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1 INTRODUCTION

The work reported in this paper represents an
extension of studies reported at an earlier con-
ference in the series (Joynt, 1971) where an
axisymmetric vorticity distribution on the surface
of a series of contiguous frustums of cones was
used to design contractions, etc., lying every-
where internal to this singularity array, having

a surface velocity distribution substantially at
the disposition of the designer. The present
extension inverts this process so that the velocity
field associated with a given boundary shape can be
determined; both two-dimensional and three-
dimensional axisymmetric cases are covered.

The option of surface vorticity distributions was
chosen because the fundamental theory showed that
it conferred some advantages, compared with the
source distributions preferred by some other
workers (e.g. Hess, 1975). These advantages
included the identification of the magnitude of the
vorticity with the surface flow speed, the capacity
to deal with cyclic and lifting flows without the
introduction of new concepts, and the ability to
extend the work more logically into sheared and
rotational flows (some of this latter work is
currently under development). These benefits, and
an inferred - although not proven - facilitation of
the numerical work, were judged to outweigh the
complication of using a solenoidal vector, rather
than a scalar, singularity distribution.

Publication was felt to be warranted partly because
of the use of this less usual approach but also

to illustrate the way in which the evaluation of
the singular integrals was accomplished and the
unusual, but successful, way of meeting the boun-
dary conditions that was applied.

2 THEORY

The representation of flows by means of surface
distributions of singularities is treated in the
literature (Lamb, 1962, Art. 57) where it is shown
that, if the chosen boundary is a stream surface,
double-sources, with their axes normal to the
surface, provide onme suitable formulation from the
infinity of choices available. Further, with this
choice, the strength of the double-source is equal
to the velocity potential at that point, so that,

as the magnitude of the vorticity vector is equal

to the gradient of the double-source strength, it is
also equal to the magnitude of the velocity vector.

This representation thus produces a relationship
between the variables that is particularly easy to
interpret; eon the stream surface the vorticity
vector and the velocity vector are mutually
orthogonal, equal in magnitude and both lie in the
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surface. As the vorticity distribution must pro-
duce a discontinuity in the tangential component

of velocity, equal to its own strength, and cannot
produce a discontinuity in the normal component of
velocity, it follows that the velocity is zero just
the other side of the stream surface (the same
result is proved in a different way in the original
reference).

The condition of zero velocity just outside the
stream surface is used to set up a boundary con-
dition that 1is more convenient, in the present
work, than the usual one in which the normal com—
ponent of velocity is set equal to zero. It is
found to be sufficient to calculate the vorticity
distribution that produces zero tangential compon-
ent of velocity just outside the stream surface.
At first sight it might appear that this could be
a necessary but not sufficient boundary condition,
but this would require there to be a flow in which
the streamlines were everywhere normal to the
stream surface. For the cases of practical inter-
est this can be shown to be impossible. In
practice the use of this boundary condition is
efficient as an element of vorticity makes a strong
contribution to the tangential velocity at points
adjacent to it, leading to well-conditioned mat-
rices in the numerical solution.

With the above selection of singularity distri-
bution and boundary condition it is now possible
to write down the equations to be solved. The

velocity q_ at the general point P is given by the
Biot Savart law:
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where K is the local vorticity vector at the point
Q of the stream surface S. This is converted into
an integral equation for K by evaluating the tan-
gential component of g, at a general point just
outside S and equating to zero.

The cases considered were all duct flows in either
two dimensions or in three dimensions with axial
symmetry. The ducts were considered in terms of
sections where the shape was specified and the
velocity remained to be calculated, and entry and
exit sections having a simple form where, remote
from the shaped section, the velocity field was
known. In the shaped region the profile was
discretised into a piecewise linear representation
and on each of the elements so formed it was
assumed that the vorticity had constant, but as
yet unknown, strength K. (r =1, 2, ..... N).
Typical duct shapes are illustrated on Figure 1
for axisymmetric geometries (two-dimensional
geometries are analogous although bends can also
be accommodated in this case).
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Specimen axisymmetric duct configurations

Figure 1

In the axisymmetric case the end elements are seen
to be able to accommodate cylindrical or constant
cross—section annular inflows and outflows, the
corresponding purely radial flows as well as those
occurring between a pair of cones with a common
apex. In all cases the requirement of continuity
of volume flow must be complied with in the overall
sense and applying it to each end flow permits the
variation of q with x and/or r to be determined.
Thus the Biot-Savart integrals can be defined.

The midpoints of the short straight elements intro-
duced on those parts of the duct profile where the
velocity is varying in an unknown manner, are used
as nodes. It is necessary to calculate the tan-
gential component bj(i = 1, 2,
induced by all the end elements at each node, lead-
ing to non-singular integrals. The integral along
the length of the element is performed analytically
(see Appendix) and the remaining integration around
the circumference, in the case of the axisymmetric
elements, must in any event be performed numer-
ically as it is an elliptic integral. The only
other point to be watched in these evaluations is
that the two-dimensional end elements must be
evaluated in parallel pairs with vorticity of
opposite sign, otherwise unwanted infinities

appear in the expressions. The appropriate com—
puter subprograms for the axisymmetric case were
named QCYL, QIN and QINSQ as indicated on

Figure 1(a) and (b).

It remains to calculate the tangential velocity
component induced at the centre of the ith piecewis
linear element, by unit vorticity strength dis-
tributed on the jth such element, as aj:. Then
solution of the integral equation is approximated
by the solution of the following set of simul-

taneous linear algebraic equations:
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For the cases i # j the a,. integral is non-
singular and, although sofitwhat more tedious, was
=zvaluated by similar methods to those described

for the end elements. A computer subprogram, QCAX,
was written for this case as, although the one
written for the singular integral, QAXVOR, would

.« N) of the velocity

Speed on streamline.

handle the non-singular evaluation, it was con-
siderably slower.

In two dimensions evaluating a,, involves a
straightforward Cauchy singularity that poses no
particular difficulty. In the axisymmetric case
the fact that the integral is in any event
elliptic, and its algebraically complicated form,
posed a significant problem. Essentially it was
solved by expressing QP as the sum of three orth-
ogonal vectors so that the vector product could be
easily evaluated, performing the integration along
the generators of the frustum of the cone anal-
ytically and then either reducing the remaining
singular integrals to standard forms or absorbing
the singularity into the differential term so that
the transformed integral was non-singular and could
be accurately evaluated using a quadrature. The
broad details of this, the most interesting
integral, are given in the Appendix.

The well-conditioned matrix equation involving

ajg lends itself to accurate solution by either
inversion or iterative techniques giving a vector
K4 which equates to the surface speed distribution
in the duct. Internal velocities can also be
determined but a set of coefficients similar to

ajj and by (1 =1, 2, ... N) must be calculated for
each such evaluation.

3 EXAMPLES AND COMPARISONS

Figure 2 shows results for a two-dimensional 90°
bend with a 3:1 contraction ratio. The bend shape
was determined by a conformal transformation method
which has been shown to give good agreement with
experimental measurements. The results obtained by
approximating the boundary with 48 and 120 elements
are shown.
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Figure 2 Accuracy of two-dimensional calculations

Axisymmetric results for the flow around a unit
sphere are presented in Figure 3. Two stream
surfaces, with radii 1.0 and 2.0 at infinity, have
been taken as the boundaries of an annular region.
The speeds calculated by approximating the boundary

with conical elements are compared with the known

potential flow around a sphere.
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Figure 3 Flow around a unit sphere
Figure 4 shows an example of the use of axisymmetric

elements in a re-entrant flow. Wall speeds are
indicated.
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Figure 4 Axisymmetric re-entrant flow

4 DISCUSSION

The method presented herein has been found to be

a useful engineering tool in both its two-
dimensional and axisymmetric forms. Adequate
accuracy has been obtained with a number of
elements, and hence equations, that places no undue
burden on the available computing resource.

However there is little doubt that the use of more
sophisticated elements would shorten computation
times for a given accuracy. The literature suggests
(Hess, 1975) that an upgrading to elements having
an arc of a parabola as a profile should be accom-
panied by a change to a linearly varying vorticity
strength. The resulting increase in the complexity
of the integrals would require the allocation of a
considerable amount of effort, which currently
seems unlikely to eventuate.

The use of vorticity has conferred not only the
benefit of a saving in computer time because sur-
face velocity does not have to be separately
calculated, but has been found to be beneficial in
that engineers readily understand and put the
methods to intelligent use. The concept of the
vorticity as a very thin, mathematically idealised
boundary layer provides a suitable bridge to
physical concepts. In both of these respects and
because it is essentially a more powerful tool, it
would seem to be preferable to the use of source
distributions.

One exploitation of this greater power that has
recently been explored is the calculation of a
flow in a duct containing a shear flow. Successful
iteration to find the strength and position of an
embedded vortex sheet was achieved in two dimen-—
sions and there would seem to be no reason why a
similar result could not be obtained in the axis-
ymmetric case. Currently some attention is being
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directed towards the use of elements having dis-
tributed vorticity to represent rotational flows.
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APPENDIX: EVALUATION OF THE SURFACE INTEGRALS

For each of the axisymmetric elements the inte-—
gration along the generator of the cone can be

performed analytically and the circumferential

integration is done using Simpson's rule.

QAXVOR: The velocity q is to be calculated at
the point P in the xy plane due to unit vorticity
on the surface of the frustum with the vorticity
vector tangential to the surface and normal to the
generators. The general point Q is located on the



generator RT.

1
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The Biot-Savart law is used:
Kx QF
lep |3

p
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As shown in_the diagram, express QP as the sum of
QN, NH and HP where QN lies along the generator
with N located by the fact that it lies in the
plane, normal to the generator, that contains P;
NH and HP lie in this plane, the former being along
its line of intersection with the plane containing
the generator and the x axis, with the point H
determined by dropping a perpendicular from P onto
this line. Obviously the three component vectors
are mutually perpenditular and it is not difficult
to develop expressions for them.

The vorticity has unit magnitude and is parallel

to PH, thus K = -HP. The elemental area can be

expressed in the form:
ds = rQ.dB.dQN, where rQ
(r;TQ + roRQ).d8.dQN/RT,

{r;(TN - QN) + r (RN + QN)}.d0.dQN/RT.

is the frustum radius at Q,

Thus, recognising the equality of the contributions
from 0 £ 8 £ mand 7 € 8 € 27, the expression for

=

qp becomes: NT
- -1 0 {r ) IN+roRNHQN(rp-r3) }
9y = ZwRT (QNZ+NHZ+HPZ) 3/ 2

0 ~RN

HPx (QN+NH+HP ) . dQN

Expressing aﬁ as QN.dﬁ, and similag}y for NH and
HP, the vector product becomes QN.NH-NH.QN. As,
by symmetry, the k component of g\is zero thé cor—
responding components in NH and QN can be omitted
from the numerical calculations from this point
onwards. The integrals correspond to standard
forms and, on evaluating and substituting the
limits, give:

™
! L A 2 2 2 Lﬁ.}.
T =5 1RT J st R Tn (NT2+NH2+HP )L NT
el (RNZ+NHZ+HP?) *~RN

A ~ A
_ (r1TH 4+ rp3N) NH - (rp-r;) (NH.QN - NT.NH)

(NT? + NH2 + HP?)®

4+ {ZyIN + rpRN) NH - (rp-r)) (NH.QN + RN.NH)
(RN? + NHZ + HP2)?

| d

RN
(RN? + NHZ + HP?)

NT N
(NT2 + NHZ + HPZ)%

~
(ryTN + r;RN) NH.QN
NHZ + HPZ

de .

614

In this form, with the identity of the various dis-
tances preserved, it is straightforward to see that
only the first and last terms produce singular con-
tributions when P approaches the surface of the
frustum, and to interpret them geometrically.
strongest singularity arises in the last term
thxough the expression:

E NH/(_NH2 + HP?Z) .

The

Recognising that
NH = (rp-r1)(x1—x) - (x3-%1) (r1-ycosh)
£]
[(x2-x1)2 + (ra-r1)?]

HP = y sinb ,
it is apparent that E can be expressed in the form:
B B+C cos®

(B+C cos6)? + D* sin?e °’

where, for points P on the line of intersection of
the frustum with the positive y side of the xy plane,
B = -C. Thus as 8 = 0, E ~ 0/0 which leads to
difficulties of evaluation in a numerical procedure.
However

EdD = d .
(82 - ¢% + D?)
where
B cosf + C

Y = arccos I

{(B + C cos®)? + D2sife}
It is found that Y has a close affinity with the
angle ¢ shown on the diagram for:
cosY = cos¢/cosa ,
where g ) -
elmm = {(x-%7)% + (rs-r1)° cos?8}

{(x2-x1)? + (‘-’2-151)21'!11

is another angle that can be shown on the diagram
but has been omitted to avoid congestion. Thus for
points P lying outside the frustum, Y rises from
zero up to a maximum given by

X2 arccos {[(CZ—BZ)CZ/DZ]%/C} ;

and then falls to zero again as © varies from 0 to
7. However for points P lying inside the frustum Y
varies from m to 0 as 8 varies from 0 to w. This
sudden change in the range of Y produces the
required discontinuity in the tangential component
of q_. There is no difficulty in programming the
integration of this term as the integral is now non-
singular and dividing the range of Y into equal
intervals, calculating 8 from

L
-BC(cos2Y-1) +{ (B2-c24+D?) (B2-C24D?%c0s?Y) cos2Y} %
(C*=D?) cos®Y - BZ

cosh =

and evaluating the remainder of the integrand, per-
mits the use of a simple quadrature.

The other singular term is the first, which has a
logarithmic singularity. In this case it is possible
to isolate the essential singularity and integrate

it as a standard form, leaving the remaining terms

to be incorporated into the quadrature. However,

there is insufficient space to illustrate this here.
QCAX: If P is not on the cone the integratiom in
terms

of the usual basis vectors i, j and k gives
an expression of the form it s -

2w 1 e = ol
- _ J J As® +3Bs + c/ da dn
P 2. F 372
0 0 (as* + bs c)

which can be evaluated in half the time needed for
the calculation by QAXVOR.



QCYL: Vorticity K.is distributed uniformly on a
cylinder of radius r extending from x; to X =.
m i X1=X
By (r—ycosﬂ)(lt—l—n)1+cose.de
St T 2m vZ - 2yrcosd + r2 . - D 3|%
0

where D = {(x—xl)2 + (y4rc058)2 + (rsinﬂ)z}%.

QIN: The vorticity at (x;,r;) is K and it de-
creases inversely with radius (Figure 1).

m
= - K 2 (D-r;+ycosb) (x—x;)cosb .| dB
qp = E;l J (} e (x-x1)% + yZsin?0 D *

jiseitfa
where D = {(x-x1)2 + (y-rjcos8)? + (r;sin®)?} '2.
Smaller integration steps are needed when (x,y) is
close to the surface, and particularly when it is
close to (x),r;). When x = x; the j component of
q_ as given by this formula is zero; which is
cBrrect only for |y|<r,. When x = x; and |y|>r;
the limiting form of the integrand is used for the
first or last step of the numerical 6 integration.
This step produces a contribution #Kr;j/(2y) to
the velocity, which is the expected diScontinuity.
At the central point, q(xi, 0) = K/2 i.

QINSQ: The vorticity at (s, o) is K and it de-
creases inversely as the square of the distance

trom (x , 0), the apex of the cone and origin of
polar co-ordinates (Figure 1).
™

— K s? sina i d . d
qp alins - J {(sina - %7 cosh) i + ((x-xo) =2

0
-cosa) cosf jl 5%§§§%?T - {-yi + (x—xo) it
cosb 1 s(o-d) 1
g {G bl St et -ed ' D }

where o = {(x-xo)2 + yzl}E 5
d = (x—xo) cosa + y sina cosb ,
1
D = (s2 - 2sd + o2)2,

2 DIMENSIONS: Complex co-ordinates are used to
represent the i and j components of position and
velocity vectofs. All vorticity is parallel to k.
The velocity at z induced by vorticity K distri-~
buted on a straight line joining z; and zp is
given by

aand =K zz—zllln Z=2o
18 Zﬂi Zp=2) Z=2)

A pair of parallel lines ending at z, and z_ and
extending to infinity in the direction o perpen-
dicular to the line joining z, and z_ (left and
right subsecripts determined looking in the direc-—
tion @) and having vorticity K distributed on the
left line and -K on the right line, induces a
velocity at z of

-ia z-z
conjg g:i In z—zl .

T
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