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SUMMARY

The free-molecular hyperthermal flow of a rarefied gas-mixture past a convex solid,
not necessarily cold or cooled, body of constant geometry is considered. It is
assumed that the constituent incident gases, which may not be monatomic, are in
equilibrium at infinity and that the boundary conditions at the surface of the body
are given in terms of the accommodation coefficients, the same for each gas and
independent of velocities and angle of attack. It is shown that, unlike in the case
of subsonic or transonic free-molecular flows, the introduction of a certain
hypothetical (singlet) velocity distribution function for the gas-mixture as a

whole yields results sufficiently exact for various practical applications if an
error margin of 1% - 1.5%, in comparison with the corresponding results of the
"exact" theory, is permissible. Such a simplified approach can also be used (i)

to compute hypersonic and supersonic free-molecular flows of similar type if an
error margin of 3.5% is permissible; (ii) to evaluate very accurately the aerodynamic
characteristics of a convex solid body in high altitude (upper atmosphere) flight.

A. Glikson, Department of Mathematics, Univ. of New England, N.S.W., Australia.



523

I. Main aim and contents of this paper

The main aim of this paper is to show when and how, for the regime as described below in
Section II, sufficiently exact for various practical purposes, results regarding the aerodynamic
quantities of interest can be obtained, on the basis of a certain (one-particle) velocity
distribution function which is defined for the gas as a whole (see Section IV). [This is done
for an arbitrary angle of attack.] To make the comparison between the corresponding results of
the usual "exact" theory and the approximate simplified theory given here more convenient for
the reader, appropriate formulae of the exact hyperthermal* free-molecular theory are given in
Section III. A specification of the ranges of applicability of the theory proposed as well as
the "exact" theory leads to a description of some limitations of the theories. This is given
mainly in Sections II and V. The latter section also describes some related work to appear
later.

II. The regime and introductory remarks

Consider the hyperthermal free-molecular flow of a rarefied non-reacting gas-mixture past
a convex solid (not necessarily cold) obstacle, assuming that the boundary conditions at its
surface are given in terms of accommodation coefficients (a.c.'s, for brevity) and that the
constituent incident gases are each in equilibrium at infinity. More precisely, the following
basic assumptions and conditions are to be satisfied:

(i) [equilibrium at infinity]
The velocity distribution function of the ith gas constituent at infinity in the system of
coordinates fixed in the body, f; (x *» «,E5) = fiw(E4) = fi0, is given by

2
nicu (Ei - Em)
£, = T2 €Xp | ==V (1 =1,2,...,K3 Kz 2}, (L)
¥ i, n
T hiw) ie
Here fy., B, = (ZkTm/mi)15 are respectively the number density and the so-called most probable

random speed of the molecules of the ith pag at infinity; k is the Boltzmann constant; mj and
g4 are respectively the constant mass of a molecule of the ith gas and its molecular velocity;
T, and u_ are respectively the absolute temperature and the mean uniform velocity of the gases
at infinity, each being the same for every constituent.

(ii) [hyperthermality]
This is usually understood to mean the fulfilment of the condition

s..>1 (Yo, ;S uh s u, =yl (2)

As is well-known 5_ v M, where M is the Mach number in the free stream. Thus M;, > 1 (Vi)
i.e. the flow is hypersonic. [Note that, e.g. for a satellite regime, the S;, are quite high
(for example, see Cook [3], [4]), which means that the condition (2) can be practically
satisfied.] It should be pointed out that for slender bodies (2) have to be replaced by a
stronger and more precise condition ([5], p. 404)

Sioo cos 6 > 1 (H&), (3)

where 8 is the angle between the outward normal to the surface of the body [see (vi) below] and
the free stream vector u_. It is assumed in the following that this latter conditiom is
satisfied, whenever applicable.

(iii) [free-molecularity] -
We assume that the obstacle is a convex body of constant (rather smooth) shape  having a
characteristic dimension L such that

AL =K, 21 (), (%)

where 1j, is the mean free path of the ith gas at infinity, taken with respect to the system of
coordinates fixed with the gas. (For example, at an altitude of 160 km above the Earth
A, ™ 50 m, L of a very big satellite v 25 m (King-Hele [7] p. 14); for information on the
regimes of satellite, in particular, for values of the mean free path, see Cook [3], [4].) It
should be stressed that whilst condition (4), originated by Tsien [8], was until the beginning
of sixties used as a universal criterion for a rarefied gas flow to be free or almost free-
molecular (e.g. see [9], [10], [11]), it is not in fact sufficient in the case of deviations

The term "hyperthermal" was introduced by R. Schamberg (1Y, [2]:

% .
It seems useful to point out that for a non-stationary shape of the body, the convexity of

the body is sufficient to guarantee that collisions of the gas molecules with the body occur
only once ([6], footnote on p. 402).
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from moderate Mach's numbers Mm* ([31, (61, [12], [13]). For example, under the assumption of
close to perfectly diffuse boundary conditions (in the meaning as given in [5], pp. 396-398),
the flow satisfying (4) is free-molecular, or almost free-molecular, if simultaneously

Ra, /S, > 1 V). (5)

Here S;, = u_/h;,, where hj, = (ZkTr/mi)%, and T, is the temperature of the re-emitted gases,
the same for every constituent. (More on this latter condition, especially on values of Sj; in
satellite flight, may be found in [3] and [4].) Practically, T, has to be bounded from above
to avoid the so-called "real gas effects", e.g. dissociation and ionization, [5] p. 15 [see
also (v) below].

(iv) [over-all boundary (wall conditionsﬂ

It is assumed that the gas-surface interaction is given in terms of three g.¢c.'s, namely the
tangential momentum a.c. 0., the normal momentum a.c. op and the thermal a.c. o,. The coef-
ficients are assumed to be the same for each gas and independent of the angle of attack, speeds
of incident and reflected molecules, and temperatures (including the surface temperature Ty).
Note that generally the a.c.'s should not be fixed independently [5] pp. 396-398, [6] p. 102.
(For very thorough and detailed considerations and discussions of these and other, often much
more general and precise, a.c.'s (including their applications) see Kogan [6] § 2.10, § 6.1 and
references contained there. See also reviews in [3], [4], [5] and [14].) The surface is not
necessarily cold, i.e. even the situations for which S, < 1 can be included, where

— - 1
5., =u /b s b, = (26T _/m,)%. (6)

(Clearly St > 1 represents a highly cooled body.) It is assumed that the gas molecules may
have classical internal degrees of freedom. Thus the heat flux may contain contributions due
to these degrees of freedom but it is assumed that there is no transfer of the translational

energy into the internal energy even at impacts with the wall.

(v) [chemical neutrality]
It is assumed that the gases, and the surface of the body, are chemically neutral. Thus we
omit such real gas-surface interaction effects as chemisorption at moderate temperatures and/or
hypersonic speeds of incident flow ([3], especially Section 3.4).

(vi) [sufficiently smooth surface]
For mathematical convenience, to guarantee the existence of the normal to a unit surface
element, we suppose that each element of the body surface is sufficiently smooth (with the
exception perhaps of only a negligible set of points). This assumption, although commonly used
(very often implicitly), in fact can be properly applied only if surface irregularities satisfy
the condition 28 cos 6 < X, where £ is the average height of the irregularities of the surface
and 3 is the de Broglie wavelength of the moving molecule (de Boer [15], Ch. III. § 19).

(vii) [absence of external forces]
It is assumed that the field of external forces is of negligible importance. In such a way we

neglect in particular gravity.

I1I. The exact hyperthermal approximation

If the assumption (3) is satisfied, then the incident streams can be treated to a very good
approximation as uniform beams of molecules moving with the same velocity u . [I.e. mathematic-
ally the Maxwellian distributions (1) are replaced by the generalized functions n; 8(Es ~ 1
where &(z - zp) is the 3-dimensional Dirac delta-function.] For the regime described in Section
II, the number and mass of incident molecules per unit area per unit time striking the surface,
the surface pressure, the surface shear and heat transfer rate per unit area per unit time, are
given in the "exact" hyperthermal approximation, respectively by (e.g. see [5], [6] or [14])%%:

It is generally agreed on the basis of experiments that for moderate Mach numbers M the
condition Kn 2 3 is usually sufficient to treat such a rarefied gas flow as free-molecular.

*%
The expressions (7a-7e) and (8a-8e) are particular but generalized to mixtures, and in some

cases slightly modified (e.g. to suit the notation used), versions or implications of some
formulae from the references quoted. Note that the formulae for the total heat flux are
derived in [5] and [14] without stressing that they are correct in so far as the assumption
given in the last statement of (iv) [see above] is satisfied. As has been pointed out by
Kogan [6], § 6.1 this assumption represents a significant restriction in the case of hypersonic
flows.
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Nt - (7a)
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T Eatpiw ug sin 8, (7d)
Q tE%_otepim ud (1 - aiszé), (7e)
where
pim = minim’ Ei = ;é(Yi + 1)/(Yi - 1)'

K 3 - - - -
Hereafter I = Lj_1; Pic denotes the ordinary density of the ith gas at infinity, yj; is the 1th

gas isentropic constant (also often called "specific heat ratio in the free stﬁeam"), i.e.
*/e; represents the limiting density ratio for stromg shocks in the perfect ith gas; e; = 2 for
monatomic gases, and gy = 3 for diatomic gases at moderate temperatures; Siy is defined by (6).

It is easily seen that the set of the quantities given by (7a-7e) depends as a whole on
the surface temperature Ty, but all of the quantities are independent of T_. (Of course this
is a result comnected with the abovementioned delta-function reprgsentation.) Hence, }f for
all i the conditions 3;, cos & > 1 are satisfied, where gim = u,/hims by, = (2KT; /m;)%, then
in the expressions for each f;, [given by (1)] T_ could be replaced by these, not necessarily
equal, T;, without producing any change in (7a-7e).

0f course for cos 8 = 0 (i.e. for zero angle of attack to the incident stream) the
conditions (3) can no longer be satisfied. In this case, the exact free-molecular theory
vields the following results (again see [5], [6] or [14]):

| .

Nt fn, h, , (8a)
jo e

Mt %o, h, , (8b)
o e

y % % 2 “1a—1 1 -2

p /= %Bm ° X yIm Pie Us [@anSiWSiDo + (1 - @un)Sim], (8¢c)

T Eanim ui Sgi, (8d)

Q | E%aepiw ui him(l - 61513 + siszi). (8e)

In contrast to the previous case all the expressions (8a-8e) depend on T, as could be expected.
It can be also noted that N+, M* and p are independent of u_,, but T and Q are strictly in-
creasing functions of uy. Of course, in view of the hyperthermality conditions these terms
which contain S;i as a factor could be rejected. Nevertheless as it will be seen in Section IV
it is not really necessary, and since it could be of interest to retain the terms, we present
them explicitly. (It seems useful to point out that for a not necessarily cold body other
terms cannot be rejected even for the abovementioned hyperthermal conditions.)

IV. A simplified approach

Let us compare the formulae (7a-7e) and (8a-8e) of Section III with the corresponding
formal results (denoted in what follows by W', %, p, T and § respectively) obtained if ome
replaces the set of distribution functions as given by (1) by a certain hypothetical
distribution function:

2
£(xse,6) = £_( = il (9
E(xso,8) = _(8) = RHp 9
pis 2 o V3 ] = 2
(w%hm) hz
where
= _
m. = In,,, B, = (2kTm/ﬁ)2, B5p fo,, p, = By (10)
and uses the additional averaged quantity
e = Iggng,/n, =4 (1)

as the isentropic constant for such a hypothetical gas.

For the formal hyperthermal approximation [more precisely, for gw cos 6 & 1, where
= uw/ﬁm, together with the other similarly modified assumptions of Section I] we obtain
from (7a-7e), using (9) as well as (10) and (11),

W
il
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N+ = A+, where ﬁ+ =n_u_ cos 63 (12a)
M' = A+, where W' = p, U, cos 0; (12b)
p =p+ %&nﬂ%(cl = )P ui (1/§W)cos 8, (12¢c)
where p = p_ ui[(Z - a )cos 6 + %unﬂ%fgwlcos 8, (12e)4
ey = @) lrmin, = @%/p,)T0,, /0, (120,
§, = u,/h,, b, = (ZkTW/ﬁ)l/z; (12c)3
T =1, where T = %anm ui sin 20; (124)
Q@ =Qs where § = %uepoo ui a - E/gé)cos 8. (12e)

In a similar way, we obtain for cos 8 = 0 [from (8a-8e)]

Nt = czﬂ+, where N = %w;% n_h_, (13a)
co = (@/n_)Tn,, /nl; (13a);
Mt = c1ﬂ+, where i = %ﬂ—% p, B3 (13b)
P =P, where p =%o_ u2 [%0 /S + (1 - % )/5_1/5_; (13e)
T = ¢y where T = o P, ui/gm, (134)
Q = Q+ur 2 ap, B, [(e - Du? - E(e; - DA - B2)], (13e)
where § = %ﬂ_% OGPy ui Hm(l - E/gé + Ef§i), (13e),
5 - %5
c3 = (m /enm)Zsinim/mi. (13e),

As we see, the simplified approach generally gives results completely equivalent to the results
of the exact theory if and only if ¢, = 1 (j = 1,2,3). This precise but somewhat vague math-
ematical criterion can be replaced b; a set of weaker statements which seems to be much more
useful and convenient for practical and theoretical applications. First of all, it is clearly
seen from (12a-12e) and (13a-13e) that the coefficients c; are not equally important. Im fact,
in each case (i.e. either when S4e cOS O > 1, or when cos 6 = 0) a comparison of the order of
the terms involved, taking into account the assumptions (ii) of Section IT, shows the special
importance of having an accurate value of the coefficient c;, which appears as a factor in lead-
ing terms of the appropriate simplified expressions®. (In patricular, for a "cold" or "luke-
warm' body this is the only essential coefficient. Of course, for a "highly cooled" body, the
hyperthermal case §m cos 8 1 does not depend on any coefficients at all, while the case

cos 8 = 0 depends only on c;.) It is also clear that a very accurate value of the coefficient
€z is of least importance from the aerodynamical point of view. Firstly, Nt is a quantity of
little importance from the aerodynamical point of view since, while dealing with gas-mixtures,
one is (and should be) concerned with MV rather than with NT. Secondly, from the same point of
view the main quantities of interest are not M* or Nt but P, T and Q, since a direct integration
of these over the surface of the body leads to evaluation of the aerodynamic characteristics of
the body (namely the lift force, the drag force and the net thermal flow). While establishing
the importance of the coefficients Cy in applications, it should be also realised that con-
tributions from the grazing angle of incidence, being proportional to products of positive
integer powers of him and hiw’ are usually very small compared with the corresponding con-
tributions of the hyperthermal case. These small contributions normally produce even smaller
contributions into the total aerodynamic characteristics, if a realistic solid flying object is
considered, since for such an object the locus of the points of its surface defined by the
condition cos 8 = 0 constitutes only a small or even negligible portion of the surface. This
latter remark is especially applicable to blunt, smoothly shaped bodies (e.g. for a sphere the
locus is one of its great circles). Of course the situation can be drastically different for
some lender) bodies. A flat plate at zero angle of attack presents an extreme, although a not
very realistic**, example supporting this claim. But for such specific shapes one may expect,

* More precisely, the closer the coefficient c; is to unity, the better the agreement between
the leading terms of both (original and simplified) approaches.

*#% In particular, some specific features of the so-called "leading edge problem" produce strong
deviations from the free-molecular regime in front of this object. Also note that there exist
essential contradictions within and between appropriate theoretical and experimental results.
(For some interesting discussion and considerations see Kogan [g], § 6.6.)
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on the basis of experiments and related Eheoretical results [1], [2], [1e6], [17], [18], that

the values of* 7 and T as well as Q and Q are rather small since in the regime under consider-
ation the reflection pattern shows a strong tendency towards an almost fully specular reflection
for which o, ® a; ® a_ & 0. (For a precise definition of the fully specular reflection see [51,
Section 10.3.) The somewhat general considerations and conclusions presented above can be
complemented and made more precise and accurate by some rather elementary but lengthy estimates,
computations and standard investigations connected with the study of behaviour of some multi-
variate functions. The additiomal analysis and computations show that the coefficients c; are
very close to unity with a deviation from unity < 1% for various mixtures of practical import-
ance, for example such as air at altitudes 2z 150 km (see [19]). The coefficients also appear

to be quite conservative and stable with respect to moderate variations of the actual components
of a gas-mixture. These latter properties of the coefficients are connected with their part-
icular forms, in which the smoothing action of the square root operators is combined with the
specific semi-averaging procedure. (Strictly speaking, for the stability of c3 an additional
factor, namely, a sufficiently close range of the e;'s involved, is of importance.) Not all of
the work that has been done, and the results obtained, will be presented here. This is not so
much motivated by the limitations on the size of paper in these Proceedings as by the strong
conviction of this author that for various ranges of the parameters involved there exists an
elegant and probably much shorter analytical way of obtaining precise estimates of ¢y on the
basis of some nontrivial manipulations involving the number theory.

This point of view can be well explained and illustrated by presenting some of the study
connected with estimates for parameter cj;. First of all, by the Cauchy-Schwartz inequality,

i L 1 )
Gw,n, Y5(In, )* 2 Imn, ey € 1. (14)
1. g% deo i iew
1 1
Also it can be easily proved that c; is bounded from below by min{i}mgfmax{i}mf. In fact
L / n?
m.n, /max,. m; o
iiw {i} i . L % _
cy 2 s mln{i}mi/max{i}mi c. (15)

- A %, .
(Zminim) (Eminim) /mln{i}mi

[Clearly this lower bound can be attained (e.g. if (Vi) mj = m = const.).]

It is easily seen from (15) that the closer the mi's are to each other, the closer c¢; is to
unity, as would be expected intuitively. On the other hand, despite the smoothing out due to
the square roots in the numerator and denominator, the ratio ¢ is too crude to provide a
realistic bound for such cases when 3Ji,j: m; >'mj. It also follows from analytical and
numerical computations that even for the case of two gases with quite close my's (say my = 2mp),
where these computations given an error = 1% [see the table below], the estimate (15) gives a
significantly less accurate result. Unfortunately, despite some attempts by this author, an
essential improvement on (15) is still lacking, except for some particular cases, e.g. a two-
component gas-mixture. Results obtained for the latter case are of special significance since
they can be used as a starting point for an easy procedure which can cover quite accurately the
case of an arbitrary non-reacting gas-mixture of more than two components if the molecular
masses are sufficiently close. The procedure consists of repeatedly reducing the number of
species by one, replacing a pair of species by a single hypothetical gas, and evaluating an
accumulative error. At each step the pairs of species with the closest my's should be always
replaced first and, of course, the process can be always restricted to the replacement of only
certain chosen pairs. In practice usually only a few components of a gas-mixture are really
important. TIf this is so, the number of species can be reduced simply by rejecting those
species for which (Yi # i') mi|'< m;, n;r < ny, since for each ith gas M{, Pi» Ti and Qi are
proportional to Piw- We now describe tﬁe two-species gas case in more detail. For two species,
c; can be reduced to the following form:

3 =5 _
c1 = A+ wHIE +wd@+ V173 vEn, /o, u=mn/m.

The behaviour of this c; as a continuous function of v and p has been studied, using some simple
standard calculus and numerical computations, taking also into account natural physico-chemical
restrictions on the range of p. The main results will now be shortly described. (A more
complete description, including appropriate graphs and numerical results, is contained in [20],
where a more general problem is considered.) It was found that c; is strictly monotonic in p
for any fixed v, namely, c¢;(p) is increasing for p< 1, decreasing for u > 1, and has its
maximum at u = 1 [this latter result can also be easily derived from the estimate. (15) combined
with the implication in (14)]. More precisely, Y (fixed) vy > 0, cj(u;vg) is quite rapidly (or
even very rapidly for some ranges of vy) increasing if** ue(0, 0.4), then increasing at less

* 8ince values of p and § are identical if cos 8 = 0, no discussion of these quantities is
needed.

*%* Hereafter all numerical values except the number 1 are approximate with an error < 1%.
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than one-third that rate if we(0.4, 1), and finally decreasing rather slowly for pe(l, 11)
[for example, \f(fixed) vg > 0, c1(11;vp) ~ ¢7(0.35vp)]. For p > 11, c; is generally decreasing
almost at the same rate as at p = 11.

Some useful numerical results for c; (u;v), restricted to ve(0.1l, 10), are given in the
following self-explanatory table:

M (0.3, 0.4) (0.4, 0.6) (056 L75) (1.75; 2.0) (2.0, 5.0) (5.0, 11.0)
- z 0.90 2 095 z 0.99 2 0.98 2 0.94 z 0.91
15
< 0.99 < 1.0 <1 g 1.0 < 0.99 < 0.98

Clearly the optimal, almost stable, values of c; are obtained for ue(0.6, 2.0). It is also
clear, that for some quite realistic values of gy and vy, c; can be considerably less than 1,
e.g. c1(0.04;10) = 0.76. Since c; is an invariant under the nonsingular [(Vi)mi, Dig € 7zt
transformation (p,v) - (u“l,v“l), the value for cj(up;vg) is simultaneously the value for
CI(Uﬁl;vﬁl), a fact which has also been used in the above computations.

We have presented here some parts of our study on c;. Rather similar, but by no means
identical, considerations and computations lead to similar results for the essentially less
important coefficients c, and c3. As has been mentioned above, an exact extension of the
considerations for a two-species gas mixture, to general gas mixtures of more than two species,
is not simple.

V. Discussion, conclusions and continuing investigations

It has become a somewhat irresponsible custom that when describing and solving problems of
motion of solid objects in a highly rarefied atmosphere, such an atmosphere, which is actually
a gas-mixture, is treated simply as a monatomic gas of mean molecular weight. To the best
knowledge of this author, neither a justification for such an approach, nor a precise way of
replacing a gas-mixture by a single gas has been given so far. It is shown in this paper how
to obtain a certain rather natural replacement by a single hypothetical gas for a general
neutral gas-mixture in the regime described in Section II. It is also specified, using mainly
mathematical manipulations and computations, when and where the replacement can be valid. It is
clearly seen from Section IV that the problem in itself is far from being trivial and it seems
certain that no simple replacement by a single monatomic gas can be valid for arbitrary gas-
mixtures. The results obtained, which describe N', M', p, T and Q in the terms of N, ﬂg, P,

T, Q and cg, cp, ¢3 [see (12a-12e) and (13a-13e)] can be used directly to evaluate the first
set of quantities. The calculations are shorter than the original omnes (since separate cal-
culations of contributions due to each gas constituent are omitted) but still completely exact.
One must add that in practice extreme precision in finding values of c¢; seems to be useless if
one considers the order of errors introduced by basic theoretical assumptions (ef. [3], [4]).
In a particular case of high altitude (Earth's satellite) flights in conditions adequate to
those of Section II (i.e. roughly speaking, at altitudes z 150 km and < 800 km) one can check,
using the available data (e.g. [3], [4]), that the simplified approach generally works with a
very good accuracy, but not always, and only if a well-ordered selection of important components
is taken successively (not simply by taking a mean molecular weight at an altitude as has been
usually thought; e.g. cf. [3], [4]). A more detailed consideration, including (i) a discussion
of "real gas effects", such as dissociation and ionization, (ii) a discussion of additional
difficulty with the fulfilment of the basic condition NT = N~ (where N~ is the outgoing number
flux) due to physisorption and chemisorption, which is much less readily reversible than
physisorption, and (iii) a discussion of the importance of the molecular ratio m/mW (where mg,
is the constant mass of a surface molecule), are also given in [19]. Some generalizations and
extensions are of significant interest: (i) The above results, in terms of a.c.'s (independent
of 8, T, and u_, as well as re-emission parameters) suggest that such models (more flexible and
realistic in many circumstances) as, for example, the Nocilla model® [16], [17], [18] contain-
ing diffuse and specular reflections as limiting cases, or Schamberg's model [1], [2], can be
also included under some additional restrictions. (Note that any model other than the clas-—
sical Maxwell's approximation yields a dependence of the a.c.'s on & and T,.) The Nocilla
model is currently being considered [20] and it appears that this model can be included if the
additional restrictions are imposed on parameters U. and 6, [18] connected with the macroscopic
"drift" velocity; in particular, this velocity should not be too large. [Note that the
behaviour of the model for the grazing angle of incidence exhibits a tendency to a specular
reflection.] (ii) The hyperthermality requirements (2) or (3) can be weakened, to include
ordinary hypersonic or even moderate supersonic flows of similar type to the above, if a greater
error margin is permitted (e.g. $ 3.5% instead of ¢ 1%). A motivation for this is mainly based

* A very interesting departure from the Nocilla model to a class of Maxwellian type models in-
volving more parameters has been proposed and investigated quite recently by T. Marshall (Jr.)
[21].
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‘on the similitude properties of the passage from Si, > 1 to finite Sim's of order 3.5 or 4
([5], Section 10.5), and the conclusion has been already strongly supported by some computations.
(iii) A non-trivial generalization of the results can also be obtained by introducing some
suitable T;, and T;,, and then averaging them in order to fit the formulae (7a-7e) and (8a-8e).

o
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