ax (86 ) = 0,

*
(b ) +
follows from the propagation of the group velocity
(5.7), we can note that
of
YA

L d

ar
(zall

!
=&

0. (6.9)

5

The mean energy density is propagated with the group
velocity. Comparing (6.9) with the first order energy
relation (6.6) gives

Substituting from (6.8) and integrating with respect
to y gives E

=yl 1 3 | * * 3 *
Fl g [h " [(ohA )ky - 40 re (Ay.l\ k)]]a_x BB .
This last result can also be formally derived from the

longer expression in (6.7).

Thus once more we have the mean energy flux not equal
to the group velocity times the mean energy density
although the mean energy density does move with the
group velocity. We can establish an equivalence
between the two definitions of the energy flux by
noting that

e

E=(ay

3
3T ﬁ) J(X,Y,T),
where the divergence free

-1 * * '*
J(X,Y,T} ~ 8h [U(AA )ky- 4o re (A}'A k)] vb .

DISCUSSION

In this paper we have analysed the propagation of non-
divergent continental shelf waves, trapped to a long
straight coastline. Using the méthod of multiple
scales developed by Shillington and Grundrit (1986)
for the study of long period edge waves, we have
investigated the energy propagation of both a plane
wave train and a modulated group of shel fwaves. As
with the edge waves, we found that the mean energy
flux did not equal the group velocity tmes the mean
energy density, either in the plane wave solution or
the modulated group solution. However, it is well
known that the definition of energy flux is arbitrary
to within the addition of a divergence free quantity.
This term, J, has been found for both the plane wave
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and the modulated group solution. It is interesting to
note that even though the analysis was carried out with
a parameter & = 1/L (the ratio of the offshore
topography scale to the longshore wavelength scale),
the result for J turned out to be independent of this
parameter. This means that although the definitions for
the energy and energy flux inluded 8§, the term
cancelled exactly due to incorporation of the
dispersion relation and did not result in differences
in J between "long" and "short" shelf waves.

In contrast to the way in which we defined the energy
and energy flux for edge waves, we found it more
convenient to define the energy directly from the
governing wave equation as suggested by Pedlosky.
Recent work in progress suggests that a definition
involving the velocities u,v and elevation h leads to
a different definition of the energy density.

In answer to the question as to which definition of
energy flux is preferable, we note that both Longuet-
Higgins and Pedlosky indicated that a definition which
led to the use of mean energy times group velocity
would be preferable for an application in which the
group rather than the individual waves was the
essential feature. It is difficult to say categorically
which definition would be preferable for shelf waves,
except that one might expect that the coastline may not
be long enough to contain more than a few wavelengths.
However, we have shown that the group of shelf waves
propagates without distortion or leakage to the open
Sed.
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