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ABSTRACT

A fast vehicle such as a landing aircraft generates
flexural waves in floating ice over which it moves.
The pattern of these elastic-gravity waves depends on
the source speed, including the existence of caustics
and the emergence of a shadow zone behind the source
at high speed. At low speed the flexural response
becomes static rather than wavelike- but there can
then be slower internal waves in the underlying water
if it is stratified. The amplitude, frequency and
rhase of the flexural waves also depend on the thick-
ness and elastic properties of the ice. The internal
waves may produce significant drag at rather low
vehicle speed. We assume an impulsively-started
source to show that the gravity-dominated flexural
waves behind the source evolve relatively slowly,

and finally we compare our theory with extensive recent
empirical work.

1. INTRODUCTION

The sea-ice cover in Mclurdo Sound (Antarctica) has
been used as an aircraft runway since the International
Geophysical Year (1957/8). Increased air pressure
immediately below a landing aircraft constitutes a
moving load that generates flexural waves in the ice
(Davys et al. 1985). Earlier authors were especially
interested in a critical speed at which a moving load
produces a magnified response in the ice, in order to
predict fracture (Nevel 1970; Kheisin 1971; Eyre
1977; Beltaos 1981). Hovercraft exploiting this
phenomenon are being used as ice breakers on the Saint
Lawrence Seaway in Canada, but at McMurdo Sound the
United States Air Force intends to avoid it! Rather,
an objective could be to monitor ice strength from the
flexural waves generated, using instruments placed on
the ice.

A reasonable mathematical model is an elastic homo-
geneous ice plate of infinite extent, resting on
incompressible inviscid fluid of constant depth. The
dispersion relation for plane waves in this system was
given almost 100 years ago by Greenhill (1887), and
is discussed in the next section. We also consider the
possibility that the underlying fluid is stratified,
when internal waves can be generated. The wave patterns
generated by a steadily-moving source are then
discussed, followed by further detailed consideration
of the theoretical response for comparison with
experiment.

2. TFLEXURAL WAVES
We consider an extensive homogeneous ice sheet of
thickness % and density floating on water of

finite depth and density p (c.f. figure 1). If
n(z,y,t) denotes a small vertical deflection, the
equation of motion of the ice sheet is

Py

DVn + pihntt =p - flz,y,t) ,
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where the modulus of rigidity D = EE—Ehs/(l = v 1s

sensitive to the ice thickness h, p represents the
restoring water pressure on the ice, and f(x,y,t)

is the downward stress on the ice due to the vehicle.
The sea water flow will be approximately irrotational,
with velocity potential ¢, so Bernoulli's theorem
gives

P = ‘D(‘Pt) - pgn
2=0

The dispersion relation for uniform plane waves

(n ~ exp[Z(kx - wt)]) obtained when f = 0 is thus
5
2=Dk/rj+qk o1
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When density variations in the sea water are negligible
u > cothkH. Typical curves for the phase speed
e = w/k and the group speed cg = dw/dk for flexural

waves in the ice are shown in figure 2. For stratified
water u depends on the frequency w, when there

are also slow internal waves propagating in the water —
c.f. Section 3.

There are three important lengthscales associated with
this dispersion relatiom (Davys et al. 1985) - viz.

a short scale characterised by the (modified) ice
thickness #h'; a long scale characterised by the
water depth #; and an intermediate scale character-
ised by the reciprocal of the wavenumber % at

(cmin
the effects of ice elasticity and gravity are compar-

min

which the phase speed is a minimum ), and where

able. For very short waves where kh' > 0(1)
5 D
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and the group speed is twice the phase speed, so
elastic-dominated flexural waves appear ahead of the
moving source. Otherwise we may neglect the ice
acceleration term in the equation of motion, so
provided water stratification is also neglected the
dispersion relation can be approximated by

Iy
w? = [& ¥ l]gk tanh k# .
pg

For long waves where &# < 0(l1) we have

w? 7 gk tanh ki,

which is the familiar dispersion relation for gravity
waves on water of depth A, with group speed less
than phase speed so gravity-dominated flexural waves
appear behind the source. Since kmink‘ << 1 and

kminH >> 1, the approximate dispersion relation for
waves of intermediate length is
Dk®
mzmT+gk ;
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and the minimum phase speed is thereby identified as
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Figure 1. Diagram of floating ice plate.
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Figure 2. Graphs of phase speed (a) and group speed

(b) against wavenumber k. The solid curves are for
water of depth 350 m and the dashed curves for water of
infinite depth. Note that the wavenumber scale is
logarithmic. (£ =5 x 10%W/m?, h = 2.5m, v = 4%.)

3. INTERNAL WAVES

Stratification of the water beneath the ice can be
seasonal, and fresh water from the land may overlay the
denser sea water in estuaries or -fiords (Lewis and
Walker 1970; Lamb 1945). If we adopt.a simple two-

layer model, with a layer of density Py and depth HL
above a layer of density Py extending to a total depth
Hz, we obtain (Schulkes et al. 1986):

e

tanh kif, + p, cothk(ll,-H,) - gk(p,—p,)/w?
y(m)=cothkh’pl . 2 2 e

lcothkﬁl + pzcothk(HZ—Hl) - gk(pz—pl)757

hence the dispersion relation is a quartic with quad-
ratic roots

Q = Vg2 - 4PR
2P
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where writing 1+ Dk%/(p;g) we have

P = G -+ Py coth kHl coth k(HZ_Hl)

+ kh'[ol coth kHl + Py coth k(HE_Hl)]’
Q= Q’k[(oz-pl)coth kHl + A(plcoth kfil

+ Py coth k(Hz—Hl))+-kh'(p2-pl)],
R =

27,2 o7
g%k (pz pl)A.

There are now virtually two degrees of freedom, with
flexural waves near the surface =z 0  but also internal
waves in the neighbourhood of the interface =z = =iy
(c.f. Tamb 1943). For very short waves where Ah' 3 0(1)
we recover the classical dispersion relation for internal
gravity waves at the interface of two superposed fluids
of infinite extent - viz.

w? = aklpy=p )/ (040, );

>
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and for long waves where kHz € 0(1) we find

w? ®

gk(lapl/oz)[coth kHl + coth k(Hz—Hl)]_l.

The stronger elastic-gravity hybrid character of the
flexural waves is evident from the respective
approximate quadratic roots for waves of intermediate
length, certainly greater than the depth of the

stratification but less than the total depth (kHl =0(1)
but kHz >> 1)z
g DS plcoth kHl + 0, i 1 + coth kHl
4 o pzcoth kHl + N pllpz + coth kHl
gk + Dk%/p, ;
w? ® gh(l - o, /p )1+

gk + DkSfp, O KA

In figure 3 the internal wave phase and group speeds
(w /k and dw _[dk) are plotted against wavenumber,
for a fresh water layer (density p, = 998 kg m~3)
of depth Hl = 5m above a salt water layer (density
p 1024 kg m™3) to a total depth H, = 350 m as
béfore. With ipz~p1| << pl,p2 the phase and group

speeds of the internal waves are significantly less than
those of the surface flexural waves. The gravity-
dominant character of the internal waves is also
apparent, as the group speed decreases more rapidly

than the phase speed from a common maximum attained in
the long wavelength limit (k + Q) - viz.

g(1l - pl/pz)(ﬁ‘2 - HI)HIIHZ. Differentiating this

expression with respect to H we conclude that the

1
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is also represented in figure 3.
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Figure 3. Graphs of phase speed (solid curves) and
group speed (dashed curves) for fresh water layer depth
Hl above salt water to 350 m.

4. WAVE PATTERNS

The wave pattern generated depends critically upon
vehicle speed. For a steady wave pattern relative

to the vehicle, at each point on a wave crest the phase
speed must equal the source velocity component normal
to the crest — i.e. ¢ = VcosB, where B is the
angle subtended by the wavenumber vector 5 = (Z,m)

and the constant source velocity ﬁ. A vehicle
travelling faster than the critical speed G vn
excites flexural waves in the ice (c.f. figure 1), but

a much slower vehicle may excite internal waves in the
water. At typical aircraft landing speeds, the

flexural wave pattern may exhibit caustics (figure &4a)
or a shadow zone (figure 4b). The internal waves are
restricted to a triangular region behind the source
(figure 5) which narrows as V increases. Note that
all these wave patterns were computed for the parameters
previously mentioned. Further details may be found in
Davys et al. (1985) and Schulkes et al. (1966).
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Figure 4. Flexural wavecrest patterns .
(a) V =50 w/s, with two caustics (two cusps);
(b) ¥ =60 m/s, with a 'shadow zome' behind the source
where no waves appear.
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Figure 5.
(H1 =5m).

Internal wavecrest pattern for V = 3 m/s

5. IMPULSIVELY APPLIED MOVING LINE LOAD

For certain source speeds the wave pattern does not
approach a steady state and we must study a time-
dependent problem, which can also provide insight into
transient behaviour. We neglect water stratification
and consider an impulsively applied, steadily-moving
concentrated line load

flx,y,t) = Fé(x - VE)H(E),

where 7 is the force per unit length, & the Dirac
delta function and H the Heaviside step function. The
solution for the ice deflection has been derived by
Kheisin (1971) and can be written in the form:

I
nx,t) = 2o I m [Nl(k) + Nz(k) - N3(k)]tanh(kH)dk,
- (5.1)
where
LkX iyt kX -1t
i O O e | _e Te™1
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eikXezmzt

100, = 5o 0

Here zpl(k) = ke - V), :pz(k) = k(e + V), and

X =2z - Vt denotes position relative to the source.
If the disturbance approaches a steady form, this will
be given by
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nS(X,V) Wk tanh(kH)dk . (5.2)

Note that although the integrand of (5.1) is analytic
in some neighbourhood of the real axis, the integrapd
in (5.2) may have real poles since wl will have zeros

for ¥V >e

min
must be deformed in an appropriate manner. Generally
the dominant asymptotic contributions in the limit as
t + = are either steady terms arising from zeros of
wl’ or stationary phase terms of O0(f7%) from zeros

in which case the contour of integration

of ¢i. Since wz is a monotonically increasing

function of k there are no such contributions from
NB(k)’ which is therefore neglected.

There are two steady regimes demarcated by the critical

speed Qg 22.5 w/s (parameters of figure 1).

(i) Vreim . .
min

ultimately the ice deflection given by (5.2) is static

rather than wavelike, because all waves travel faster

than the source and radiate away. If V < cgmin there

In this case &1 has no zeros and

are no points of stationary phase and the transients
decay exponentjally with time. If ¥ > cgmin there

are two points of staticnary phase giving transients

e ¢
decaying as ¢ f, while if V =e¢e there is a

= i gmin
transient decaying as t /3.

(1) Ve .. If V< Vgl = 58.6 m/s, ¢, has two
real positive zeros, at ky < kz say. The steady
deflection is (where 0.z =2 (k) etc.)

Franh(k_H) =

_ z .
ns = Eiig——iT?T-SIn{kzX) + R(X), (X > 0),
g3
Ftanh(k H)
5 E?TVt—Ei;T 51n(kyX) + R(X), X < 0),

where the term R(X) arising from the purely imaginary
zeros of ¢l decays exponentially as X » %=, 1In

essence we have a short-wavelength elastic-dominated
wave propagating ahead of the source (Gg” > V) and a

7z

long-wavelength gravity-dominated wave behind (e < V).

There are also two points of stationary, phase which
give rise to transients decaying as £72. When

V= fEEA the situation is very similar except that only
the short-wavelength leading wave is present, since

/aﬁ' is the maximum possible phase speed for gravity
waves.,

When the sourte speed equals € | fnd “OF YgH however,

the deflection does not approach a steady state, unless
some energy dissipation is included in the model.
(i) V= e in At the critical speed the two zeros
of ¢1 coalesce with a point of stationary phase, at
k = km say. The asymptotic form as t + = isg

Mm £k _
n = EE?E;‘[*COS(ka + ﬂ/ﬁ)(g;) + |Klecos(ka)

+ usin(km|X|)] + R(X), (5.3)

Figure 6. Wave system development from % =0 to ¢ = 30s

for source speed V = 30 m/s otherwise.
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where w(k) tanh (kH) (k - km)szl, the timescale

L = 25 1 = T <3 /s
tm Zv/kmcgm, and o kmmm/wm. The most striking

feature is that the displacement grows in time as t%
(c.f. Kheisin 1971). The physical explanation is that
the source speed coincides with the wave energy
propagation speea - i.e. ! . Thus at the

min cgm
critical speed the energy accumulates
continuously in the vicinity of the source, the
energy density will grow linearly with time, and the

deflection as t? (c.f. Davys et al. 1985).
(ii) Vv = YgH. Now two points of stationary phase
coincide with a zero of ml at k =0, and the
asymptotic form as t =+ = is
Feanh(k_H) 1
= 2 i Foetyh _ &
b = sin(k X) + 7 (B = - 37
ga 0
+ R(X), X > 0),
__F Bl o
T opl2 [B(to) + S5+ RO, (x < 0),

1
where B8 = /3T(1/3)/27, and by = (H/g)ﬁ. We again
v 2nfk » =,

have e but only in the limit A

e
g
and the rate of growth is somewhat slower,

We can also illustrate the time-dependence of the
deflection by computing it directly from (5.1) by
fast Fourier transform. Figure 6 shows results for
V'= 30 m/s, and the development of the leading and
trailing waves can be clearly seen. The group speed
of the leading wave relative to the scurce (¢ - V)

is 30.5 m/s and the wavelength is 138 m, so over a
period of 30s about 7 wavelengths have been generated.
By contrast, the relative group speed of the trailing
wave is 14.2 m/s and its wavelength is 571 m, so
only one wavelength has been generated over the same

period. For sub-eritical speeds (V < cmin) the
steady ice deflection is shown in figure 7.
V=10 m/s vV =20 m/s

S o

L L

Steady ice deflection at sub-critical

Figure 7. speeds.

6. OBSERVATIONS

Whilst the early authors associated critical speed e
with both magnified ice response and the transition to
an elastic-gravity wavelike form, quite recent experi-
mental work using deflectometers by Eyre (1977),
Beltaos (1980) and Takizawa (1985) has defined Five
flexural modes, depending on source speed:

(i) a "quasi-static" mode at small V
deflection identical to the static case;

(ii) a "symmetric" or

larger V < e . , where
min

load deepens and narrows,
the neutral ice position;

viz.

, with ice

"early" transition
the ice depression

stage at
below the

and an outer rim rises above

(iii) an "asymmetric" or
approaches

"late" transition stage as V

emin’ when the depression further deepens
and narrows, and waves begin to emerge;

(iv) V exceeds ¢

min
magnified response including the narrowest and deepest
depression near the source close to critical speed, and

generally shorter waves ahead and longer waves behind;
and

(v) ~a "single-wave" stage at higher ¥V, where the
trailing wave disappears and the leading wave diminishes.

a "two-wave" stage when , with a

It is also noticecable that the depression lags further
behind the load as V increases.
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Flexural modes (i) and (ii) compare well with the
theoretical steady responses shown in figure 7. Modes
(iii) and (iv) are recognisable in the unsteady solutionm,
which figure 6 illustrates for super-critical speed.

A similar response was obtained for sub-critical speed

V=13 ms !, and the lag of the depression behind the
load was not so noticable. Asymptotic formula (5.3)
predicts a quarter—phase lag at critical speed, which
also seems consistent with the observations. Wavelike
responses (iv) and (v) correspond well with theory,
including the loss of the gravity-dominated trailing
wave for V > \/Eﬁ

We also remark that the discrepancy reported between the
long trailing wave branch of thte theoretical dispersion
curve and recent data in the paper by Squire et al.
(1985), is consistent with the small relative group
speed at which the trailing-wave system propagates -
c.f. also figure 6. The strainmeter is an effective
alternative instrument for observational work. By
analysing its response (amplitude, frequency, phase),
we may be able to obtain information about the strength
of the ice sheet even before an aircraft touches down
(Davys et al. 1985).

We are unaware of observational evidence for internal
waves, except perhaps the suggestion of a hydrodynamic
wake reported by Eyre (1977), who used a "suspended"
deflectometer. Presumably a vehicle moving above the
ice sheet could be detected from below however, and
relatively slow vehicles may experience an anomalous
drag (Schulkes et al. 1986).

We are much indebted to the insight and enthusiasm of two
graduate students, J.W. Davys and R.M.S.M. Schulkes, who
collaborated in this work.
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