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SUMMARY

Free-molecular solutions of a certain system of the Boltzmann equations are found,
assuming the absence of external forces, for some discontinuous initial-value problems,
when either a mixture of highly rarefied gases is considered over an arbitrary time,

or a mixture of not so rarefied gases is considered over a sufficiently short time

of evolution. Initially, the distinct gases are in absolute equilibrium and completely
separated by means of an impenetrable boundary. After this boundary is removed,
diffusion of the gases and smoothing out of the initial, not necessarily weak,
discontinuities begins. The mean field quantities of particular gases and field
quantities for the whole gas-mixture are evaluated analytically and numerically.
Comparison with some previous results and classical gas-dynamical solutions by means

of corresponding graphs, and discussion of the results obtained, are given.
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I. Introduction

Keller [1] and Kornowski [2] have obtained nonstationary free-molecular® solutions of the
non-linear Boltzmann equation for the problem of the filling of a particular vacuum by a neutral
gas, assuming the absence of external forces and under the assumption that initially (at time
t=0, say) the gas is in absolute equilibrium and completely separated from the vacuum by an
impenetrable boundary. In [1], this boundary was x3=0 [where xj (k=1,2,3) are physical space X
coordinates] with the vacuum in the half-space x3<0.Analytical expressions for the lower thermo-
dynamic moments of the distribution function were given, showing in particular that the pressure
tensor remains diagonal for t>0 and that the macroscopic quantities not only depend on the same
ratio (x3/t) as the classical gasdynamics solutions of the Euler and Navier-Stokes equations
but also represent similar (although distinguishable) results. It seems useful to mention that
this problem can also be interpreted as one of a gas confined to the "positive'" half of a tube
of constant rectangular cross-section with perfectly reflecting walls, thus representing an
idealized shock-tube experiment. (For an interesting and simple review of various shock-tube
(shock tunnel) driving techniques and their applications, especially for a description of some
quite recent achievements at the Australian National University, see [7].) Kornowski [2]
studied the problem of the filling of a vacuum: (i) between two parallel planes, (ii) inside a
sphere, (iii) inside an infinitely long circular cylinder. Only the density profiles were
found. Strictly speaking, the exact expressions for the density in the whole of X were obtained
in the case of the first two configurations, but only on the centreline and boundary in the case
of the third one. An approach to some problems of upper atmosphere flight on the basis of the
results obtained was also described.

It should be mentioned here that "the method of instantaneous point sources', used by
Molmud [8] as an analogy to the solutions of some heat flow problems in solids, leads to
evaluation of lower moments of the distribution function without the evaluation of the function
itself. But this method cannot be naturally and simply generalized and extended to include, in
particular, first, second, etc. collisions between molecules (the price paid for omission of the
basic microscopic level of description). On the other hand such generalizations and extensions
can be made if the explicit free-molecular solutions are used as the zeroth approximations in
certain iterative schemes of solution of the Cauchy problem for the non-linear Boltzmann
equation. Various iterative schemes were investigated from a theoretical point of view in [91,
[10], [11] and [12] for some classes and spaces of continuous or Lebesgue measurable functioms.
A practical formal application of one of the iterative schemes*** (more precisely, that of [11])
to some of the abovementioned problems, assuming a cut-off of intermolecular interaction, has
been given in [16] where main considerations were restricted to first collisions and final
computations were performed in the case of pseudo-Maxwellian molecules. It is in order to point
out here the existence of some other results for smoothing out of weak initial discontinuities
[17]1, [18], [19] obtained by using more sophisticated methods of evaluation than that of [16].
(For a review of other problems in which free-molecular solutions are involved see, for example,
Schaaf [20] and Kogan's monograph [6], Ch. VI.)

The contents of this paper are as follows. The problems to be solved are formulated in
Section II following the Introduction. In Section IIL solutions of the problems are obtained
analytically and numerically. Section IV contains a comparison of the results of Section III
with some related free-molecular or classical gasdynamic solutions (by means of appropriate
graphs) as well as a further discussion of the results with some conclusions. (A full discus-
sion of the results obtained, in particular a detailed comparison with gasdynamic solutions
[211, [22], [23], is given in [16]. Such a discussion, connected with consideration of various
cases, should not be given here, but not simply because of the restricted size of the
presentation. Clearly, to have a complete and precise picture of similar, but more comprehen-
sive, problems it certainly is much more profitable if the (limiting) free-molecular solutions
are compared not only with the (limiting) continuum solutions but also with some, at least,
intermediate solutions: for example, with the first-collision results evaluated in [16].)

* For a precise mathematical definition and range of validity of the free-molecular limit, see
Grad [3], Sect. 7 and 12. (Also see Truesdell [4], especially §22, Lebowitz & Frisch [5] and
Kogan [6], §2.11.) An extension of the definition to the case of a flow of a rarefied gas
mixture is simple (cf. Kogan [6], §1.4).

**% Note an error in [1], which has been pointed out by Truesdell in [4], §22, as well as a
number of typographic errors and omission of the drawings to which reference is made, in [2] .

*%% One should exercise some care in choosing an appropriate scheme. A somewhat striking
example of the incorrect use of iterative procedures by early contributors is given by the
so—called Knudsen iteration, especially in the case of certain one-dimensional geometries.
[The fact was pointed out and partly explained by Willis (e.g. in [13] and [14]). For a short
explanation from a functional analysis view-point the reader is advised to consult Cercignani
[15], p.136 and p.204.]
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II. Formulation of the problems

Two initial-value problems are to be considered under the assumption of the absence of i
external forces, for a certain system of the Boltzmann equations, in the case of two distinct
neutral, collisionless gases initially separated by an impenetrable boundary and each in
absolute equilibrium, with initial (not necessarily weak) discontinuities between the number
densities, temperatures and (only in the first problem) mean velocities. Thus the initial
distribution function of the ith gas, f0, is as follows:

i
£] = F1(0E) = 450D
Here ~ ng §i _ Eg 2
b 0?0 w :
iiguxg = X, Egnxg =@, i,je{1,2} ,
where ng, gg = (ugi,ugz,uga) are the initial mean number density and mean velocity of the ith

— = %
gas, 53’. =(Eﬁ ,E,‘iz,gia) is its molecular velocity and hg_ = (2kT2/mi) is the so-called most

probable (initial) random speed; T? is the initial ith gas temperature, my is the constant mass
of a molecule of the i'® gas, [Cl2arly, the superscript "0" distinguishes initial parameters
and functions, while the subscript 'i' refers to the ith gas. ] C(XZ? is the characteristic
function of the region Xg, i.e. c(Xg) =1 if xexg, c(xg) =0 if x¢X0. ig denotes the closure of
Xg; § denotes the empty Set. - L

The considerations are restricted to some initial configurations which are generalizations
of those of [2], namely

(1) X? = {xt |x3| < a = const > 0}, ugi = ugs =0 fori=1, 2;
(ii) Xg = {§: r <a=const >0; = (%3, X0, x3), T = |5|}, 92 =0 for ik = 1, 2.

In what follows the resulting expansions are called (i) infinite laver and (ii) spherical cloud,
respectively.

After the boundary is instantaneously removed at t = 0, diffusion of the gases and smooth-
ing out of the initial discontinuities begins. Our main aim is not so much the evaluation of
the distribution functions for t > 0 (this is trivial in both problems) but (a) to find
analytically and numerically the mean ordinary density, mass-average velocity, diffusion
velocities of particular gas constituents, components of the mass—average stress tensor (and
thus by implication the mass-average temperature), etc. for the mixture as a whole, and (b) to
investigate their behaviour.

ITI. Solutions of the Eroblems

Under the free-molecular conditions and in the absence of external forces any system of
Boltzmann equations which describes the behaviour of a gas mixture [6], [101, [24], [25] reduces
to a system of independent equations, each containing only one distribution function as an un-
known function so that the type of Cauchy problem of Section II has the following form:

&t =0, t>0, £0,x,8,) = £ (=1, 2),
where the linear free-streaming operatoréZ& is reduced to the directional derivative

2 a_
1 ot T %1t Bx

Solution to the Cauchy problem are known to be**
(t,x,8) = £)(x - £,t,8) =¢% 2(x),

[

* By distinct gases we mean hereafter gases having distinct masses of their molecules [although
strictly speaking this would be too general if a consistency in matching the boundary conditions
prior to t = 0 is required (cf. [6], p.69, and [15], p.54)]. In a general "collisional" case
distinct molecules may of course have many other important distinct properties, é.g. collision
cross-sections, degrees of freedom etc.

*% Actually the class of the solutions is restricted both from the physical and mathematical
point of view. From the physical point of view, the functions should approach zero sufficiently
rapidly for £ + « to guarantee the existence of moments (at least as high as the kinetiﬁ energy
moment). From the mathematical point of view, to achieve the a.e. existence of Dify, £i should
be continuous a.e. In the problems to be considered the fg's are either absolute Maxwellian or
identically vanishing in some regions, thus all necessary requirements are satisfied.
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‘where for our initial configurations, and t > O,

X: |X3 - Ez3t| > a},

]
—~—

(i) Xl = {§: |X3 - ﬁlatl < a}, Xz
(11) X = {x: |[x - gt] < a}, Xy = {x: ]f - gt| > al.

For these problems various mean quantities of interest have been evaluated and the results
are given below. Definitions of the quantities (in the case of general gas mixtures) are found
in [6], [24], [25].

(i) Infinite Layer

The X; may be rewritten for this problem as follows:

= {§!§1= z_ < E13 < Z+}, X = {f,gz: E23 < Z_, Z+ < 523}3
where
z_ = (x3 - a)/t, z, = (x3 + a)/t.

Also, an inertial frame of reference is introduced, so that ug = 0 and thus u?z = U = const.

(2) Mean densities

The number and mass densities of the ith

respectively by

gas component in the mixture are given

_ roqni=l. 0 =
ni(t,g) = (-1) niEfi + Siznz and pi(t,§) mn,,

where 6ij is the Kronecker delta tensor, and
= 0
Efi(t,§) = %[erf(z+/hi) - erf(z_/hg)].
The number and mass densities for the mixture are respectively
n(t,x) = In, p(t,x) = Ip,.
ass i l! ,__ i 1

(b) Average velocities

Components of the mean velocity of the ith gas are found to be

= 0; w. = (l=8 00 w. =Entt °h

Y4 i2 1277 UYi3 i 1’“1 ’

where "
i = L ﬁ{exp[“(Z_/hg)z] - exp[—(z+/h2)2]}_

Thus the components of the mass-average and diffusion velocities are respectively,
- - i-1
u; =0, u, = p1U0/p, uz = Z( T3 Ohiul 1/0

and
v = v = - v = = 1-1 - 0 0
ViI 0, viZ U(pal/p 612), Vi3 (-1 (1 - p. /pE@HIH J,lfnj)'

Obvi 0 = 0
(Obviously Py = mym.. wl)

(c) Stress tensor and temperature

The expression for the components of the stress tensor, as given in say [25], may easily
be simplified to

Py (E5%) = JEIJEik 1985 = puguy

(integration is over the whole Ei—SPace), and evaluation gives

P11 ”E(hOJ 0.» D22 = P11 + p1p2U%/p ,

5 4
i-1 1-1 2
- - 01,0 = = 0R0
P33 = P11+ 17 Toghjuy , = (2D Toghiuy ] /o
P12 = P21 = 0, P13 = P31 = 0,
= = UzpOh0 -
P23 = P32 = UZpjhju, 4 (1 - p0,/0).
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where
= 30 %(z_expl-(z_/h0)2] - z exp[-(z,/h0)21}
fag =™ S +EXPLTRZ, /0y :
The temperature is given by the following tensor contraction:
T = Ip,../(3kn
jpjj/( )
Recalling that (hg)2 = 2kT?/m , we obtain

T=Zn + -< ) 2 /08113 /0 + —<nz/n)<plfp)<ufhz) T

SEen adnu, | /017 (nzn 10/ 6D

(ii) Spherical Cloud

The positive quantities r, &£; are defined as r = |x|, By = |£ | ; the angle 8; is defined to
be the angle between the x and g4 vectors, i.e. cos 64 = (x- gl)/(rgi), 04 e[O m]. To complete
our description of the _i—space, the co-ordinate 1y e[D Zn), is 1ntroduced so that Egs 04, Uy
form spherical polar co-ordinates. It can be readily shown that sets X; and X, may be rewritten
as follows (with t > Q as previously):

X

{x,€1: OgE1gR12, 0<0;gm, Ogr<a; R11551€R12s0591€Sin-1[%ﬂs a<r<w},
Xz = {i{,gz: Rzzﬁ?,z‘(‘”, Oﬁezﬁﬂ, Ogr<a; (0<£2$°°, 0592511’) [=) (R21<52<R22, O<62<51n_1 (%]), a<r<e},
where '@' denotes set subtraction, and
= 15042 - +25in2p VE
Rik(t,r,ei) [rcosei + (-1) (a r2sin Bi) IV ot
The following notation will be used in this section:
T = (a+1)/t, r_ = (a - 1)/t,
= 0 -1k 0 =
rfi,k(t’f) %[erf(r+/hi) + (-1) erf(r_/hi)], k=1,2,
vy (t,0) = [2r% - 222 + 3(00)%e2]/ (4rt),

W60 = B Hemp[=(_/b)?] - (-Dexpl-(r,/AD?]},  m=1,2,

]

vy o(60) = M _exp[-(_ /B2 + (D" expl-(£, /007 T}, m= 3,4

(a) Mean Densities

The number and mass densities of the ith gas constituent are respectively,

= (-1y+1.0 0 0 _
ni(t,g) (-1) n:.L[Erfi,z + hivi’zt/r] + Giznz , and pi(t,g) = mmn,.

The number and mass densities of the mixture are given by the same formulae as in the problem of
the infinite layer.

(b) Average velocities

Clearly, the macroscopic flow of the gas constituents and the whole mixture will be in a
radial direction only. We denote the radial component of the mean velocity of the ith gas by
uj. Since, by [25], p.453, eq. (7.2-2), uj(t,x) = (l/nl)fi ;£idE;, we find on integration that,

- _1y3 - (= 0.3 =50 -
@3 /) (-1  [vyErey |~ ( 1)khi(Etvi,k+2/r 29, )1+ 8,2 5hk}, k=1,2,

where for k = 1, r <a; for k=2, r = a.

The mass-average and diffusion velocities will also have only radial components, and these
are given respectively by
= Epiui/p and Vi =u; - ?pjuj/p.
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(c) Temperature*

Using the formulae from (i) for the stress tensor and for the temperature, it can be seen
that for the mixture of gases in the case of the spherical cloud

It = (;m.Ja%f.dg. - p2)/(3kn).
- . ~ y iz [ PO R B
Evaluating this,

T = (n3/n)Td + 2(-1){- Erf +% [2(h§_}2tvi , +av; 31/} (@0 /n) T
i 3 3

a2
2 0 0y 212 07,042
-3 [EniTiui/ (h;)"] /[niniTi/ (h))“].

IV. Discussion and conclusions

The diagrams, following at the end of this section, have been presented mainly to display
the most typical or striking features of the formulae involved, rather than to give a complete
and comprehensive description of the many situations possible (which is given elsewhere, [16],
for the reasons specified at the end of Section I of this paper). Diagrams for the case of the
spherical cloud were not included here due to the restrictions imposed on the size of this
paper. However, even comparing the formulae obtained for each configurationm, it can be seen
that basic trends will apply equally to both problems. In particular, the number and mass
density diagrams for both problems resemble one another very closely. (This has also been shown
graphically, for the case py = 0, in [8], where the author, using a different theoretical
approach, obtains the same expressions as ours when such a simplification is considered.)

On examination of the diagrams**, the most interesting point to be made is that any highly
non-monotonic behaviour observed in the diagrams is mainly associated with differences in the
initial most probable random velocities, hg, for example see Fig. 2. In most cases, the effect
of a difference in other initial parameters (assuming hg = hg) is continuously and monotonically
in space and time smoothed out (e.g. see Fig. 1). Exceptions to this are where the unequal
initial parameters are not directly related to the quantities described. For example, if the
initial densities are different, they produce an effect on the mass-average velocity that is not
monotonic (see Fig. 3), and similarly in Fig. 6, where there is the addition of a term depending
on the initial velocity U, to the expression for T. However, these exceptions are predictable,
and certainly do not represent disturbances of such highly non-monotonic type as those due to
differences in the hg. The behaviour of the gases as shown in Fig. 2 is explainable in terms of
a statistical approach. The h; represents statistically the standarg deviation of the initial-
Maxwellian distribution function f;, from the inital mean velocity u; of the ith gas. Hence, if
h? > hg (say), whilst n? = ng and uf = uo3 = 0, then ng(§13) > nz(gzg), where ni(gis) denotes
the initial number density of particies o% the ith gas, having velocity component £,, > h?- As
the membrane is removed, more particles of the first gas will move during an initiai, suf-
ficiently short, time interval (t = 0.1 say) in the direction of increasing x3 (or r in the case
of the spherical cloud) than those of the second gas will move in the opposite direction (Fig.
2). It seems that the phenomena in Fig. 2, and consequently in Figs. 4 & 5, could not be
predicted by a continuum theory, since it needs a kinetic theory approach to explain it. In
Fig. 4, we see that the initial motion is directed towards increasing x3, i.e. there is an
initial basic surge of the first gas in this direction (in agreement with our foregoing dis-
cussion), since the second gas is not able to match the (initially more quickly moving) first
gas. The presence of the lower maximum point in Fig. 4 is related to the interaction between a
small number of fast particles of the first gas, and a great number of slow particles of the
second gas moving in the opposite direction. However, the point is that with hj > hg, the first
gas appears to dominate initially the motion of the second gas even in the region x3 > a
(or r > a) for xg(or r) close to a.

Although the diagrams discussed here cannot be directly compared with the graphical results
of a one-dimensional discontinuity, [17]-[19], as well as Keller's [1] expansion into a half-
space vacuum, the analytical results can be compared by introducing into our formulae a new
variable x3 = x3 + a, and then letting a + ». [The limiting results are related to the
(initially separating) plane xé = 0.] Appropriate graphical results obtained for this case can
also be compared with the available gas-dynamical solutions. The comparison exhibits various
features previously pointed out in [17]-[19] as well as those mentioned in this section (e.g.
one can see the importance of the ratio of the initial most probable velocities). In particular,
a great similarity between the free-molecular solutions and the appropriate Navier-Stokes
solutions as well as "the best smooth mean curve" behaviour in respect of the Euler inviscid

* The components of the pressure tensor for the spherical cloud are found to be too lengthy to
be included in this paper.

*% In view of the symmetry of the infinite layer problem with respect to the plame x3 = 0,only
the diagrams for x3 = 0 are presented.
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solutions have been observed. (For an explanation of this fact see Bienkowski [19], Sect. 2.A4;
see also [16].)

It should be mentioned that, in the case of the infinite layer, non-zero shear terms are
present in the stress temsor, even though there is no interaction between the gas molecules
themselves (cf. the corresponding result of [1], in which it was found that the stress tensor
was diagonal for the case of the half-space expansion into vacuum). Also it is readily shown,
both analytically and numerically, that as t + «, all mean quantities for the mixture as a whole
tend to those initially associated with the second gas, as would be expected. Finally, it may
be observed that the solutions obtained above should remain correct even for the case of higher
densities, if the mixture is considered over a sufficiently short time of evolution T < T, Where
Tq 1s the average time between collisions, i.e. it is possible then to treat the mixture as a
Knudsen-like gas. Theoretically, the time interval of evolution can be enlarged by using the
approach proposed by Grad at the end of Sect. 19 of [3].

p p/pg

0
eo / /.—- o h0= 0 -
7/ /’/"‘—- 1 2
S anl 0_ 0
______ 291*92
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oy L 7 hy=Zhy, py1=py \ L
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