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ABSTRACT

The classical explanation for erosion of bed material around a
bridge pier depends on the supposed formation of a strong U-
shaped horseshoe vortez from boundary layer vorticity trapped
upstream of the pier. However, boundary layer vorticity is
advected continuously towards the pier and would progres-
sively build a vortex of unbounded strength on this explana-
tion. More careful observation shows that the vortices around
obstacles in a stream are generally weak and often multiply
nested with alternating sense of rotation. They involve both
incident boundary layer vorticity and vorticity with a cross—
stream component of opposite sense generated at the lower
boundary in the adverse pressure gradient produced inertially
as flow divides about the pier. The resulting net circulation per
unit length calculated through the full depth of the boundary
layer in the upstream plane of symmetry tends to zero at the
leading edge of the pier. Erosion has been reported as starting
downstream of the broadest transverse pier section; it depends
on surface stress and hence on momentum flux from fluid to
boundary, and not on horseshoe vortices.

INTRODUCTION

It has long been accepted that horseshoe vortices, which may
be observed in river flow around the bases of bridge piers and
other obstacles, produce a scouring that has been held respon-
sible for the erosion of loose bed material upstream and to
the sides of piers and its deposition dowstream. Thus, to take
a recent example, Qadar (1981) noted that “because of the
strong pressure field induced by the pier, the flow in front of
a pier separates from the bed and rolls up to form the scour-
ing vortex, which has been identified as the basic mechanism
in such a scouring situation.” He carried out two sets of ex-
periments on flow past shaped wooden blocks mounted in an
inclined flume. In the first series, which was designed to de-
termine the behaviour and structure of the scouring vortex,
a set of six blocks were mounted in turn on the floor of the
flume. The diameter of the scouring vortex in the upstream
plane of symmetry was shown to relate linearly to the block
width (even though this varied from 1/12 to 1/2 of the width
of the flume) and to depend on nothing else. In the second
series, the blocks were bedded in sand to determine the depth
of scour, which was shown to have limited dependence on grain
size, no dependence on the depth of flow provided that this ex-
ceeded the diameter of the scouring vortex, and a complicated
power dependence on the circulation of that vortex. In a mo-
ment of doubt, Qadar notes that the “velocity of flow ahead
of the pier, where the localised scour hole develops, is small
because of the proximity of the stagnation point. The velocity
of flow alone, therefore, may not be considered a sufficient cri-
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terion for the development of a localised scour hole. At other
sections sufficiently upstream, where the flow velocity is much
greater, no such scour hole develops.” Qadar, accepting con-
ventional views, chose to relate the observed depth of scour
to an estimate for the circulation of the horseshoe vortex, but
otherwise took no account of vorticity, and in particular, no
account of the boundary layer in the approaching stream. He
considered that the scouring vortex is maintained by the drag
of the flow over its top.

Many authors (including Baker, 1979; Melville, 1975; Utami,
1975) have identified the horseshoe vortex as providing the
basic mechanism for scour, but few have developed the full ad-
vantages of vorticity in studying the problem. While the idea
of a vortex stretched tightly around the pier and producing
rapid reversed flow near the bed is attractive, both it and the
classical conception of the horseshoe vortex prove to be erro-
neous.

THE CLASSICAL HORSESHOE VORTEX

Horseshoe vortices are believed to form when filaments of
boundary layer vorticity are advected towards a pier projecting
through the boundary layer and accumulate upstream of the
obstacle, but are carried past on either side (Bradshaw, 1983).
These filaments cannot be severed, and therefore collect into
a U-shaped vortex wrapped around the upstream side of the
obstacle with arms stretching away downstream. A strong,
steady-state vortex then results from the supposed balance
between longitudinal stretching downstream and lateral diffu-
sion of the vortex core. This is an inadequate model, however,
as boundary layer vorticity is continuously advected towards
and trapped by the pier. Thus a measure for the vorticity con-
tent of the boundary layer underlying a stream U is provided
by the circulation per unit streamwise length through the full
depth of the layer, with magnitude U; and a measure for the
mean speed of vorticity advection in the boundary layer is U/2
(exact for the Blasius boundary layer). It follows that the flux
of vorticity towards the pier is approximately U?/2, and hence
that the trapped circulation after time t is of order U%t/2 and
s unbounded. There appears to be no limit to the accumula-
tion of boundary layer vorticity ahead of a bridge pier! It is
however, obvious that the leading edge of a pier is not a sin-
gularity of the low. Three possible resolutions of the paradox
are:

(i)
(i)
(iii)

that vortex filaments are drawn over the top of the obsta-
cle;

that viscosity is responsible for steady loss of vorticity; and
that there is steady generation of vorticity at the bound-
aries with sense opposing that of the boundary layer.

EXPERIMENTAL OBSERVATIONS

Because of the difficulty of reproducing photographs, the main
experimental detail will be presented in a series of slides. Vor-
tices are certainly observed around obstacles in a stream, but
they are generally relatively weak where they intersect the up-
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stream plane of symmetry and the circulation in each trailing
arm tends to decrease fairly rapidly downstream. Indeed, it
has been shown recently (Mason and Morton, 1986) that the
trailing arms of horseshoe vortices contribute little to the pat-
terns of strong trailing vortices observed in the wakes of ob-
stacles and that strong wake vortices are generally associated
with separation in the lee of the obstacle. Further study of
flow detail in the upstream plane of symmetry shows Reynolds
number dependence as sketched in Fig. 1. It should be noted

Fig. 1. Flow in the upstream plane of symmetry for a circular
pier

that flow depends on the breadth of the pier, its radius of cur-
vature at the leading edge, the thickness of the approaching
boundary layer and the free stream speed: there are thus three
(and, for a general obstacle, five) Reynolds numbers, which
explains the complexity of flows observed (e.g., plate 32, Van
Dyke, 1982). There is no horseshoe vortex at low Reynolds
numbers (a), separation followed by a single vortex with the
sense of the boundary layer vorticity at higher Reynolds num-
bers (b), and with further increases (c and d) additional pairs
of counter-rotating vortices appear. At still higher Reynolds
numbers, the flow becomes turbulent upstream of the pier, but
the patterns of vortices persist in the mean motion (Baker,
1980).

The two features of principal interest in the present context
are the weakness of the observed vortices and the nesting of
vortices with opposite sense of rotation. The slides show very
clearly that the return velocity near the boundary is very much
less than that in the outer part of the vortex as a consequence
of the highly three-dimensional nature of the flow in which
fluid diverges from the plane of symmetry along the core of
the vortex. Even more striking is the appearance of a fur-
ther pair of counter-rotating vortices in (c) corresponding with
a Reynolds number (based on cylinder diameter and stream
speed at cylinder top level) of 2700, in the case to be illus-
trated for a squat cylinder of height/diameter ratio 0.36 and
height/boundary layer thickness ratio about 2. In this case the
two upper clockwise vortices (of boundary layer vorticity) are
separated by a lower anticlockwise vortex of triangular section,
and are preceded by a wedge of slow flow behind the point of
separation. As the Reynolds number is raised, an additional
counter-rotating pair of vortices develops, as part of a sequence
in which the number of upstream vortices is always odd with
“like” upper vortices separated by lower triangular “unlike”
vortices. The configuration, however, is symmetric about the
upstream plane of symmetry with flow diverging to either side,
and there is no way in which vorticity of sense unlike that of
the boundary layer can be produced by turning boundary layer
vorticity. The latter of these features, in particular, is quite in-
compatible with the classical model for horseshoe vortices.

There is one further piece of observational evidence against the
classical horseshoe vortex model in which the trailing arms nec-
essarily form a vortex pair with circulation producing down-
wash in the centre of the wake. Actual trailing vortex pairs
observed in the wakes of obstacles are found to have either up-
wash or downwash according to the shape of the obstacle and
its depth relative to the boundary layer. Where the incident
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flow is diverted laterally around the sides of the obstacle there
is downwash in the wake, but where it is lifted over the crest of
the obstacle there is upwash (Mason and Morton, 1986). This
latter behaviour includes flow over broad, low obstacles such
as low buildings and hills, and is both relatively common and
totally inconsistent with the classical model.

THE GENERATION AND DECAY OF VORTICITY

Before we can take up possible resolutions of the paradox pre-
sented by the classical model of the horseshoe vortex, we must
discuss the generation and decay of vorticity in the neighbor-
hood of the pier or other obstacles, and in this we shall fol-
low an earlier survey (Morton, 1984). The Helmholtz vorticity
equation for an incompressible homogeneous fluid,

Ow
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includes the processing term (w - V)v describing the effects of
local concentration of vorticity by stretching and of local turn-
ing of vorticity, and the term v V? w representing the spread of
vorticity by diffusion, where w = (£, #n, ¢) is vorticity. How-
ever, it contains no true generation term corresponding with
the creation of fresh vorticity where none existed before, and
it has long been recognised that all sources of vorticity in ho-
mogeneous fluids must be on boundaries of the fluid region.
Thus the source of vorticity in a homogeneous flow is clear,
but the mechanisms of its generation and decay are a good
deal less clear; and, in particular, it is not clear whether vor-
ticity can be generated by wall stress, nor whether it can be
lost by diffusion to solid boundaries.

+(v - Vw=(w- Vv + vV ,

An important contribution was made by Lighthill (1963), who
noted that at almost all points of flow boundaries there exists
a non-zero gradient of vorticity along the normal. For motion
over a plane boundary, z = 0, the flux density of vorticity away
from the boundary is
L (26 Lon o
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where the latter expression has been obtained by applying the
Navier Stokes equation at the boundary, assumed stationary.
Lighthill took this as the local strength of a distribution of
vorticity sources spread over the solid boundary, and it follows
that tangential vorticity must be created at the boundary in
the direction of the surface isobars at a rate proportional to
the tangential pressure gradient. This does not wholly resolve
the situation, however, as the relation between vorticity flux
density and tangential pressure gradient does not distinguish
between the outward diffusion of positive vorticity and the in-
ward diffusion of negative vorticity; nor is it clear whether
vorticity can be lost by diffusion to boundaries. In a particu-
lar example (of flow separation) where the pressure first falls
and then rises, we cannot say whether vorticity of a particular
sense is first generated at and subsequently lost to the bound-
ary, or whether there is continuous generation of vorticity first
of one sense and then of the other as the fluid moves along
the boundary. Indeed, it will not be clear whether there is any
meaningful distinction between these two until we identify the
mechanism or mechanisms of generation.

] 0}z=0 = 3 0}z=0 ]

It will increase our insight into the generation process if we
review the solution to the Rayleigh problem of a plate set im-
pulsively into steady motion in its own plane. Motion in the
semi-infinite region of fluid z > 0 initiated from rest when the
plane boundary z = 0 is set impulsively into tangential mo-
tion with speed u = UH(t) at time t = 0 is represented by the
equation
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with similarity solution
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where s = /(2 v t)/2 is the similarity variable and the initial
and boundary conditions are:
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Fig. 2. The integration circuit C for the impulsively started
plate.

The corresponding vorticity is

w = (0,7,0) = {0, —(27wt)~Y2 Ue~*" 0}

and has maximum magnitude U/(27ut)V/? at the plate for all
t > 0. The wall stress at the boundary,

= {u (%)0 » 0, 0} = {—pU (2mvt)~%/2, 0, 0}

is unbounded at the initial instant and thereafter decreases in
proportion to t~1/%; and the circulation around circuit C of
unit x-width and unbounded z-height (Fig. 2),

j(v-dr:

[of

U,

increases impulsively from zero to U at the instant t = 0 and
is thereafter constant for all time. In this case all the vorticity
is generated at the initial instant as the plate is impulsively
accelerated, and it is generated wholly at the boundary sur-
face s (or z) = 0. Thereafter vorticity diffuses away from the
boundary but its gross amount, which is the circulation in the
contour C' per unit width, remains constant, and in particular
it is neither lost to nor gained from the boundary despite the
continuing wall stress and the fact that the boundary remains
the point of greatest vorticity concentration. The flux density
of  normal to the boundary per unit area of section is
an
T2 0z
and the flux density at the boundary is zero except only at t
= 0; but that at s = 0, t = 0 it is infinite.

A2 —Uz(va)"/g $—3/2 e—z'/?vt .

The solution for plane Poisenille flow adds further insight.
Steady flow between fixed parallel planes, z = +h, under a
uniform pressure gradient dp/dn = —y has velocity

i g coigs
u_Zp Rz

and vorticity, 7 = —<z/p. Vorticity is generated continuously
at the lower boundary at rate + ~/p, and at the upper bound-
ary at rate —/p (sense of normal reversed) using the results
given by Lighthill, and each diffuses towards the centre plane
where the positive and negative counterfluxes suffer mutual an-
nihilation. The total circulation per unit length of channel is
zero. We may ask whether Poiseuille flow could be
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Fig. 8. Plane Poiseuille flow: (a) profiles for developed flow;
(b) profiles for the eniry length.

represented equally well by the generation of vorticity of a sin-
gle sense, say at the rate y/p at the lower boundary, diffusion
across the layer with flux density —v dn/82 = +/p, and ab-
sorption at the upper boundary. Although this appears to be
a viable alternative in the region of fully developed flow, it
cannot explain the entry length with upper/lower boundary
layers wholly of negative/positive vorticity, generated along
the boundaries and diffusing out to fill a progressively larger
proportion of the channel until the two boundary layers meét
at the mid-plane and the upward/downward fluxes of posi-
tive/negative vorticity are mutually annihilated by cross diffu-
sion. There is nothing special about the positiveness or nega-
tiveness of vorticity as such, because the sign depends on our
choice of axes; it is, however, essential that there exist vorticity
of opposite senses or signs.

From these and other examples we note: (i) that vorticity gen-
eration results from the tangential initiation of boundary mo-
tion (or tangential acceleration of a boundary) and from tan-
gential pressure gradients acting along a boundary; (ii) that
generation is instantaneous; (iii) that vorticity once generated
is not subsequently lost by diffusion to boundaries; (iv) that
wall stress relates to the presence of vorticity but is not a
cause of its generation; (v) that generation is unaffected by
the prior presence of vorticity; (vi) that both senses of vortic-
ity are needed to explain observations; (vii) that walls play no
direct role in the decay of vorticity; and (viii) that vorticity de-
cay results solely from cross-diffusion of two fluxes of opposite
sense and takes place in the fluid interior.

The generation of vorticity is generally instantaneous and the
vorticity generated is instantaneously unbounded in magnitude
but in an infinitely thin sheet at the boundary. It is appropri-
ate, therefore, to work in terms of the circulation in a small
circuit Cq, with two areas of length éz parallel to the bound-
ary and just in fluid or solid, respectively, and two short closing
arms §z normal to the boundary. The circulation is then

fv-drr-w
c,

since the contribution from the closing arms normal to the
boundary may be shown to be 0 (6z)* and is negligible for
6z/6z < 1. In the limit for small §z the circulation per unit
length of boundary in the contour C; normal to Oy is

ok = (v — U)ébz,

ky = v - U,

where u and U are velocities parallel to the boundary in fluid
and wall, respectively. Note tht the circuit is fixed, but the
boundary free to move tangentially; and that normal motion
of the wall does not generate vorticity. It follows that the rate
of generation of y—vorticity is
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when we have substituted from the Navier Stokes equation.
We note a difficulty: we require 6z/6z < 1 for neglect of the
side arm contributions, and indeed we seek the contribution
from the interface between fluid and solid where genertion is
concentrated. However, we have seen in the Rayleigh problem
that at the instant of generation the vorticity is of infinite
magnitude at the boundary surface but zero everywhere within
the fluid; and its gradient is infinite at the boundary and zero
elsewhere. An any later time t > 0 the vorticity is finite and
its gradient zero at the boundary > = 0. Thus the actual
generation of vorticity is an tnertial process in which viscosity
plays no role. The diffusion of vorticity does not begin until
after its generation, but its effect is then exceedingly rapid
close to the wall. It follows that we cannot take the limit
6z — 0 above without having the viscous term affect u and
invalidate the purpose of the limit, which is to uncover the
inertial generation at z = 0. Diffusion is a consequence of
generation and does not itself affect generation, however, and
if the diffusive term is neglected, we obtain the true rate of
generation,

din _
e on

This result holds also in Poiseuille flow where vorticity is gen-
erated continuously and the effects of generation and diffusion
are difficult to distinguish.

The gross vorticity per unit length of a thin layer is the dif-
ference in tangential velocity across the layer, and the rate
of generation of vorticity in the layer is the relative tangen-
tial acceleration across the layer. In the absence of viscosity,

only pressure gradients can produce acceleration within the
fluid and in a homogeneous, they produce homogeneous accel-
eration. Thus all relative tangential acceleration produced by
the pressure field in a homogeneous fluid is necessarily at the
boundaries. Viscosity plays no role in the generation precisely
because the generation is an instantaneous response of fluid
to inertial forces. The generation of vorticity at boundaries in
homogeneous fluid is therefore an inviscid process, as it surely
must be since the free slip at boundaries in inviscid flows gives
an accurate estimate of the boundary layer vorticity at rea-
sonably high Reynolds numbers for the corresponding viscous
flows.

HORSESHOE VORTICES AND BED SCOUR

There is always an inertial rise in pressure whenever a stream
is divided or deflected by an obstacle, with a corresponding
adverse pressure gradient over the lower boundary and gener-
ation of vorticity with a component opposite in sense to that
of the boundary layer. In the upstream plane of symmetry of
a symmetric cylinder extending into the outer stream through
the boundary layer, there will be a streamline near the top
of the boundry layer with total head p, + % pU? meeting the
cylinder at a stagnation point with stagnation pressure p, = po
+ %pU2. There is little change in pressure across the bound-
ary layer except close to the cylinder, and the total rate of
generation of opposed vorticity in the plane of symmetry is

1
_EUz'
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and this is equal and opposite to the flux of vorticity %Ug in
the boundary layer upstream. It follows that the net circula-
tion per unit length through the boundary layer will decrease
progressively as the cylinder is approached and will tend to
zero at its leading edge. This explains both the weakness of
the observed vortices and the nested patterns observed up-
stream of piers, because the new vorticity is generated solely
at the boundary whereas the advected vorticity is distributed
through the boundary layer. Well upstream of the cylinder,
the new vorticity is annihilated at the instant of generation by

cross diffusion into the boundary layer; but as the cylinder is
approached the pressure gradient may rise until the rate of gen-

eration can no longer be matched by diffusion, at which point
the flow separates from the lower boundary. Thereafter, there
will be a pool of freshly generated (- ve) vorticity overlain by
boundary layer (+ ve) vorticity, with net positive but decreas-
ing circulation. Although the circulation continues to decrease,
diffusion cannot directly keep pace, and as the boundary layer
is stretched right and left around the cylinder, we should ex-
pect to find larger upper positive and smaller lower negative
concentrated vortices which serve the role of overturning the
fluid so as to enhance vorticity gradients, thereby enhancing
diffusion.

Bed erosion depends on surface stress, that is momentum flux
from stream to bed and the associated saltation, and has lit-
tle to do with vorticity which is a gradient of velocity. At
stream velocities below the critical at which the bed begins to
move, the reduced velocity under the nested vortices upstream
of the pier will not start erosion. However, the pressure over
the surface of a pier decreases from the stagnation pressure
po + 2pU? to approximmately po — 3 pU?/2 at the sides of
a circular cylinder at the level of the stagnation point, and to
a pressure somewhat larger than pp at the upstream foot of
the cylinder. The flow is therefore accelerated outwards and
downwards. There is some enhancement of speed at the foot
of the cylinder, but the highest speeds are close to the bed at
the sides of the pier. It is scarcely surprising, therefore, that
erosion has been reported (Melville, 1975) as starting down-
stream of the broadest cross-stream pier section. The scour
holes will then extend upstream as their upstream slopes are
especially liable to erosion, until they meet in front of the pier
and a roller vortex is established in the hole.
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