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SUMMARY

The numerical method of integral relations in both the
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INTRODUCTION

An attempt is being made to define gas conditions at the forward edge of a super-
sonic surface, fig.l. The plate is taken to have a flat leading edge which stands normal to
the free stream. The solution for the flow field behind the detached shock provides a set of
initial conditions with which to explore the nature of the subsequent viscous interaction near
the leading edge of the plate. The fact that the solution for the flow field between shock
and flat leading edge is also that on a thin flat plate normal to the free stream, and is
therefore relevant to the re-entry problem of long slender delta lifting surfaces, is noted

Ly. .
(4 So far as is known there are no published experimental data for a plane supersonic
flat blunt face, ‘although results are available for the flat faced cylinder or disc in both
symmetric (2) and asymmetric attitudes (3).

The . numerical method of integral relations has been found to give very good results
both on rounded nose shapes and for attached flows (5,8,10). The method has been developed to
solve the flow field on the front face of a disc (4,5), and flat plate (4,5,6) both normal to
the stream and at arbitrary incidence.

We now wish to explore the validity of the solution for the flat face at supersonic
Mach numbers.

EXPLORATION OF VALIDITY OF ONE STRIP SOLUTION

In order to provide a basis for comparison with the theory, experiments have been
run at M1.8, Imperial College, London (7) and M3.0, University of New South Wales. The one
strip solution has been extended to the limits of its range of Mach number, fig.2, and inci-
dence, fig.3, using an IBM 360-50 computer.

The conditions of model size required for the achievement of truly plane flow
information at M3.0 required a separate investigation. The largest possible model is desired
within the limit of blockage. Given the small available cross section 102 mm x 140 mm (4 in
x 5% in), the largest full span plane model size which would permit stable running was found
to be 13 mm (% in) deep. Because larger models were required for subsequent experiments, the
use of end plates was proposed and their influence on shock standoff distance studied, fig.5.
The limiting conditions of no end plates and of infinitely long end plates, corresponding
roughly to the wind tunnel side walls for a full span model, are also shown for a range of
model aspect ratios (span/depth). It is clear that aspect ratios should be at leadt 10, if
no end plates are to be used, and also that it is preferable to test models which do not span
the tunnel, unless the aspect ratio is very large.

Tests to determine shock shape have been run on models varying in depth from 1.6 mm
(1/16 in) to 8.5 mm (3/8 in), having aspect ratios exceeding 10 and a range of lengths from
0 to 8 times model depth. Normal shock standoff distance in all cases was found to be 0.70
+ 0.05, based on model depth. Arbitrary scaling of the model depth to include the width
across the corner separation bubble does reduce this to 0.6, which however is still well above
the prediction of one strip theory, fig.3. The superior agreement for the axisymmetric case
is noted parenthetically.

The question therefore arises as to whether the higher order two strip solution is
demanded for plane flow. This requires iteration on the initial unknown value of velocity at
the midpoint of the stagnation streamline. The closing condition chosen was that used in (8)
for sharp edged caps, namely, simultaneous zero values for numerator and denominator of sur-
face velocity gradient (saddle singularity in velocity) at the sharp corner edge, which is
also taken to be the sonic point on the body. About 10 iterations each of 1 minute computing
time were required. However, no improvement in agreement with experiment was obtained, fig.4,
and in addition the predicted sonic line shape is unexpectedly close to the side boundary of
the front shock layer, compare (2).

This raises doubt about the correctness of the selected closing conditions. Alter-
natives such as a tangent wedge at the corner (compare Sinnott, tangent cone (9)), which,
although no less arbitrary has the virtue of approximating the viscous boundary at the corner,
can be imagined. One such technique which was tried, was to satisfy the saddle singularity
on the centre strip boundary rather than atthe sharp corner. This entailed transfer of co-
ordinates from body-oriented to corner-oriented, or polar, coordinates, at the corner itself
following (8). However, the solution was found to be no different from that already obtained.

SHOCK GENERATED VORTICITY LAYER

Quite apart from the observed separation bubble on the corner leeside;"and its
relation to free stream conditions (M = 3.05, Re = 4.104 per mm ‘', and to the front face
laminar boundary layer (unit displacement thickness 1.2 x 107 " mm/mm) a vortical flow
generated by shock curvature exists in the inviscid flow region itself. An inversion layer
of vorticity, with maximum entropy streamline lifted off the surface of the face, will be
created at asymmetric attitudes, fig.l, but so far as is known its size has not been prev-
iously measured. The one strip theory above does not reveal its presence. The two strip
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theory has not been attempted because it would require iteration on two unknowns. The
analysis of Swigart and Muggia for nose shapes supporting parabolic shocks predicts a very
small separation of stagnation and maximum entropy streamlines (10).

An experiment was therefore designed to identify the "entropy layer" on the flat
face, fig.6. The model was 19 mm (3/4 in) sqguare with end plates profiled to the known shock
shape and standoff, fig.5, and set at an incidence of 75° in M3.0 flow (Re 4x104/mm). Traverses
in both angle and position of the handmade miniature pitot probes (0.13 mm x 0.89 mm) at two
stations on the front face near the corner of the model determined the position of the maximum
entropy streamline, (11). Combining this result with shock shape, it was possible to fix 3
points on the streamline, and to locate the stagnation streamline at the shock, Eigind.

CONCLUSIONS

1. New experimental results at M3.0 for plane flat faces at high incidence are
presented. New techniques for ensuring two dimensionality of the flow were developed. These
areegpecially appropriate to small testing facilities.

2. The numerical method of integral relations which has been so successful on
other shapes, including the axisymmetric flat faced body, does not accurately predict experi-
mental shock standeff at M3.0 on plane flat face, even after making allowance for viscous
separation bubble size.
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