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SUMMARY

Dissipative processes induce heat transfer and affect the
temperature field within the adiabatic, viscous flow.
Work, done by the forces, determined by the viscous stress
tensor may be expressed as a sum of two terms. The first
term is the work of displacement of the fluid element
against friction forces, The second term is a dissipation
function which is a measure of heat generated in the flow,
The temperature field is a function of the work of friction
and the paper presents the solution of this problem for
laminar flow through cylindrical duct. The equation of
energy to be solved is a parabolic equation with second
order boundary conditions., The numerical solution as

well as the analytical asymptotic one has been found.
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NOMENCLATURE

specific heat

C[T/kg K]
V[ m/sec]
Q’[kg /m3]
/\ [I/m sec KJ— heat conductivity
/’0[/"3 /m sec ]— viscosity
L [- J}dkj] = internal energy

INTRODUCTION

velocity

|

density

The work, done by the forces, determined by the viscous stress tensor may be

expressed (for a unit of mass and a unit of time) in the form
- /
L " V-f+§:‘¢

The first term on the right hand side is the work of displacement of the
fluid elements agains frictional forces. This term is of negative sign (the
angle between Yy and is obtuse) and this term alone causes the isentropic
decrease of pressure and consequently decrease of temperature in a compressible
flow. The second term (¥ ) is a dissipation function. Tt is the work of deforma-
tion of particles (*) and in the case of a compressible fluid also the work of
change of volume (acainst friction forces) of particles. The dissipation function

is always of a positive sign and it induces the increase of the entropy and
temperature. This function is a measure of heat generated in the flowing fluid.

In this connection there is an essential difference between the compressible
and incompressible flow, Apart from the effect of the change of the kinetic
enerqy on the temperature, the temperature chang caused by the dissipation
function may be counterbalanced by the work ( V- ) in compressible flow, In the
case of an incompressible flow the change of pressure does not affect the
temperature; consequently, an infinite increase of temperature takes place along
each stream line due to dissipation. The dissipation function is usually
considered as a negligible value in a laminar flow. The relationship between the
dissipation function and the temperature in the incompressible laminar flow
through cylindrical tube is presented below.

In this case
=i N % - av &
V-f= £(4dE+vst) ana ¢=p ()
substituting the velocity profile V= _gT/Lu._ %/Rt— t'Z) = const. /'Rz‘f?)

into the sum of the above two expressions we obtain
= —L_ d 2 z 2y _ - z_ 2
[-QP}L(JE)(Zr—R)_Consf. /2!’ R)

The distribution of L and the distribution of both of its component along
a radius (for a tube of radius R = 1) is illustrated in Fig. 1. It is evident
from this diagram that V-.f—f-j,’-qbzd at the radius r:i—\]z,'

where the velocity takes its mean value.
The integralzf"”- over the region bounded by the walls of the duct and two

arbitrary cross-sections is obviously equal toO zero for any flow, The temperature
field in a viscous adiabatic flow depends on the function Y

(*) Friction Force F=é-v-n=% [VZ V'f'gj{V(Vz‘V)] .
Mechanical energy equation 3,*'— ﬁ‘—'— - a?; ( %‘)'ﬁ V‘f
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SOLUTION OF THE PROBLEM
From the energy equation

o : g
aTF(f""'Zg*%):é?*V'f’“flV'(f\VT) (1)

and the relation (2)
tdp_v.f Ay

"f" Vlf pr
we obtain for incompressible flow
df =FP+EV(AVT) (3)
For the flow under consideration V= Vz(r‘)/ ¢= ¢{r)

the specific heat C, heat conductivity /\ » and viscosity 44 are assumed to be
constant. Taking into account the above assumptions and the relation

;%{_1_ v-v( ) the equation (3) may be transformed to the form
/ 27 4'
v iT= g pri (7t F) (4)
Using the following substltutlons:
Re - radius of the tube
A, = iL(" 4p) = mex (at the axis)

- 2 -
Az = fCRLA ‘l/cfc'r (dZ) As S"CRa
we obtaln
- ar
A, (I ) A,_r 'LASBTT’F%ZTF (5)
w1th the boundary conditions

3r =0 forr=0 and r=/; T(r0)=0

In equat:.on (5) and in the following work [ denotes a non-dimensional
quantity in the interval < 0,1/~ . Equation (5) together with the boundary
conditions is the final formulat:.on of the problem to be solved. This equation
can be transformed by means of a Laplace transform (with respect to 2)
to the ordinary equation

/ 2 . :
A(1-17)sf=A. ’_+43%+A3#% (6)
vhere 7[ ][(S I‘) s with the boundary conditions
é-l{ 0 forr=0 and r=/.

The explicit solution of equation (6) has not yet been found, An approximate
solution may be obtained by assuming an expression for its first derivative in

the form
gﬁ a, (r=+r)+ az(r-+°)
which satisfies the boundary conditions aif-o for' rF=0 and =/
Hence : g 3 j
[ ¥
f= a(tr-4P)r aldr-f1)ra,

coefficients ay, 32, a3z have been found from the condition that expre551on (7)
satisfies equation (6) at three points r = 0, &, 1,

Applying the inverse Laplace transformation to expression (7) we obtain
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~ag Z /43- _ 7 /42 - 7- AZ - Z 3[“1—2 rj‘) +
F= /28 ff € ¥ = 128 A3 22 A3 e
-.oc

2/ A Z 14z ’r) (9)
(8 58 "’-’—As)( r=z

where o= 34-9) i_&
!
Tf & o0 expréssion (9) takes the form
Az 4 /41 Z. A=
= - 125 4 (Zr f')+ Z -2 i (10)

and this is an exact asy'mptotlc solution of the original problem, satisfying

equation (5) and the boundary conditions for r = 0 and r = 1,

Although the boundary condition T[O,I‘) = 0 has been included in the transformation
of the form (5) into (6), the expression (9) satisfies this condition only at '
particular points (r = 0 and r = &); however, this does not affect the asymptotic
solution,

From equation (10} we obtain

o = AZ = ) = const. (11)
2Z A S" c dZ

For the mean value of temperature over the cross-section of the duct ( 7- )
the formula (ll1) can be derived directly from the equation of energy. Formula
(11) is valid for laminar as well as for turbulent flow and for an arbitrary
shape of the cross-section of the duct, ify(r) does not change alongz. The
gradient of the mean temperature /m , as well as the component of the grad 7 &
along each particular stream line for largez, may be expressed for laminar flow

as follows /42 , /‘(VW / g Vm
Vb= 14:- /?Q) PC Ro —f"—z Ro

where V, - mean velocity, Ko - radius of the tube

Equation (5) has also been solved by a numerical method, The numerical
integration has been performed using the ordinary finite difference method,
Making the substitutions,

T  _ ﬁ',ku - Tik ~

iz & /
a7 - Ternk — Ti-i,k . oT _ Tirk -2Tik *‘77-4!(
or 2h I orv ~ 5>

vhere f‘,',.,:l’;‘i'hi h=0-/ / Zk=k«{/‘ £= /"76

we obtain the following form of difference equation

+ 4 +As h / . :
Tona = T+ 4 1h T N ,_r,[;—{ﬂ;,,k—ZT,,ﬁTH,k)ih

L% S = T 13
r (7;#,& 7;—l,k )J (13)
which corresponds to_the differential equation (5)., In order to satisfy the
boundary condition =0 forr =0 and r =1, the mesh has been chosen so that

the boundaries defined by r = 0 and r = 1 lie halfway between the mesh lines,
and it has been assumed that px =7,k and Tpx =T,k . T O R .
B. Two examples of the evaluation of the temperature field are presented below
for two kinds of liquid, both flowing through a tube of radius

-

EXAMPLE 1.

The evaluation has been performed for water at [ = 273K =0
- . ey 3 . — . = A - - " -3
Vax =00 P=10° » C=4239,; A=0:352; pe= [79x00
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The increase of the mean temperature
el___d? = 0-1683x/072 'K /m

The numerical (formula 13) and analytical (formula 10) solutions are produced in
Table 1. E

The small differences between /muw and 7&,, can be made even smaller, if instead of

constant term equal 7 A3 in formula 10, the corrected constant is found from
128 A2
relation fTVdF=0 far z=0 (F - area of the cross-section of the duct)
F

which corresponds to the initial condition Tm a2 Jfar Z=0,

In example 1, ,'%'gﬁf = 0.07/ and the corrected const., = 0,08l, Table 2

presents the numerical and analytical results, where the latter were obtained
using the corrected constant.

EXAMPLE 2

Properties of the liquid (glycerine)

- X - . - /. . — . -3 . -
rf-gw/ C= /950, A 0/26’//a,-2/ GX1077 ) Nman = /5

The increase of the mean temperature
T . -3
=7-38x/0"" K/m
sz 7 /

Tablt_e 3 presents temperatures determined by the numerical and analytical
method, with the useaof the corrected value of the constant in the latter,
For K = 400 (Z=2x/ ) the differences are very small except in the

vicinity of the axis of the duct. Both methods give almost identical results
fromk = 600 (Z=3x/3) N ¢

CONCLUSIONS

Although the increase of the temperature along =Z is infinite, the

function 9,? remains constant with respect to = , after a certain initial
distance from the entry to the tube. The increa§e of the temperature along the
radius is proportional to the ratio /“'/)l and Vanax.,

The temperature field does not depend on the Prandtl number,

Both examples verify the validity of the analytical method of solution
of the problem, and this method can be applied to any similar problem of heat
transfer with the same type of second order boundary conditions.

There are limitations in this method (for a viscous fluid flow problem)
arising from the initial assumption A = constant, The results of
example 2 are only approximate ones, because the temperature differences even
along the radius are relatively large, and this results in a significant
variation eﬁ/u.

But for Vmex = 5 instead of 15, the maximum diffe.rence in the temperature
between ' = 0 and I = 1 is 2 °K instead of and difference in
the temperature between k=0 (z=0) and k=600 (z=3000 )

is 8% °K. For such a temperature gradients the asggmption
/u_ = constant is still permissible,

The paper presents the gquantitative assessment of the influence of
the dissipation function on the temperature field in a viscous flow,
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T a b 1 e 1
1 3 .5 7 9 10
0.05 0.25 0.45 0.65 0.85 0.95
0.09 0.11 0.15 0.19 0.23 0.24
0,099 0.118 0.157 0,206 0,248 0.259
Table
0.05 0.25 0.45 0.65 0.85 0.95
0.09 0.11 0.15 0.19 0.23 0.24 K=200
0,089 0.108 0.147 0,196 0.238 0.249
0,05 0.25 0.45 0.65 0.85 0.95
0.25 0,27 0.31 0.36 0.40 0,41 | K=400
0.258 0.277 0.316 0.366 0,407 0,418
T-a b 1 e 3
0.05 0.25 0,45 0.65 0.85 0.95
e - —
6.25 8,09 12,11 17.92 22,32 23,90 K=400
5,363 7.568 12.18 17,925 22,818 23,983
12.83 14,92 19,35 24,96 29,78 31,07 k=600
12.747| 14.952 19,564 25,309 | 30,202 31.367
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