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SUMMARY A kinetic model in terms of total particle numbers for flocculation in a baffled stirred tank is presented.

The tank is compartmentalised into regions of umiform shear.
from the literature, flocculation rate is predicted from a volume average shear rate.

By using experimental data of energy dissipation rate
The use of this average

collapses the results of a number of models onto a single curve under realistic conditions.

When the volume average shear rate is applied to experimental measurements of flocculation rate in stirred tanks,
the results are brought into coincidence with measurements in a Couette geometry, in which the shear field is better

defined. This lends support to the use of this average.

1, INTRODUCTION

Flocculation can be promoted by shear, such as exists

in a stirred tank., The flow field in a baffled stirred
tank is very complex and the shear is far from umiform.
The flow condition in a stirred tank and its effect on
the flocculation process can be approximated by compart-
mentalizing the tank into regions of relatively uniform
shear. Experimental results of the flocculation process
in a Couette geometry, which provides nearly umiform
shear, can be applied to a stirred tank once the shear
rate and flow rate distributions within the tank are
known. These distributions are available in the
literature.

For a dilute suspension of monosized spheres, the rate
of decrease of the local number concentration N at time
t owing to orthokinetic flocculation in a laminar shear
field is described approximately by the well known
relation, following Smoluchowski dN/dt = -(4/m)adéGN
where G is the local shear rate, o is a collision effi-
ciency to account for the fraction of collisions which
result in permanent aggregates, and ¢ is the particle
volume fraction which remains constant for a batch
system. This equation can be integrated with respect
to time to give

N/ND = exp (- 4adGt/w) (1)
where No is the initial particle number concentration.
2, SHEAR RATE IN STIRRED TANK

According to Camp and Stein (1943), for homogeneous
isotropic turbulent flow, the mean shear rate over a
volume V is G which can be calculated from the power
input P to the volume:

G = YP/GV) (2)

where p is the viscosity. The application of Eqn. 2 to
practical flocculators has been reviewed by Polasek
(1979). The mean shear rate calculated from Eqn. 2 is
usually inserted in Eqn. 1 in place of the uniform or
local value G. This approach of using a single value
of G for calculating flocculation in stirred tanks is
not always satisfactory in cases where values of the
shear rate are distributed over a wide range throughout
the volume. For example, Tambo and Hozumi (1979) report-
ed that only 10-20% of the mean rate of energy dissipa-
tion is effective for flocculation in a paddle blade-
mixer; while for laminar tube flow, Gregory (1981) obser-
ved that the mean shear rate as defined in Eqn. 2 and
calculated from pressure drop is 6% higher than the
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effective mean shear rate calculated from the velocity
profile. Gregory further suggested that a flow-weighted
shear rate is the appropriatemean value for prediction
of flocculation rate using Eqn. 1.

Patterson (1974) divided the stirred tank into.thirty
compartments which are concentric about the tank axis
(Fig. 1) and calculated the energy dissipation rate for
each compartment from data reported by Cutter (1966).
Volumetric flow rates between compartments are also
given by Patterson. For compartmental modelling in
general, the energy dissipation rate e, in compartment
i of volume V. is related to the mean dissipation rate
€ for the whole tank I v.e, = ¢ where v, = V./V, and
i i i i

Iv. =1,
i3 =
from the total power input by € = P/(pV) where p is the
fluid density. By analogy with Eqn. 2, the shear rate
Gi in compartment i is taken as G, = e;p/u. Now,

dividing Gi by G and defining a'dimensionless shear
rate g; as

The mean energy dissipation rate is obtained

gi = Gi/G bl

/ gi/E (3

the average shear rate in compartment i can be calcula-
ted from the energy dissipation rate of the compartment.
It is also proposed that the dimensionless volume
average shear rate represented by parameter s is defined
by

sVE = I V. G, (4)

e |
or in dimensionless form by s = L Vi For a simple
L

two-compartment model, the impeller zone(approximating
to compartments 13 - 18 in Fig. 1) and the bulk zone
(remaining compartments) are both assumed to contain
uniform shear (Okamoto et al, 1981). For a thres-
compartment model, an impeller tip zone (compartment 15
of intense shear may be separated from the general
impeller zone (Tomi and Bagster, 1978). The fractional
volumes and the energy dissipation rates reported in the
literature for two- and three-compartment models given
in Table 1 are quite different because the criteria

for partitioning the total volume into compartments as
used by the workers quoted is arbitrary, and different
fractional volumes are obtained. Table 1 includes the
dimensionless shear rates in the compartments and para-
meter s calculated from the energy dissipation rates
using Eqns. 3 and 4. The parameter s is highly depen-
dent on geometry and this is shown in a plot of s against
D/T in Fig. 2.

A continuous shear rate distribution can be calculated
from energy dissipation rate data at seventy-six



locations in a baffled tank of D/T = 0,50 reported by
Okamoto et al. The cumulative distribution in terms
of fractional volume is plotted against the dimension-
less shear rate in Fig. 3 which also includes the plot
of a four-parameter log-normal probability function

with y = 0,16, o = 4.8, . =0.39 and = 2.7
defined as ' Emin Snax
2
dv = 1 etpl- (enx - igu) ] (5)
d(&nx) v 2w (4no) 2(&no)

where x = (g - gTiﬁy(gmi - g). The necessity for
upper and lower Iimits # fitting the shear rate distri-
bution in a stirred tank is not surprising as g cannot
approach infinity nor is it likely to approach zero in
a real stirred tank, even in very small localised zomes.
For the continuous shear rate distribution, the para-
meter s may be obtained by integration, s = g.dv.

A value of s = 0.86 is obtained numerically £8r the
shear rate distribution in Fig, 3 with D/T = 0,50. The
parameter s is the first moment of the volumetric shear
rate distribution, while the mean shear rate G calcula-
ted from power dissipation per unit mass is the second
moment of this distribution, since

= - 1 1 2

&% =ep/u = fo (ep/w)odv = [ G7.dv.
In modelling, the impeller pumping rate Q can be calcy-
lated from the impeller pumping coefficient N, = Q/ND
where N is the impeller speed. For 5ix-p1ade9 turbine

impellers, a value of N, of approximately 1.0 is re-
commended (Bertrand et gl, 1980) .

3. COMPARTMENTAL MODELLING FOR FLOCCULATION
For flocculation of monosized particles in a compart-

mentalized stirred-tank model such as the one shown in
Fig. 1, the particle number balances are:

dn, Q.. n. n, 4a¢G.n,
S - ) B S P £ X Q.. = s (6)
e i v, ¥, i ™
j 3
where n. is the number of particles in compartment i and

the sumhations are over all values of j the counter for
neighbouring compartments. Q.. and Q.. are the flow
rates from compartment i to c&ﬁpartmeﬁ% j and back.
These flow rates can be expressed as fractions of the
impeller pumping rate Q such that q;4 = Q;+/Q. Eqn. 6
may be written in dimensionless form by _~defining

k = 4a¢G/m, t* = kt, ¢ = Q/(kV), g = Gi/G and

v = Vi/V' Thus

dn, Q5 M 521 Z .
j

V.
1

(N

-
- & I . 4

The number fraction of particles remaining in the tank
at any time is N/N, = L nijg n. where nj, is the initial
number of particles int i compartment i. The
solution in terms of N/N, for any value of c can be
obtained numerically using energy dissipation rate data
from the literature. For the thirty-compartment model,
the values of N/Nj for ¢ = 0 and for ¢ = = (taken as

c = 1000, see below), are plotted against st* in Fig.4.
For the simple two- and three-compartment models, where
the fluid can be assumed to be discharged between com-
partments at a volumetric flow rate equal to the impel-
ier - pumping rate, that is qjj = 1, the numerical solu-
tions for ¢ = 0 and for ¢ = « are also included in Fig.4
for comparison. Expressions for the analytical solu-
tion of the two-compartment model have been reported
elsewhere (Koh et al, 1983). In stirred tanks with
high pumping rates, a plug-flow model, which describes
the kinetics more precisely, has been proposed by Koh
et al (1983). In the plug-flow model, a stirred tank,
may be viewed as a pipe consisting of sections with
varying diameters, having umiform shear rate in each
section, The analytical solution of the plug-flow
model for ¢ = «» and any number of compartments can be
shown to be

N/Ng = exp (- st*) (8)
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As shown in Fig. 4, the numerical solution for all
models with ¢ = = is descfibed exactly by Eqn.8. The
results for Poiseuille flow in pipes have been obtained
by Gregory (1981) for the case of no radial mixing with
¢ = 0, and are included in Fig.4. For the continuous
shear rate distribution shown in Fig. 3, the stirred
tank may be viewed as having an infinite number of
compartménts. Simple solutions may be obtained for
c=0and c ==, c =0 describes an unrealistic situa-
tion where there is no mixing in the tank, and the
particles stay at the same locations at all times. The
log-normal distribution given in Eqn.5 may replace G
in Eqn.1l and by a change of variables for integration,
numerical solutions can be obtained and these are
included in Fig.4. 2

(#n x = &nu)

1
NN = I: X/ 27 (4no) exp[.— 2(2n0) 2
) 400Gt (x Z2ax * Enin ] i i

m(x + 1)

When ¢ = = and the shear is continuously distributed,
the plug-flow concept can also be applied, and the
analytical solution of Eqn. 8 is again obtained. The
results in Fig. 4 show that for ¢ = =, the solution for
all models is identical to that for a single-compart-
ment model where the effective mean shear rate in Eqn.
8 is given by Gggg = sG.

For ¢ = 0, the solutions of the various models are
slightly different. The difference between the models
is possibly due to differences in treatment of the
original energy dissipation rate data by the various
authors whose compartmentalisation was adopted. In
particular, the 30 compartment model of Patterson shows
the greatest difference; Patteron's results also give
the largest value of s = 0,90, which appears to be
unrealistic for a baffled stirred tank. Undoubtedly
Patterson'spartitioning of energy dissipation rate and
flow rate data is the cause of the difference. However,
the discrepancy is not serious since the case ¢ = 0 is
not likely to be of practical significance.

In the general compartment model, Eqn. 7, the case for

¢ = = is important even when o = 1, as shown in the
following typical example. For a suspension with

¢ = 3,3x 107" in a tank of T = 176 mm with an impeller
of D = 73 mm rotating at 200 rpm, producing a mean shear
rate G = 250 s-1 and pumping at a rate Q = 1.3 litre/s,
a value of 0.11 s-1 is obtained for the rate constant

k = 40¢G/m. The value of parameter c = Q/(kV) of 3.0
can also be obtained. The numerical solutions of Eqn.

7 for this value of c are very close to the results for
¢ == in Fig, 4, For the range of experimental condi-
tions encountered in flocculation, 2 < ¢ < 9 is typical.
In the presence of an energy barrier to flocculation
owing to surface forces, and resulting in a << 1, the
value of ¢ would be increased and would approach c = »
It is thus possible to describe approximately the
flocculation kinetics in stirred tanks for all values
of o by a single line, that for c = =,

The variation of c with impeller speed can be predicted
from the expression:

W (/) om Y N,

¢ —-= (10)
4GV ap NR:‘ Np:’

where N, = P/(NSDSp ) is the power number, N =NDZp /u
is the I eller Reynolds number. For a given“‘e
geometry, NQ and NP are constants under turbulent con-
ditions; only N, varies directly with impeller
speed. The value of ¢ Increases with decreasing
impleller speed.

For the paddle-blade mixer where, according to Okamoto
eta al (1981), the effective rate of energy dissipation
€ ¢ for flocculation is only 10-20% of the mean rate £,
the corresponding values of 0.32-0.45 for parameter s

can be calculated from €opg = 5 E. This is obtained



by analogy with Geff and Eqn. 3.
4. COUETTE FLOW

Flocculation in stirred tanks can be compared with that
in a Couette apparatus provided the difference in shear
rate distributions can be accounted for. For a Couette
apparatus with a Totating inmer cylinder, the critical
shear rate at which Taylor vortices appear is quite
low, as first observed by Taylor in 1923, It is common
for some flociulation processes to require shear rates
up to 1000 s ~ and flocculation tests must inevitably
be carried out in the presence of Taylor vortices. The
shear stresses generated in water in the Couette appa-
ratus can be measured by a dynamometer. Values of the
shear stress for ideal flow can be calculated from the
viscosity of water. In the unstable regime, the shear
rate calculated from the stable laminar flow assumption
underestimates the shear condition in the Couette appa-
ratus.

It is proposed that the effective shear rate Geff may
be obtained from the following equation:
2 2.4

+ G )

G = (Glam vor

eff
where G is the shear rate of the tangential flow in
the abs%%@e of any vortices and may be calculated in
the usual way from

2 2
Glam = ZRRIRZ/(R2 - Rl 0)

where f is the angular speed, R, and R, are the radii
of the inner and outer cylinder}. G is the addition-
al shear resulting from Taylor vorti % and may be
calculated by analogy with the fully turbulent stirred
tank, from G = Ye___p/u where € is the energy
dissipation VOT ate Y®Tdue to Tayl¥¥ vortices. e can
be obtained by subtracting the laminar dissipatigﬁrrate
from the total measured dissipation rate. The basis for
Eqn. 11 is the conservation of energy which has also
been used by Camp and Stein (1943) for summing ortho-
gonal components of shear rate, and by Polasek (1979)
for summing contributions of shear rate induced by
mechanical and hydraulic means. Although the energy
dissipation rate due to Taylor votices is large by
comparison, the shear calculated makes only a small
contribution to the total effective shear rate. For
example, in an apparatus with R, = 20.04 mm and
R, = 21 mm at a rotational spee& of 1000rpm, a value
of G_,. = 2496 s-1 is obtained, consisting of

6. =2340 sl and G__ = 869 ™.
lam vor

(11)

5. EXPERIMENTAL

Experiments to study the effect of shear rate on floccu-
lation in stirred tanks of 0.5 and 1.0 litre capacity
and in a Couette apparatus have been carried out.
Suspensions of 2 g/& of an ultrafine scheelite (CaW04)
fraction with average size of 2 ym in 2 x 107"M

sodium carbonate solution were used. Flocculation was
achieved by shearing the suspension in the presence of
10-4M sodium oleate at initial pH 10. Size distributions
at various times up to 170 min were measured with a Leitz
photosedimentometer., The observed size distributions

of the flocculated suspensions were bimodal. The dis-
appearance rate of the mass concentration of the original
particles less than 2 pm in size can be described by a
second-order rate equation. In Fig. 5 the rate constant
k2 is plotted _against the effective shear rate calculated
from G = sG for stirred tanks and from Eqn. 11 for
Couetté flow, Fig. 5 shows that the effective shear
rates calculated by the two methods for the two different
geometries produce the same flocculation rate.

6. CONCLUSIONS

The various multi-compartment models appear to give very
similar results and our calculations show that there is
little advantage for modelling flocculation processes

in compartmentalizing the stirred tank beyond two
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compartments. In fact, a single-compartment incorporating
the effective mean shear rate is adequate.

The coincidence of results of flocculation rate from
Couette experiments and from stirred tank experiments _
lends support to the use of the effective shear rate sG

to describe conditions in stirred tanks,
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Figure 1 Thirty-compartment model for a stirred tank as
partitioned by Patterson (1974).



TABLE I

FRACTIONAL VOLUMES, ENERGY DISSIPATION RATES, SHEAR RATES
AND PARAMETER s FOR TWO- AND THREE- COMPARTMENT MODELS
CALCULATED FROM LITERATURE DATA

D/T v vy Vi € /E sZIE e/ g 8 83
Okamoto et al (1981): Two-compartment

0.25 0.03 0,97 - 28.5 0.20 - 5.34 0.45 - 0.60
0.33 0.05 0.95 =~ 16.0 0.27 - 4.00 0.52 - 0.69
0.50 0.11 0.89 - 5.9 0.42 - 2.43 0.65 - 0.8
0.70 0.24 0.76 - 2.3 0.61 - 1.52 0.78 - 0.96
Levins and Glastonbury (1972): Two-compartment

0.33 0.10 0.90 - 7.7 0.26 - 2,77 0.51 - 0.74

Tomi and Bagster (1978): Three-compartment
l0.33 0.005 0.095 0.90 50 5.4 0.25 7.07 2,32 0.50 0.71
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Figure 2 Dimensionless volume average shear rate
(parameter s) as a function of impeller to tank
diameter ratio, D/T, calculated from literature
data.
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3B.8

1
L ‘\\
- AN

NS
2 X \‘\
S % ™
- \ \\
\ AN
2 \3
\ N\
.\ N
1 N
ol l_ A Laominar Tube Flow \ W
o Gregory (1981} ¢ 20 . N
| 8 Log-Normal c=0 3=0-86 -
e C Two-Compart. ¢ =0 s=074 \ 5\\
L. D Thres-Compart. ¢=0 s =07l \ ‘3.‘;\
E Thirty-Compart. c20 s= 0-90 . “\,\
T F ANl Mod A 3 ™
els c= @ \
- \F
\-
~ \
st* = 4a¢sGt/xw £
i L 1 | o %

0 1 2 3 4 5

Figure 4 Theoretical flocculation rates for various

models. Values of s are dependent on D/T ratios
used in the models.
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Figure 5 Experimental second order flocculation rate

constant for Couette flow and for stirred tanks.



