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SUMMARY This paper shows how numerical techniques developed for predicting compressible flows described
by hyperbolic partial differential equations, may be used for solving the corresponding problems of shallow

water motions. The usual analogy between these two classes of flows is extended to the computational area

with reference to the integration of the interior points, computation at the boundaries and treatment of

discontinuities such as shock waves and hyperbolic jumps or bores.

Examples of numerical experiments on

shallow waters motions are presented for different kinds of flows. These results have been obtained by

adding only minor modifications to existing and experimented codes, developed for solving typical problems

of gasdynamics.
1 INTRODUCTION

Many steps have been done in the past twenty years
on the solution of problems in fluid dynamies by
means of numerical computations. The most investiga
ted fields have been the ones related to aeronauti-
cal and aerospace sciences. In particular remarka-
ble progress have been achieved in the numerical
solution of gasdynamical problems described by hy-
perbolic partial differential equations and repre-
senting steady supersonic or unsteady compressible
flows. The main difficulties in solving these pro-
blems are related to the correct computation at the
boundaries and to the treatment of discontinuities
in the flow fields such as shock waves or contact
discontinuities. Beside these two main points, it
has been proved that the proper choice of variables
and coordinates systems is a very important require
ment. While many efforts have been made in solving
these problems with reference to aeronautical appli
cations, little attention has been paid to the inig
stigation of problems very similar but related to
different physical areas, such as the prediction of
free surface water motions in the case of shallow
water. The purpose of this paper is the extension
of the very well known analogy between compressible
flows and shallow water motions, beyond the usual
comparison which is generally confined to comments
on the similarity of the equations which describe
these two classes of physical phenomena. Namely we
try to show here how the broad experience achieved
in the numerical computation of hyperbolic compres-
sible flows can help easily in predicting the corre
sponding hyperbolic shallow water flows. We have de
veloped a certain number of numerical experiments
which represent different physical problems in the
area of shallow waters. We may divide these in four
classes:

- unsteady one-dimensional flow in channels

- two-dimensional supercritical flow in channels

— unsteady two-dimensional flow

- two-dimensional sub and supercritical flow.

These problems are often complicated by the forma-

tion of discontinuities, bores or hydraulic jumps,
which represent the counterpart of shock waves in
gasdynamics. In the following a brief review is gi-
ven on the main features on the numerical procedure,
and examples of computations are presented for

different flows.
2 THE EQUATIONS OF MOTION ANALOGY

We recall quite briefly the analogy between the e-
quations of motion which describe the compressible
flow and the shallow water motion in the case of un
steady one-dimensional flow. The basic equations in
gasdynamics are:
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where P =v&‘n.,1a , T = exp (?P*é) and o =Az/,-q

(A = cross area of the duct). All the variables ha-
ve been here normalized with respect to reference
values (léngth lggs Pressure Poo » Ceémperature T,
velocity c g =-\fm and time = ]‘b/g

The basic equations for constant depth shallow wa-
ter are:

Hi+ W Hyp +2 Uy +2 1= 0

M+ UMy + o Hoe = 0

2%nﬂ(h water level) and the reference
velocity is cgq = gkb/Z.

Both Eq (1) and (2) are hyperbolic partial differen
tial equations and the comparison between these re-

where H

veals the well known analogy (Ref.l).

A very important feature of these equations is re-
presented by the possible generation in the flow
field of discontinuities known as shock waves in gas
dynamics and bores or hydraulic jumps in hydraulics.
The Rankine-Hugoniot equations relate the flow pro-
perties on the two sides of the discontinuity (1,2)
which propagates with the velocity L%:
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where w represents the gas velocity relative to the

shock (w = u -Us)-

Similar equations hold for the bore:
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The same analogy between Eq.(1,3) and Eq.(2,4) may
be found for different and more complicated flows

(two-dimensional steady or unsteady, two—dimensio-
nal steady sub and supercritical flows).

3

i

THE NUMERICAL SOLUTION

The broad experience achieved in gasdynamics on the
solution of hyperbolic partial differential equa-
tions, has suggested the finite difference method
as a powerful tool for the numerical prediction of
this kind of flow fields. The following steps are
done. The physical region is generally mapped into
a computational domain. This step is done by using
simple or very sophisticated transformations of co-
ordinate, depending on the complexity of the bounda
ries. One may use just only a transformation for
normalizing some length, or complicated conformal
mappings in case of very irregular shape of the phy
sical region. Even if the problem is very different
from those which occur in hydraulics, Ref.2 shows
how powerful is the use of sophisticated transforma-
tions. The equations of motion are then written in
the new system of coordinates of the computational
domain. The new set of equations are then discreti-
zed, having fixed a constant intervals grid in the
computational region. Among the several schemes of
integration which are available, we use the one sug
gested by Mac Cormack (Ref.3). This scheme is very_
simple for coding purposes, even in case of multidi-
mensional flows and has been experimented success—
fully in a very large number of cases. It is a pre-
dictor-corrector scheme which is expected to give
second-order-accuracy. The integration of the equ-
ations at the interior points of the computational
region does not show difficulties, provided that no
discontinuities are generated in the flow field. On
the other hand, good care must be paid to computing
the flow at the boundaries. We may have many kinds
of boundaries. Solid walls are the ones which occur
more often. However we may have other different bo-
undaries. The bow discontinuity in front of a blun-
ted body in a supercritical stream represents a per.
meable boundary (Ref.4). Special surfaces for havng
finite computational domains (Ref.5). Contact surfa—
ces separating two different flow regions, and o-
thers. In all these cases, we follow the ideas and
procedures suggested by G. Moretti in many papers
cn gasdynamical problems. An auxilary frame of refe
rence is assumed, according to the nature of the bo
undary . For example, in the case of a solid wall
in a two dimensional problem, the frame will be
with axis oriented as normal and tangent to the
wall, so that the velocity can be written in terms
of the normal and tangential components. If the bo-
undary moves, the auxilary frame will move with it.

The equations of motions are then written by intro-
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ducing the new frame of reference. By combining
continuity and momentum equations, one gets compa-
tibility equations along characteristic lines. On
the other hand the conditions which hold at the bo
undary are differentiated at the boundary itself.
For example, in case of 2D unsteady flow at solid
walls, one puts zero the components of the velocity
and acceleration normal to the wall. The compatibi-
lity equations and the boundary equations are then
combined and the resulting differential equation
allows the integration of the unknown variable at
the boundary. The integration scheme follows the
same used at the interior points. The detailed de-
scription of this procedure is reported in Ref. 5.
The nature of the hyperbolic equations for compres-—
sible flow and shallow water allows the formation
of discontinuity inside the flow field. In gasdyna-
mics, the real gas effects do not generate a real
discontinuity and the physical shock wave has a fi-
nite thickness. However this thickness is so small
with respect to reference lengths that the shock
may be regarded as a discontinuity. On the contrary
the region perturbed in the hydraulic jump is qui-
te large (Ref.l) and, depending on the physical pPro
blem, its thickness may be too large with respect
to the reference length. In this case the jump can
not be modeled as a discontinuity, as Eqg§, (2) would
require. It follows that while in gasdynamics it is
almost always correct to consider the shock as a di
scontinuity, one can do the same in hydraulics only
in the case of reference length quite larger than
the width of the actual jump. From a numerical
point of view there are two distinct approaches in
dealing with the discontinuity. One is known as the
"shock capturing technique'" where the flow equa-
tions are written in conservation form and the di-
scontinuity is not treated explicitely, but comes
out from the computation as steep gradients in the
flow spread over few meshes. On the other hand the
discontinuity may be treated explicitely as a dou-
ble value point in the flow field. The procedure
for computing the evolution of discontinuities has
been indicated by G. Moretti and is well known as
"shock fitting techmique'". It consists in the mat-
ching of the compatibility equations in the two con
tinous flow regions separated by the discontinuity
with the algebraic equations across it /Eq.(3,4)/
differentiated along the discontinuity itself. De-
tails on this procedure may be found in Ref. 8 for
the simple one dimensional case or in many other
papers of the same author for multidimensional flows.
In computing the hydraulic jump evolution we follow
this discontinuity explicit treatment.

4 SOME EXAMPLES

We report now some examples of prediction of shal-
low water motions. The results have been achieved
by using codes developed for the corresponding gas—
dynamical problems and by adding just minor changes
for the hydraulics application. In the following
figures the flow pattern is indicated with constant
level (h) lines.

i) Unsteady one-dimensional flow in channels.

We have performed several examples of this flow, in
volving the formation of hydraulic jumps. (Ref.6,?.



The one reported in Fig. 1 is quite significant. A
constant depth channel is placed between two infini
te capacity reservoirs with different water levels.
The channel width is shaped in a convergent—diver-
gent fashion along the abscissa x. The steady flow
through the channel is subecritical in the conver-
gent portion of the chanmnel till the throat; then,
it becomes supercritical, if the level in the down-
stream reservoir is low enough. However for a parti
cular range of values of this level, a hydraulic
jump is expected to take place in the divergent por
tion of the channel; the stream becomes then suberi
tical till it matches, at the end of the channel,
the water level in the discharge reservoir. This
steady flow can be obtained as the asymptotic re-
sult of the following transient (time-dependent te-
chnique). Assume that at the time ¢t =0 the chan-
nel is closed by a wall at x =1 and open at

x = 0, so that the level is every-where equal to
the one of the left reservoir and the water is at
rest. Suddenly the end wall is removed and a depres
sion wave propagates upstream. During this tran-
sient a shock is generated by the coalescence of
characteristics going from right to left. First it
moves upstream and then downstream until it gets
stabilized in the equilibrium location typical of
the steady state flow. The description of this tran
sient is given in the x,t plot of Fig. 1. In order
to get some idea on the capability of this numeri-
cal methodology to deal with very complicated one-
dimensional unsteady motions, the reader may refer
to Reg. 8.

ii) Two-dimensional steady supercritical flow in
channels.

The example reported in Fig. 2 (Ref.6) shows a stea
dy supercritical stream (Froude = 3) in a channel.
The computation is done by marching along the chan
nel. Because of the walls shape, the rising waves
generated on the lower wall form an oblique jump
moving towards the upper wall. Once the jump rea-
ches the wall, it is reflected on the opposite di-
rection. Even for these flows the reader may refer
to Ref.9, where similar, but more complicated cases
are presented, in case of compressible flows.

iii) Two-dimensional unsteady flow.

The example we present here, is reported in exten-
ded form in Ref.10. A region of water at rest (h=L)
with variable depth,is bounded by three solid walls
and on the fourth side (AD) by a diaphragm wall,
which separates the region from an outer capacity
with water at a lower level (h =.9). When the dia-
phragm wall is removed, water is flowing out (from
right to left) and depression waves travel inside
the region. The boundary AD, which separates the
region from the outer capacity is a special surfa-
ce for simulating this external reservoir; details
are given in Ref.10. Friction effects on the bottom
are here taken into account by adding the proper
terms in the momentum equations. Tte sequence of
Fig. 3 shows the evolution in time of the water wa
ves and the velocity profiles on AD describing the
flow going in and out of the investigated region.
After many cycles of waves moving across the re-
gion, the water level will be stabilized at the ou
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ter capacity level with water at rest.

iiii) Two-dimensional steady sub and supercritical
flow.

We refer here to those flows where the steady flow
equations are both elliptic and hyperbolic. The
example shown here (Fig. 4), represent the counter
part of the "blunt body" problem in gasdynamics.

A supercritical stream flows agaimsfa blunted obsta
cle; a curved jump is then wrapping the obstacle
and a pocket of subcritical flow is generated just
in front of it. The steady flow configuration is
achieved through a "time dependent technique"
(Ref.4). The equations of motion are written for
2D unsteady flow; an initial flow configuration is
guessed "a priori" in the region between the obsta
cle and the bow jump. The region is confined on the
two sides by lines where supercritical flow is ex-
pected. Because the initial guessed configuration
is not the correct ome, the unsteady flow equations
will exibit derivatives in time of the flow proper
ties different from zero. Wave are then generated
which will move the bow jump in the right position
and will create the balanced steady flow configura
tion. Once the flow pattern is obtained in the
front of the obstacle, a marching technique for 2D
steady supercritical flow will generate the flow
on the two sides of the obstacle. The example re-
ported in Fig. 4 (Ref.ll) refers to a Froude num—
ber = 3 and an incidence of 10°.

5 CONCLUSION

The examples reported in this paper show that the
analogy between compressible flow and shallow wa-
ter motion may be extended well behind the usual
comparison of equations as reported in text books.
Many of the features of the numerical methods deve
loped for solving gasdynamical hyperbolic problems
may be utilized for the corresponding hydraulic
problems. Only minor changes should be added to e-
xisting and reliable codes for compressible flows
in order to get solutions of shallow waters motions
May be that the examples shown here are just acade
mic exercises. However we think that the use of
these numerical methods may give a good contribu-—
tion to the understanding of practical problems in
the area of water resources management.
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