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SUMMARY .
framework.

Fluid transport in sieve tubes and in plasmodesmata of plants is considered from a theoretical
The effects of filaments on reducing the flow rates in sieve tubes are considered while that
of variable geometry and a Newtonian and power-law fluid are evaluated in the plasmodesma model.

It

appears in the case of the sieve tube that the filaments may have a profound effect on reducing flow rates
while in the plasmodesma 'necking' at the ends has the same effect.

1. INTRODUCTION

In a recent article by Canny (1977), flow and trans-
port phenomena in plants was reviewed from the plant
physiologists wviewpoint. Many unresolved problems,
or ones needing serious fluid mechanical study,

were outlined. One of these involves sucrose trans—
location in the phloem and in particular concerns
flow in the sieve tubes and plates. Another one,
that was only briefly mentioned, concerns flow in
plasmodesmata. In this paper we look at aspects of
flow in both sieve tubes and plasmodesmata.

Before we attempt any fluid mechanical analysis it
is necessary to describe briefly the physiology and
morphology of the seive tube and a (single) plasmo-
desma. There are two separate transport tissues,
one for movement of water, called the xylem, the
other, the phloem where sugars are translocated.
Sieve tubes are thought to be the main route for
transport of sucrose from the leaves where it is
formed to other parts of the tree such as the roots,
trunk, branches and twigs. The rate of mass trans-
fer is proportional to the gradient of sucrose con-
centration. The morphology or shape of the sieve
tube is illustrated in Figure 1(a). The sieve tube
has a length in the range 200-500 um ané a diameter
of 10-25 pym. The sieve plates can be quite thick
compared to other cells with a pore length of up

to 5 pym. The sieve pores which, again, are much
larger than the normal connection through cell walls
bave radii in the range of 0.08-5.0 um. They can
occupy up to 50% of the cross-sectional area.
Micro-filaments of P-protein (radius 5-10 nm) pass
through the pores. From this description of the
morphology it is clear that the flow patterns are
much more complicated than Poiseuille flow; which
is the model commonly used by plant physioclogists.

Plasmodesmata are common in a wide range of plants
(see e.g. Tyree 1970, Gunning and Robards 1976).
They are narrow strands of cytoplasm that connect
neighbouring plant cells through the common cell
wall. It is thought that cells and tissues which
are remote from sources of nutrient can be nourished
by a bulk flow or diffusion through plasmodesmata
and that materials can pass through them to and
from the long distance transport tissues of the
vascular system (Gunning et ql. 1976). Plasmodes~
mata occupy a very small percentage (less than 1%)
of the mutual cross-sectional area between the two
cells. There are two directions of flow across the
root endodermis with sugars moving outwards from
the phloem and water and ions inwards into the
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xylem. However it is not known if they take sep-
arate paths, but it is thought that plasmodesmata
play an important role in these transport processes.
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Figure 1 TIllustrates the geometry and nomenclature
of (a) a sieve tube and (b) a plasmodesma

A schematic diagram of a plasmodesma is shown in
Figure 1(b). Nomenclature is taken from Robards
(1975). Plasmodesmata are narrow cytoplasmic chan-
nels bounded by plasmalemma with an internal dia-
meter of 30-60 nm.and a length of 0.5-1.0 pm. It
is normally depicted with a hollow axial strand
which is called a desmotubule and which is thought
to be continuous with the endoplasmic reticulum.
The internal and external diameters of the desmo-
tubule are 7=10 nm and 16-20 nm respectively. Thus
there are two possible pathways via (a) the desmo-
tubule or (b) the central cavity.

In the succeeding sections we will investigate the
effects of fibrils on the flow field in sieve tubes



and then analyse the effects of geometry on the
flow rate and pressure change across a plasmodesma
for a Newtonian and a power-law fluid. Because of
the very small dimensions and flow rates and the
possibility of high viscosities, the Reynolds num-—
bers are extremely small, hence we can entirely
neglect inertial effects on the flow field. The
equations of motion for the incompressible fluid
will be those of Stokes flow, or appropriate
approximations for the case of these long slender
cells and comnections. In the final section, the
conclusions of this paper will be appraised.

2  MODELLING THE RESISTANCE OF SIEVE PLATES AND
PROTEIN FIBRILS

To model the resistance of the sieve plates and P-
protein fibrils in complicated on the micro-scale.
We may estimate the pressure change AP across a
sieve tube element by using Poiseuille's law in
both the tube and the pore as follows,

where Q is the volume flow rate, & the length and

a the radius of the sieve tube and L, the length
and R, the radius of the sieve-pore respectively
while N is the number of pores in the sieve plate.
Tt is often stated (e.g. Canny 1977) that the sieve
pores occupy approximately half the area of the
sieve plate. Canny (1977) cited examples, based on
the above formula, of the pressure gradient along a
sieve tube in the absence of a plate and also in-
cluding it for physiologically relevant data. The
overall pressure gradient varies from 0.25 bar m !
in the absence of the sieve plate to 800 bar m™!
for the very finest sieve pore (of radius 0.05 um).
Clearly the shape and size of the sieve plate and
pores are very important.

To model flow in both the sieve tube and the plas-
modesmata in more detail we need to resort to the
uni-directional Stokes flow equations in a cylind-
rical tube,
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where u is the axial velocity and r the radial co-
ordinate. For one protein fibril in the centre of
the sieve tube the relation between the pressure

drop AP across a length £ and the volume flow rate
Q would be,

AP = g%g& [a"—r: + (ri-—az)z/lc)g(ro/at)]"1 (3)

where r, is the radius of the protein fibril. 1f
the radius of the fibril is only 1/100 that of the
sieve tube the pressure change for the same flow
rate will be increased by over 25% on that in
Poiseuille flow.

However, it is thought that there are a large num-
ber of filaments and fibres occupying the sieve
tube lumen so a model incorporating this additional
resistance is needed. An approximation can be ob-
tained by considering a volume resistance term on
the R.H.S. of (2), and since we are concerned with
Stokes flow, this term will be proportional to u,
the axial velocity, (i.e. we add a term - Yu onto
the R.H.S. of (2), Y = force/unit volume, see e.g.
Brinkman (1949), Saffman (1971), Blake (1975)). It
is straightforward to calculate the volume flow
rate Q in a cylinder of radius a which includes a
volume resistance and compare this with that due to
Poiseuille flow (Qp) in the same tube. The ex=
pression is,
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where o is the volume resistance parameter
(=(Ya2/u)%) and T and I, are modified Bessel
functions of the %irst kind of zeroth and first
order respectively. When o tends to zero (i.e. mo
volume resistance) Q/QP obviously tends to 1,
while for large o it asymptotes to,
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in Figure 2.

A graph of Q/Qp against o can be seen

1-0

|

08
06l

04l

o2k B

Asymptote

00 4-0 50

Figure 2 Comparison of the volume flow rates for
resistive media with that in Poiseuille flow as
a function of the volume resistance parameter &

Tt is hard to estimate & accurately. However, from
Happel and Brenner (1965), we can obtain an approx-
imate value by using their results for an infinite

array of cylindrical rods, which gives,

2ma’

b
(log(d/r,) - 1.32)a%’

o=

(6)

where d is the spacing of the rods and r; their
radius (see also Blake 1975). Thus we can assume
that o = 0(a/d). Using data based on Canny's re-
view, d = V21 R (R = radius of sieve pore) which
would give values of o in the range 0(1) - 0(100).
Thus the hydraulic conductivity for flow in a sieve
tube may hardly vary from Poiseuille flow for small
values of o but may decrease by up to 3 orders of
magnitude for large values of o (see (5), taking

8 = 0(10)). The pores will increase the resistance
further, presumably compressing the fibres closer
together and leading to larger values of o there.

3 PLASMODESMATA

The geometry of a plasmodesma is shown in Figure
1(b). We take it to be of length % and the radius
of the inner and outer tubes to be b(x) and h(x)
respectively, x being the distance along the axis.
We will consider two different fluids in the lumen
of the plasmodesma (i.e, in the central cavity and
desmotubule), a Newtonian fluid in the first ex-
ample satisfying (2), and a power-law fluid for the
second one which satisfies the following equation
between the pressure and the viscous stresses,

u
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Here K is a constant analogous to viscosity in a



Newtonian fluid, Yy is the index of the power~law
fluid and sgn(x) is 1 if x > 0 and -1 if x < 0.
These equations (2) and (7) are valid approximations
because the plasmodesma is long and slender. It is
straightforward to obtain the linear relationship
between the volume flow rate and pressure change
across the plasmodesma for the case of a Newtonian
fluid and the special case of y = % for the power=~
law fluid. Further details on velocity profiles
and additional calculations can be found in Blake
(1978).

It is more convenient for computation to use non=
dimensional quantities. If we define a as the
radius of the symmetric desmotubule and the entry
and exit point of the flow (i.e. a = b(0) = b(R)),
then the following non-dimensional quantities
(capital letters) can be used in the case of the
Newtonian fluid example,

H(X) = h(x)/a, B(X) = b(x)/a, X = x/4
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where Q and Q1 are the volume flow rates in the
central cavity and desmotubule respectively. For
the power-law fluid with y = ) we use the following
for the volume flow rates,

AP

07 20 Q% Q1 = -2m (Am)? % Q' (9)

Qe =28 20K

The primes are used to denote quantities in the
desmotubule. On dropping the asterisks from the
Q's we obtain the following first order differen-
tial equations. In the case of the Newtonian fluid
we obtain,

£ = 8QLH"-B*+(B*-H?)?/1og (B/H)] ! (10)
4B} _ gqip (11)
ax- = Q
while for the case of the power-law fluid
iP-_ = li
= = e/ (12)
dRl_ ¢ 1ok
= = oty (13)
where
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The cylindrical surface in the central cavity where
du/dr = 0 (i.e. shear is zero) is defined by

r = 6(x). It can be obtained by solving a quartic
(see Blake 1978).

In the calculations, we have taken,

C+(D-C)sin?(mX/24) : bO<XA
D AS X< 1-A (14)
C+(D-C) sin? (M(1-X)/24): 1-A<Xx<1

L !

H(x)
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with B(X) being taken as a constant equal to 1 (as
b(x) = a), A=0.2, D=3.0 and C 1is to be varied
(1.2 T <3.0). This geometry appears to be a
reasonable representation of the shape and relative
dimensions of an idealised plasmodesma (see Gunning
and Robards 1976). With the above geometry it is
straightforward to obtain values for Q and Q!. 1In
the case of Q! its value is 0.125 for the Newton-
ian fluid case and 0.1 for the power-law fluid, but
to calculate Q we will need to resort to numerical
techniques. It is simplest if we express this gap
thickness in terms of a non-dimensional ratio, €,
of the neck gap thickness to maximum thickness of
the central cavity. For the geometry represented
by (14) we define

-B

c

[o=]

€ (15)
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In Figure 3(a), the ratio Q/Q' is plotted as a
function of € on a log/linear plot for both the
Newtonian and power-law fluid case. They both show
a similar shaped curve with the rapid decrease in
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volume flow rate with decreasing gap thickness €
being the prominent feature of both curves. For €
less than about 0.15 the volume flow rate is larger
in the desmotubule in both examples. To understand
the physics of flow in the central cavity it is
illuminating to look at the pressure changes along
its length. 1In Figure 3(b), the pressure changes
are illustrated for the ideal symmetric plasmodesma
used in this paper. Values of € are indicated on
the figure. For narrow neck gap thicknesses most
of the pressure change across the central cavity of
the plasmodesma occurs in the neck region: for
example in the case of € = 0.1, 95% and 99% of the
pressure change for the power-law and Newtonian
fluids respectively. In the rigid central desmo-
tubule the pressure change follows the straight
line given by € 1.0. From this graph it is app-
arent that the desmotubule membrane may have a
pressure change across it equal to almost half the
neck gap thicknesses. If this membrane is suffic-
iently permeable another pathway using both the
desmotubule and central cavity may be possible.

5 CONCLUSIONS

In this paper we have looked at several aspects of
flow in sieve tubes and plasmodesmata within plants.
Our theory would indicate that the presence of fib-
rils within the sieve tubes may significantly de-
crease the volume flow rate for a given pressure
change. Clearly this effact needs to be included
in any future models of sucrose translocation,
possibly by using a lower value of the permeability.
It is apparent from the mathematical model of flow
in the plasmodesma that the single most important
feature affecting volume flow rates is the constric-
tion (the neck) at each end of the central cavity.
Geometry also has an important influence on the
pressure distribution within the plasmodesma, open-
ing up other possible transport paths.: These will
be investigated in more detail in a later paper
(Blake 1978). Overall, these theoretical amalyses
produce much lower estimates for the hydraulic

conductivity than have been used previously. This
may indicate that other mechanisms need to be con-
sidered for transport in plants instead of the
standard pressure difference - bulk flow models.
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