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SUMMARY

The paper introduces the discharge process as an emergency method of relieving the
pressure in an autoclave system., The theoretical aspects of the unsteady flow in the pipework
are discussed and consideration is given to the mesh method of calculation for subsonic and
supersonic flow. The techniques of treating the moving shock wave and the temperature
discontinuity are discussed and the method of starting the calculation is also explained. Next
the results of pressure~ time calculations are compared with measurements on both a full
scale and a model autoclave., The agreement between the results is excellent and this
confirms the validity of the theoretical treatment.
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NOTATION
a speed of sound w gas velocity
@  reference speed of sound W  speed of shock wave: Fig. 2
& speed of sound after expansion to )(:-%—_— non-dimensional distance coordinate
reference pressure ¥ P non-dimensional distance moved by
Cp specific heat at constant pressure shock wave: Fig. 2
Cv  specific heat at constant volume o _ distance coordinate
D  pipe diameter Z =% non-dimensional time
.‘Df,g,_ mesh fractions: Figs. 1,2,3 o= BB
£= 2 friction factor g= a@-?& characteristic parameters
-6,‘ ‘%, functions of -1 ___a@.*%-:; %
l.! heat transfer coefficient 9 densz
k= %isentropic exponent Tw shear stress at wall
L.~ reference length (7 dummy variable
Ms'a-’r non-dimensional speed of shock wave, Subscripts '
also mesh number: Fig. 4. T denotes low pressure region ahead of shock wave
Ner temperature recovery factor 2 denotes high pressure region between shock wave
P pressure and contact surface
@ reference pressure 3 denotes region between contact surface and
9 rate of heat transfer to gas per unit expansion fan
time per unit mass of gas 4 denotes region between expansion fan and autoclave,
t time also initial condition within autoclave
€@  reference temperature Various letters are used to denote points, see Figs.1-4
R gas constant

1. INTRODUCTION

In chemical plants, such as those used in the production of tetra-ethyl-lead, the process reactions are
carried out in large pressure vessels which are termed autoclaves. In certain circumstances the reaction
can become unstable and as the normal regulating procedures are unable to prevent the pressure rising, an
emergency situation develops. In these circumstances, a thin metal disc, which seals the autoclave from a
large discharge pipe, ruptures at a predetermined pressure. This action causes the contents of the auto-
clave to discharge rapidly and, thus, major disaster is avoided.

The discharge process occurs in two parts; first, there is a wave action period which is followed by a
quasi-steady flow period. A simplified adiabatic and frictionless approach to the discharge problem was
described by Woods and Thornton (1)* and the present paper reports further developments in this work. An
extension of the mesh method of Benson et al (2) and somewhat similar to (3), which treats subsonic and
" supersonic flow between moving boundaries, and a technique for commencing the calculation based upon (1)
are described. The treatment of a moving shock wave and temperature discontinuity is also given. The
resultsof computer calculations are compared with measurements from both full scale and model tests and
excellent agreement is found. This confirms the validity of the theoretical work.

2. THEORETICAL ASPECTS

In this section features of the basic unsteady flow are discussed and this is followed by a treatment of
the shock wave and temperature discontinuity boundaries. The technique used to commence the mesh
calculation is also outlined. The open end boundary and the autoclave boundary are not discussed since they
are similar to boundary conditions for engine systems (4). However, steady flow tests on the model auto-
clave gave an effective area ratio based upon the outlet pipe cross sectional area of 0.7 and this value was
used in the calculations for both the model and full scale autoclave systems.

2.1 Basic unsteady flow

The partial differential equations of continuity, momentum and energy for unsteady flow of a perfect
gas in a constant area duct are transformed using the method of characteristics to give the following

h o -
characteristic equations (2), (3), (4), (5) dX) wu :_*,'Cg'-)- - - /
For the A and B characteristics éi‘ é" @

L
- (h)dy 7 LCEIB) o YAk [z + gt —— -2

* References are given at the end of the paper.
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e L o, 2{L]/2- 3] .

i e[ S ] = e
where ﬂ.:@.{_*—'u JQ @ ﬁ"é_ and o = @a__

- These equations are solved numerically using a mesh method somewhat similar to (2), as illustrated by Fig.
1. This illustrates an extension to the method for supersonic flow.

c FLOow —>= FlLow —»=
A2 1 B |suvssowic SUPERSONIC

AT C AT C

AW, 8 @ D AW @
L2 1 D2 DJ—}
MESH METHOD FOR SUBSONIC A»v suPErRsoNIc FLow FIG.1
The friction factor f- }7 has been found to have values of 0.003 and 0.005 for the full scale and
2

the model autoclave systems respectively. The heat transfer term is evaluated using the Reynold's Analogy
in the form 9 - The temperature of the pipe wall is assumed to be the same as the initial

temperature of the gas in the pipe and also equal to the initial temperature of the autoclave contents. This
temperature is selected as the reference temperature @ Accordingly the reference speed of sound is
@,= p@ The heat transfer rate becomes

1=t - e ST - .

where NRF is the recovery factor. A value of 0.9 has been found to be a reasonable choice for steady flow
from (5) and this has been used for the internal mesh points of the calculations,

The general method of calculation for the internal mesh points follows similar lines to that described
in (2) (3) & (4) but the moving boundaries are described next.

2.2 Moving shock wave boundary

The shock wave in the present work moves into stationary gas and the following equations apply to this
case (5) (6). It should be noticed that in this sub-section (2.2) the unsubscripted symbols apply to the
condition at the shock wave on the high pressure side.

P/Pl:'P/@'—"ﬁ_:_!(Z“Mz—ﬁ*!)———- —— — = = — = &

this may be rearranged to give
y g taghus: 24—@

/@ 2 o 7.

@~ [zi—,(:e&:w‘- é-'-:)]%% B [Z:_T(zkﬁdz—ﬁ*-l)j%c‘

The equation for the gas velocity on the high pressure side of the shock wave is,

'&4,'= & "fzw (M ’“)'""(k_.,) ''''' -

A
The Rankine-Hugoniot relationship may be expressed Z
e — 2 e o D,

. (F)-5-& - oﬂ,
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Now it may be shown from equations 6, 8 and 9 that a is a unique function of M, thus:-

E-)(2keM* e +1) ] Nz
A= { sy M l }24-/;,‘",—';[’“-&) 10

for brevity we may write 2%&M -
A= f.(m)

Now theﬂ value can also be expressed using the characteristic equation of state. For the purpose of
this evaluation, subscripts, which correspond to Fig. 2, are added for clarity. Thus,

VIR W W |

The term g %NF is evaluated using a finite difference form of the upper part of equation 2.

Values ofﬂN, PN and Ofw are found by linear interpolation, using

P = Y + D (Y - Ys) (¢ =1, ﬁ:"")——— 12

Gr)de — (-R)B —204-)FE .. 13
24{1;—1) + @) -1g) —(3-R)( B -F5) '

and mean speed of the shock wave over the time step is used,

Kegy - (Megte) S

Now the set of equations 11, 12, 13 and 14 may, in principle, be regarded as

Ar=tM™) - —— ——— - — — — — — — — )

In order to solve the shock wave boundary problem we need to find a value for M = Mg which satisfies
equations 10 and 15, This may be expressed as a single equation, as follows:-

f,(MF)— ]‘,(Mp o SRS S . -

A numerical method using a hyperbolic interpolation technique is used to find the solution.

where,

Having discussed the shock wave boundary, the temperature discontinuity boundary is considered next.

Characleristics '

: |_x P,.| and main mesh ——

D E £ Auxiliary mesh ———
H Shock wWave e

I

: I Az locus

L A
AGW 8¢C :
k2. SHOCk WAVE BOUNDARY  FlG.2

2.3 Moving temperature discontinuity

M= X
_t Q,
A a

Distance

Fessure
K0

-

The temperature discontinuity is a somewhat similar problem to that of the shock wave but in place of
the shock wave equations there is the equality of pressure and velocity across it. In this case the cal-
culation is direct and, with reference to Fig. 3, values of 4,  and & are known at the beginning of the
time step at points R-1, R, R+l etc. The values at the auxilliary mesh points A, D and G are found by
linear interpolation using equations such as

A = Ap +(’AR~7|R-;)AX —————————— —— - AT

The distance moved by the temperature discontinuity is AD and it is found from

AD==(7]7‘_}_}9‘-)A2 ___________ _____ 18

The distance D1 is determined from, 2 A D { (. ’)
A

@-ﬂ-l)ﬂ; -(3"£)€‘- _ S
D, = 2-&2-) +(‘ﬁ+l)(7|l.-qﬂ)—(3'ﬁ)(ﬁ1-"ﬁ“)
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h istic
A%, AL e — 3
- E(F Auxiliary N — Ue=UF
; | mesh -~ 1
Temperalure é b T

I
I
AE I 1 8 disconlinuly T
: / :,/ l Distance
%] A WRL/IF R+/ D Q@ TEMPERATURE
, 2, D2 DISCONTINUITY BOUNDARY [F/G.3

and the property values at W are found by linear interpolation using:=-

ww=“[1'_"Dl(¢L"wﬁ) ((//=ﬂ,ﬁ,°()__.... —_— e ——— = —20-

A path line calculation is used to calculate O from

O - _ iﬁ- /(QL"ﬂl-)/ - 31."'181- * e=Pe 5
ot D #)(Ac+R); 1 (7_) *%:@ 4z

The value of ﬂE is found using
,AE = ’Aw o+ J qwe

where S’A‘ is found using a finite difference version of equation 2.

The calculation of the Bcharacteristic is dependent upon whether the temperature discontinuity
crosses a mesh or not. Fig. 3 shows the case where the mesh is not crossed; only this case is described

here. In this situation, 7 % A D
b, _ (£-3)2%-2s) + G+ )28p-Bs) + ~ Az 23,
- %2 —®#-3Y4e~) - (£+)(Be - B)
and, again, linear interpolation equations are used,

Voo tlo + (Oai)Uto—tts) (WmBBoot)—e 2

The path line equation 4 is applied to find O(F, in a similar manner to the way equation 21 was used to find
Of .

Next, the lower part of equation 2 is applied to QF to 5 - from which

Br = B o e e TR 58

Hence, from the above equation the following parameters have been determined = 0(5 ,'l\E ,SX¢ and ‘e;:
and it remains to calculate ﬂﬁ and ﬂF'

The conditions of equality of pressure and velocity across the contact surface lead to the following
relationships:=

p _ 2Pecte + Ae (e — oz) o
£ (oF +oe)

= 2%cte +19F(°(F'-°(£)
A (e +o¢) e e == =27

Hence, conditions across the temperature discontinuity at the end of the time step are determined.

and

In the next section the singularity condition at the beginning of the calculation is discussed.

2.4 Starting problem

Prior to bursting the diaphragm, the gas at a high pressure region 4 is separated from that at
atmospheric pressure region 1 and both gases are at rest, Following rupture of the disc an unsteady gas
motion is initiated within the pipe, as shown in Fig, 4, and the object of the starting procedure is to provide
the initial data for the mesh calculation. This is necessary because the commencement of discharge is a
singularity problem identical to that in a shock tube. An initial time step is used during which frictionless
adiabatic flow is assumed to occur. The duration of the time step shown in Fig. 4 is the minimum period
needed to locate: (i) at least three mesh points between the shock wave and the contact surface, (ii) at least
two mesh points in region 3, between the expansion fan and the contact surface, and (iii) at least three mesh
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POSITION DIAGRAM FOR THE STARTING PROBLEM FIG. 4
points within the expansion wave (F-G) in Fig. 4. The basic problem is the determination of the two inter-
mediate gas dynamic states in regions 2 and 3. The requirements about the number of mesh points within
each region are controlled by the needs of the moving shock wave, the contact surface and interpolation
within the expansion fan.

The calculation is direct and the non-dimensional speed of the shock wave M is given (1) by the

equation, 2%
b _ f- 2_qlf1 — (f-i)(M*=1) “z:)
G A 2

The velocity behind the shock wave is given by equation 8, and equations 6 and 9 may be used to show that

[}
as _[1v206=) [amrt, —t&-)] )2 hanbs 29
9, (& +1)* & 2 o

Further, equation 6 may be used with equation 29 and the definition of &to give,

[1 + & (=) ]%

In region 3 the conditions are found from the following relations.

-——----—-- 30

Prior to discharge, a4= Q,= @, and across the contact surface p3=py and ug = uy, hence:-

ﬂg_ﬂg=ﬂa-ﬁs — e e m— = = = m = = = e === = 3’

holy  foels o 32,

The change of state through the expansion fan is assumed to be isentropic and this gives,

as _ BN _ A5+
Bl A

Xg = oy = %(P%’)% S -

The conditions within the expansion fan are found by linear interpolation between points F and G on Fig. 4.
The horizontal distances of F and G from the bursting diaphragm areAxF and XG-

where
3—4 [ &"' ‘. »
AXJ= mﬂ‘} —27-&-11—)%] (J——-F,G)_-___,____ 35-

Hence, the main new features of the theoretical treatment have been discussed and these were used,
together with other better known techniques (2), (4), (5), to prepare a computer program which calculated the
whole discharge process, The results of calculations performed with this computer program are compared
with experiments, in the following section.

and

and, also,
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3. COMPARISON WITH EXPERIMENTS

Experiments were carried out on both a full scale and a model autoclave. The general configuration of
each is shown on the inset of Fig. 6 and the relevant dimensions are given in Table I and on the inset on Fig.8.

TABLE I &DETALLS OF AUTOCLAVES AND DATA USED IN CALCULATIONS

; ; ! ? el 'y Effecli
Dimension &%535{:” Vol. Pipe dia  Pipe length ggggg;;n dz_::' Frctionfactor f&ﬁ‘«? #:g’ o ”ri :rea
or factor vy pre m m 1 fronA:Fi9b £ Ner SR
Full scale 2.288 02032 944 4572 0:003 0:9 0758
Model 0.0355 8.0508 S./4 4 4.572Z 0:005 09 0-78

Preliminary calculations were performed using mesh numbers of 20, 40, 100 and 250. It was found that
100 meshes was a suitable number to use. Calculations were also performed using various friction factors,
from frictionless adiabatic flow £=0 up to a value of £=0.005. From the results friction factors of £=0.003 &
£=0.005 were selected for calculations on the full scale and model autoclaves respectively. The effect of
friction factor is to prolong the period of discharge and also increase the maximum pressure and the general

level of pressure in the discharge pipe. Ul Release pressure ratic B 3.04
34 . 37 2

N —— Experiment

Avtoclave 2o - —— Calevlatlion

m b

[T
2-" L E 2. -

b Tapping N2 4

0 T T 1 T | o v T T T
Time S 0.2 0-q Time s 0-2 0-4
ComPARISON BETWEEN EXPERIMENT AND THEORY:FULL-SCALE FlG. 5

The comparison with the full scale test is shown in Fig. 5 for a low release pressure ratio;%/ﬂ: 3-04

and in Fig. 6 for a high release pressure ratio qu-/p, =7.12. The results show very good agreement between
the calculated and experimental results. The data used in the calculations is shown in Tablel.

Comparisons with the model tests are shown in Figs. 7 & 8 for release pressure ratios A ‘Vh =7:/2

and P%--- 2/-4 respectively. The agreement is once again very good. Inthe model tests at the higher
3 - o
7 s 4 = : 8

Localion of burst.r'na

6 - | dise
10 Release
l Lo 5 =712
5 4 Avtoclave pressvre ratiuwo 2
\\ Auloclave | Experiment
—— — Calcvlalion
=771 (4
\ \Ta ping Ne T

COMPAR|SON BETWEEN
. EXPERIMENT AND
>._ THEORY:FULLSCALE

... FlG 6

,b ressore Ttalio ﬁ/g

~
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release pressures supersonic flows occur in the discharge pipe. The data for these calculations is shown in
Table I. The results of the comparisons confirm the validity of the theoretical method.

Release pressure ralio f_tg 7.12
[)

Experiment

— == Calcvlatlion

Avtoclave

Tapping N27

T'Q_PP:'H_Q Ne 3

Ol o'.z 03 0 0l 02 0:3
Time Time § IG
COMPARISON BETWEEN EXPERMENT AND eoRy: moves — H1G 7
4. CONCLUDING REMARKS

A comprehensive theoretical treatment of calculating discharge from an autoclave and pipework system
has been developed.

The theoretical method has been validated for both subsonic and supersonic flows by comparing test
results and calculations, Comparisons between calculations and tests on full scale and model autoclave
systems have shown excellent agreement.

2| ] Transducer tapping num ber
{2345 ]6]7]8][5 |0
Dislance from A fowards 8 m melers: Fig.6
o Release
17 MODEL. |6839|6706|5893| 5-49¢| 4928|¢:420(2286 | 1967|0452 }% pressure ralio
~ L]
& sonre (8899(6708|  |rase|  |a-azo|2266| o452 “”g §-= P
o 131 Avtoclave Eapenmcnt
‘;c:! ——— Calevlatlion
v g Tapping N27
2 COMPARISON BETWEEN EXPERIMENT
v
N . AND THEORY : MoODEL FJG 8
1 ‘ O.:"
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